Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
7106d3e8
Commit
7106d3e8
authored
Dec 01, 2014
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #3458 from thorikawa:kmeans-index-parallel
parents
6b0952b9
553bb795
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
76 additions
and
32 deletions
+76
-32
kmeans_index.h
modules/flann/include/opencv2/flann/kmeans_index.h
+76
-32
No files found.
modules/flann/include/opencv2/flann/kmeans_index.h
View file @
7106d3e8
...
...
@@ -271,6 +271,71 @@ public:
return
FLANN_INDEX_KMEANS
;
}
class
KMeansDistanceComputer
:
public
cv
::
ParallelLoopBody
{
public
:
KMeansDistanceComputer
(
Distance
_distance
,
const
Matrix
<
ElementType
>&
_dataset
,
const
int
_branching
,
const
int
*
_indices
,
const
Matrix
<
double
>&
_dcenters
,
const
size_t
_veclen
,
int
*
_count
,
int
*
_belongs_to
,
std
::
vector
<
DistanceType
>&
_radiuses
,
bool
&
_converged
,
cv
::
Mutex
&
_mtx
)
:
distance
(
_distance
)
,
dataset
(
_dataset
)
,
branching
(
_branching
)
,
indices
(
_indices
)
,
dcenters
(
_dcenters
)
,
veclen
(
_veclen
)
,
count
(
_count
)
,
belongs_to
(
_belongs_to
)
,
radiuses
(
_radiuses
)
,
converged
(
_converged
)
,
mtx
(
_mtx
)
{
}
void
operator
()(
const
cv
::
Range
&
range
)
const
{
const
int
begin
=
range
.
start
;
const
int
end
=
range
.
end
;
for
(
int
i
=
begin
;
i
<
end
;
++
i
)
{
DistanceType
sq_dist
=
distance
(
dataset
[
indices
[
i
]],
dcenters
[
0
],
veclen
);
int
new_centroid
=
0
;
for
(
int
j
=
1
;
j
<
branching
;
++
j
)
{
DistanceType
new_sq_dist
=
distance
(
dataset
[
indices
[
i
]],
dcenters
[
j
],
veclen
);
if
(
sq_dist
>
new_sq_dist
)
{
new_centroid
=
j
;
sq_dist
=
new_sq_dist
;
}
}
if
(
sq_dist
>
radiuses
[
new_centroid
])
{
radiuses
[
new_centroid
]
=
sq_dist
;
}
if
(
new_centroid
!=
belongs_to
[
i
])
{
count
[
belongs_to
[
i
]]
--
;
count
[
new_centroid
]
++
;
belongs_to
[
i
]
=
new_centroid
;
mtx
.
lock
();
converged
=
false
;
mtx
.
unlock
();
}
}
}
private
:
Distance
distance
;
const
Matrix
<
ElementType
>&
dataset
;
const
int
branching
;
const
int
*
indices
;
const
Matrix
<
double
>&
dcenters
;
const
size_t
veclen
;
int
*
count
;
int
*
belongs_to
;
std
::
vector
<
DistanceType
>&
radiuses
;
bool
&
converged
;
cv
::
Mutex
&
mtx
;
KMeansDistanceComputer
&
operator
=
(
const
KMeansDistanceComputer
&
)
{
return
*
this
;
}
};
/**
* Index constructor
*
...
...
@@ -658,7 +723,8 @@ private:
return
;
}
int
*
centers_idx
=
new
int
[
branching
];
cv
::
AutoBuffer
<
int
>
centers_idx_buf
(
branching
);
int
*
centers_idx
=
(
int
*
)
centers_idx_buf
;
int
centers_length
;
(
this
->*
chooseCenters
)(
branching
,
indices
,
indices_length
,
centers_idx
,
centers_length
);
...
...
@@ -666,29 +732,30 @@ private:
node
->
indices
=
indices
;
std
::
sort
(
node
->
indices
,
node
->
indices
+
indices_length
);
node
->
childs
=
NULL
;
delete
[]
centers_idx
;
return
;
}
Matrix
<
double
>
dcenters
(
new
double
[
branching
*
veclen_
],
branching
,
veclen_
);
cv
::
AutoBuffer
<
double
>
dcenters_buf
(
branching
*
veclen_
);
Matrix
<
double
>
dcenters
((
double
*
)
dcenters_buf
,
branching
,
veclen_
);
for
(
int
i
=
0
;
i
<
centers_length
;
++
i
)
{
ElementType
*
vec
=
dataset_
[
centers_idx
[
i
]];
for
(
size_t
k
=
0
;
k
<
veclen_
;
++
k
)
{
dcenters
[
i
][
k
]
=
double
(
vec
[
k
]);
}
}
delete
[]
centers_idx
;
std
::
vector
<
DistanceType
>
radiuses
(
branching
);
int
*
count
=
new
int
[
branching
];
cv
::
AutoBuffer
<
int
>
count_buf
(
branching
);
int
*
count
=
(
int
*
)
count_buf
;
for
(
int
i
=
0
;
i
<
branching
;
++
i
)
{
radiuses
[
i
]
=
0
;
count
[
i
]
=
0
;
}
// assign points to clusters
int
*
belongs_to
=
new
int
[
indices_length
];
cv
::
AutoBuffer
<
int
>
belongs_to_buf
(
indices_length
);
int
*
belongs_to
=
(
int
*
)
belongs_to_buf
;
for
(
int
i
=
0
;
i
<
indices_length
;
++
i
)
{
DistanceType
sq_dist
=
distance_
(
dataset_
[
indices
[
i
]],
dcenters
[
0
],
veclen_
);
...
...
@@ -732,27 +799,9 @@ private:
}
// reassign points to clusters
for
(
int
i
=
0
;
i
<
indices_length
;
++
i
)
{
DistanceType
sq_dist
=
distance_
(
dataset_
[
indices
[
i
]],
dcenters
[
0
],
veclen_
);
int
new_centroid
=
0
;
for
(
int
j
=
1
;
j
<
branching
;
++
j
)
{
DistanceType
new_sq_dist
=
distance_
(
dataset_
[
indices
[
i
]],
dcenters
[
j
],
veclen_
);
if
(
sq_dist
>
new_sq_dist
)
{
new_centroid
=
j
;
sq_dist
=
new_sq_dist
;
}
}
if
(
sq_dist
>
radiuses
[
new_centroid
])
{
radiuses
[
new_centroid
]
=
sq_dist
;
}
if
(
new_centroid
!=
belongs_to
[
i
])
{
count
[
belongs_to
[
i
]]
--
;
count
[
new_centroid
]
++
;
belongs_to
[
i
]
=
new_centroid
;
converged
=
false
;
}
}
cv
::
Mutex
mtx
;
KMeansDistanceComputer
invoker
(
distance_
,
dataset_
,
branching
,
indices
,
dcenters
,
veclen_
,
count
,
belongs_to
,
radiuses
,
converged
,
mtx
);
parallel_for_
(
cv
::
Range
(
0
,
(
int
)
indices_length
),
invoker
);
for
(
int
i
=
0
;
i
<
branching
;
++
i
)
{
// if one cluster converges to an empty cluster,
...
...
@@ -823,11 +872,6 @@ private:
computeClustering
(
node
->
childs
[
c
],
indices
+
start
,
end
-
start
,
branching
,
level
+
1
);
start
=
end
;
}
delete
[]
dcenters
.
data
;
delete
[]
centers
;
delete
[]
count
;
delete
[]
belongs_to
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment