Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
7120355e
Commit
7120355e
authored
Apr 16, 2012
by
Maria Dimashova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updated points_classifier sample to use bayes classifier after distributions estimation by EM
parent
eaf0d38f
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
32 additions
and
9 deletions
+32
-9
points_classifier.cpp
samples/cpp/points_classifier.cpp
+32
-9
No files found.
samples/cpp/points_classifier.cpp
View file @
7120355e
...
...
@@ -442,16 +442,30 @@ void find_decision_boundary_EM()
Mat
trainSamples
,
trainClasses
;
prepare_train_data
(
trainSamples
,
trainClasses
);
cv
::
EM
em
;
cv
::
EM
::
Params
params
;
params
.
nclusters
=
classColors
.
size
();
params
.
covMatType
=
cv
::
EM
::
COV_MAT_GENERIC
;
params
.
startStep
=
cv
::
EM
::
START_AUTO_STEP
;
params
.
termCrit
=
cv
::
TermCriteria
(
cv
::
TermCriteria
::
COUNT
+
cv
::
TermCriteria
::
COUNT
,
10
,
0.1
);
vector
<
cv
::
EM
>
em_models
(
classColors
.
size
());
// learn classifier
em
.
train
(
trainSamples
,
Mat
(),
params
,
&
trainClasses
);
CV_Assert
((
int
)
trainClasses
.
total
()
==
trainSamples
.
rows
);
CV_Assert
((
int
)
trainClasses
.
type
()
==
CV_32SC1
);
for
(
size_t
modelIndex
=
0
;
modelIndex
<
em_models
.
size
();
modelIndex
++
)
{
const
int
componentCount
=
3
;
em_models
[
modelIndex
]
=
EM
(
componentCount
,
cv
::
EM
::
COV_MAT_DIAGONAL
);
Mat
modelSamples
;
for
(
int
sampleIndex
=
0
;
sampleIndex
<
trainSamples
.
rows
;
sampleIndex
++
)
{
if
(
trainClasses
.
at
<
int
>
(
sampleIndex
)
==
(
int
)
modelIndex
)
modelSamples
.
push_back
(
trainSamples
.
row
(
sampleIndex
));
}
// learn models
if
(
!
modelSamples
.
empty
())
em_models
[
modelIndex
].
train
(
modelSamples
);
}
// classify coordinate plane points using the bayes classifier, i.e.
// y(x) = arg max_i=1_modelsCount likelihoods_i(x)
Mat
testSample
(
1
,
2
,
CV_32FC1
);
for
(
int
y
=
0
;
y
<
img
.
rows
;
y
+=
testStep
)
{
...
...
@@ -460,7 +474,16 @@ void find_decision_boundary_EM()
testSample
.
at
<
float
>
(
0
)
=
(
float
)
x
;
testSample
.
at
<
float
>
(
1
)
=
(
float
)
y
;
int
response
=
(
int
)
em
.
predict
(
testSample
);
Mat
logLikelihoods
(
1
,
em_models
.
size
(),
CV_64FC1
,
Scalar
(
-
DBL_MAX
));
for
(
size_t
modelIndex
=
0
;
modelIndex
<
em_models
.
size
();
modelIndex
++
)
{
if
(
em_models
[
modelIndex
].
isTrained
())
em_models
[
modelIndex
].
predict
(
testSample
,
noArray
(),
&
logLikelihoods
.
at
<
double
>
(
modelIndex
)
);
}
Point
maxLoc
;
minMaxLoc
(
logLikelihoods
,
0
,
0
,
0
,
&
maxLoc
);
int
response
=
maxLoc
.
x
;
circle
(
imgDst
,
Point
(
x
,
y
),
2
,
classColors
[
response
],
1
);
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment