Commit 6e4f82d9 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #11583 from catree:add_tutorial_imgproc_java_python2

parents 2db12e89 4c1c3147
......@@ -43,90 +43,118 @@ Code
- Compare the histogram of the *base image* with respect to the 2 test histograms, the
histogram of the lower half base image and with the same base image histogram.
- Display the numerical matching parameters obtained.
@add_toggle_cpp
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp)
- **Code at glance:**
@include samples/cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp
@end_toggle
@add_toggle_java
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/master/samples/java/tutorial_code/Histograms_Matching/histogram_comparison/CompareHistDemo.java)
- **Code at glance:**
@include samples/java/tutorial_code/Histograms_Matching/histogram_comparison/CompareHistDemo.java
@end_toggle
@add_toggle_python
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/Histograms_Matching/histogram_comparison/compareHist_Demo.py)
@include cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp
- **Code at glance:**
@include samples/python/tutorial_code/Histograms_Matching/histogram_comparison/compareHist_Demo.py
@end_toggle
Explanation
-----------
-# Declare variables such as the matrices to store the base image and the two other images to
compare ( BGR and HSV )
@code{.cpp}
Mat src_base, hsv_base;
Mat src_test1, hsv_test1;
Mat src_test2, hsv_test2;
Mat hsv_half_down;
@endcode
-# Load the base image (src_base) and the other two test images:
@code{.cpp}
if( argc < 4 )
{ printf("** Error. Usage: ./compareHist_Demo <image_settings0> <image_setting1> <image_settings2>\n");
return -1;
}
src_base = imread( argv[1], 1 );
src_test1 = imread( argv[2], 1 );
src_test2 = imread( argv[3], 1 );
@endcode
-# Convert them to HSV format:
@code{.cpp}
cvtColor( src_base, hsv_base, COLOR_BGR2HSV );
cvtColor( src_test1, hsv_test1, COLOR_BGR2HSV );
cvtColor( src_test2, hsv_test2, COLOR_BGR2HSV );
@endcode
-# Also, create an image of half the base image (in HSV format):
@code{.cpp}
hsv_half_down = hsv_base( Range( hsv_base.rows/2, hsv_base.rows - 1 ), Range( 0, hsv_base.cols - 1 ) );
@endcode
-# Initialize the arguments to calculate the histograms (bins, ranges and channels H and S ).
@code{.cpp}
int h_bins = 50; int s_bins = 60;
int histSize[] = { h_bins, s_bins };
float h_ranges[] = { 0, 180 };
float s_ranges[] = { 0, 256 };
const float* ranges[] = { h_ranges, s_ranges };
int channels[] = { 0, 1 };
@endcode
-# Create the MatND objects to store the histograms:
@code{.cpp}
MatND hist_base;
MatND hist_half_down;
MatND hist_test1;
MatND hist_test2;
@endcode
-# Calculate the Histograms for the base image, the 2 test images and the half-down base image:
@code{.cpp}
calcHist( &hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false );
normalize( hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat() );
calcHist( &hsv_half_down, 1, channels, Mat(), hist_half_down, 2, histSize, ranges, true, false );
normalize( hist_half_down, hist_half_down, 0, 1, NORM_MINMAX, -1, Mat() );
calcHist( &hsv_test1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false );
normalize( hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat() );
calcHist( &hsv_test2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false );
normalize( hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat() );
@endcode
-# Apply sequentially the 4 comparison methods between the histogram of the base image (hist_base)
- Load the base image (src_base) and the other two test images:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp Load three images with different environment settings
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/Histograms_Matching/histogram_comparison/CompareHistDemo.java Load three images with different environment settings
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/Histograms_Matching/histogram_comparison/compareHist_Demo.py Load three images with different environment settings
@end_toggle
- Convert them to HSV format:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp Convert to HSV
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/Histograms_Matching/histogram_comparison/CompareHistDemo.java Convert to HSV
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/Histograms_Matching/histogram_comparison/compareHist_Demo.py Convert to HSV
@end_toggle
- Also, create an image of half the base image (in HSV format):
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp Convert to HSV half
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/Histograms_Matching/histogram_comparison/CompareHistDemo.java Convert to HSV half
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/Histograms_Matching/histogram_comparison/compareHist_Demo.py Convert to HSV half
@end_toggle
- Initialize the arguments to calculate the histograms (bins, ranges and channels H and S ).
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp Using 50 bins for hue and 60 for saturation
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/Histograms_Matching/histogram_comparison/CompareHistDemo.java Using 50 bins for hue and 60 for saturation
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/Histograms_Matching/histogram_comparison/compareHist_Demo.py Using 50 bins for hue and 60 for saturation
@end_toggle
- Calculate the Histograms for the base image, the 2 test images and the half-down base image:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp Calculate the histograms for the HSV images
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/Histograms_Matching/histogram_comparison/CompareHistDemo.java Calculate the histograms for the HSV images
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/Histograms_Matching/histogram_comparison/compareHist_Demo.py Calculate the histograms for the HSV images
@end_toggle
- Apply sequentially the 4 comparison methods between the histogram of the base image (hist_base)
and the other histograms:
@code{.cpp}
for( int i = 0; i < 4; i++ )
{ int compare_method = i;
double base_base = compareHist( hist_base, hist_base, compare_method );
double base_half = compareHist( hist_base, hist_half_down, compare_method );
double base_test1 = compareHist( hist_base, hist_test1, compare_method );
double base_test2 = compareHist( hist_base, hist_test2, compare_method );
printf( " Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half , base_test1, base_test2 );
}
@endcode
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp Apply the histogram comparison methods
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/Histograms_Matching/histogram_comparison/CompareHistDemo.java Apply the histogram comparison methods
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/Histograms_Matching/histogram_comparison/compareHist_Demo.py Apply the histogram comparison methods
@end_toggle
Results
-------
......@@ -144,13 +172,13 @@ Results
are from the same source. For the other two test images, we can observe that they have very
different lighting conditions, so the matching should not be very good:
-# Here the numeric results:
-# Here the numeric results we got with OpenCV 3.4.1:
*Method* | Base - Base | Base - Half | Base - Test 1 | Base - Test 2
----------------- | ------------ | ------------ | -------------- | ---------------
*Correlation* | 1.000000 | 0.930766 | 0.182073 | 0.120447
*Chi-square* | 0.000000 | 4.940466 | 21.184536 | 49.273437
*Intersection* | 24.391548 | 14.959809 | 3.889029 | 5.775088
*Bhattacharyya* | 0.000000 | 0.222609 | 0.646576 | 0.801869
*Correlation* | 1.000000 | 0.880438 | 0.20457 | 0.0664547
*Chi-square* | 0.000000 | 4.6834 | 2697.98 | 4763.8
*Intersection* | 18.8947 | 13.022 | 5.44085 | 2.58173
*Bhattacharyya* | 0.000000 | 0.237887 | 0.679826 | 0.874173
For the *Correlation* and *Intersection* methods, the higher the metric, the more accurate the
match. As we can see, the match *base-base* is the highest of all as expected. Also we can observe
that the match *base-half* is the second best match (as we predicted). For the other two metrics,
......
......@@ -22,7 +22,7 @@ Theory
### What is Histogram Equalization?
- It is a method that improves the contrast in an image, in order to stretch out the intensity
range.
range (see also the corresponding <a href="https://en.wikipedia.org/wiki/Histogram_equalization">Wikipedia entry</a>).
- To make it clearer, from the image above, you can see that the pixels seem clustered around the
middle of the available range of intensities. What Histogram Equalization does is to *stretch
out* this range. Take a look at the figure below: The green circles indicate the
......@@ -61,53 +61,105 @@ Code
- Convert the original image to grayscale
- Equalize the Histogram by using the OpenCV function @ref cv::equalizeHist
- Display the source and equalized images in a window.
@add_toggle_cpp
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp)
- **Code at glance:**
@include samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp
@end_toggle
@add_toggle_java
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/master/samples/java/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHistDemo.java)
- **Code at glance:**
@include samples/java/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHistDemo.java
@end_toggle
@add_toggle_python
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHist_Demo.py)
- **Code at glance:**
@include samples/python/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHist_Demo.py
@end_toggle
Explanation
-----------
-# Declare the source and destination images as well as the windows names:
@code{.cpp}
Mat src, dst;
char* source_window = "Source image";
char* equalized_window = "Equalized Image";
@endcode
-# Load the source image:
@code{.cpp}
src = imread( argv[1], 1 );
if( !src.data )
{ cout<<"Usage: ./Histogram_Demo <path_to_image>"<<endl;
return -1;}
@endcode
-# Convert it to grayscale:
@code{.cpp}
cvtColor( src, src, COLOR_BGR2GRAY );
@endcode
-# Apply histogram equalization with the function @ref cv::equalizeHist :
@code{.cpp}
equalizeHist( src, dst );
@endcode
- Load the source image:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp Load image
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHistDemo.java Load image
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHist_Demo.py Load image
@end_toggle
- Convert it to grayscale:
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp Convert to grayscale
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHistDemo.java Convert to grayscale
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHist_Demo.py Convert to grayscale
@end_toggle
- Apply histogram equalization with the function @ref cv::equalizeHist :
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp Apply Histogram Equalization
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHistDemo.java Apply Histogram Equalization
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHist_Demo.py Apply Histogram Equalization
@end_toggle
As it can be easily seen, the only arguments are the original image and the output (equalized)
image.
-# Display both images (original and equalized) :
@code{.cpp}
namedWindow( source_window, WINDOW_AUTOSIZE );
namedWindow( equalized_window, WINDOW_AUTOSIZE );
imshow( source_window, src );
imshow( equalized_window, dst );
@endcode
-# Wait until user exists the program
@code{.cpp}
waitKey(0);
return 0;
@endcode
- Display both images (original and equalized):
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp Display results
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHistDemo.java Display results
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHist_Demo.py Display results
@end_toggle
- Wait until user exists the program
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp Wait until user exits the program
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHistDemo.java Wait until user exits the program
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/Histograms_Matching/histogram_equalization/EqualizeHist_Demo.py Wait until user exits the program
@end_toggle
Results
-------
......
......@@ -165,6 +165,8 @@ In this section you will learn about the image processing (manipulation) functio
- @subpage tutorial_warp_affine
*Languages:* C++, Java, Python
*Compatibility:* \> OpenCV 2.0
*Author:* Ana Huamán
......@@ -173,6 +175,8 @@ In this section you will learn about the image processing (manipulation) functio
- @subpage tutorial_histogram_equalization
*Languages:* C++, Java, Python
*Compatibility:* \> OpenCV 2.0
*Author:* Ana Huamán
......@@ -181,6 +185,8 @@ In this section you will learn about the image processing (manipulation) functio
- @subpage tutorial_histogram_calculation
*Languages:* C++, Java, Python
*Compatibility:* \> OpenCV 2.0
*Author:* Ana Huamán
......@@ -189,6 +195,8 @@ In this section you will learn about the image processing (manipulation) functio
- @subpage tutorial_histogram_comparison
*Languages:* C++, Java, Python
*Compatibility:* \> OpenCV 2.0
*Author:* Ana Huamán
......@@ -197,6 +205,8 @@ In this section you will learn about the image processing (manipulation) functio
- @subpage tutorial_back_projection
*Languages:* C++, Java, Python
*Compatibility:* \> OpenCV 2.0
*Author:* Ana Huamán
......
......@@ -17,37 +17,35 @@ using namespace std;
*/
int main( int argc, char** argv )
{
Mat src, dst;
const char* source_window = "Source image";
const char* equalized_window = "Equalized Image";
/// Load image
CommandLineParser parser( argc, argv, "{@input | ../data/lena.jpg | input image}" );
src = imread( parser.get<String>( "@input" ), IMREAD_COLOR );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
/// Convert to grayscale
cvtColor( src, src, COLOR_BGR2GRAY );
/// Apply Histogram Equalization
equalizeHist( src, dst );
/// Display results
namedWindow( source_window, WINDOW_AUTOSIZE );
namedWindow( equalized_window, WINDOW_AUTOSIZE );
imshow( source_window, src );
imshow( equalized_window, dst );
/// Wait until user exits the program
waitKey(0);
return 0;
//! [Load image]
CommandLineParser parser( argc, argv, "{@input | ../data/lena.jpg | input image}" );
Mat src = imread( parser.get<String>( "@input" ), IMREAD_COLOR );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
//! [Load image]
//! [Convert to grayscale]
cvtColor( src, src, COLOR_BGR2GRAY );
//! [Convert to grayscale]
//! [Apply Histogram Equalization]
Mat dst;
equalizeHist( src, dst );
//! [Apply Histogram Equalization]
//! [Display results]
imshow( "Source image", src );
imshow( "Equalized Image", dst );
//! [Display results]
//! [Wait until user exits the program]
waitKey();
//! [Wait until user exits the program]
return 0;
}
......@@ -14,79 +14,93 @@ using namespace cv;
using namespace std;
/// Global Variables
Mat src; Mat hsv; Mat hue;
Mat hue;
int bins = 25;
/// Function Headers
void Hist_and_Backproj(int, void* );
/**
* @function main
*/
int main( int, char** argv )
int main( int argc, char* argv[] )
{
/// Read the image
src = imread( argv[1], IMREAD_COLOR );
if( src.empty() )
{ cout<<"Usage: ./calcBackProject_Demo1 <path_to_image>"<<endl;
return -1;
//! [Read the image]
CommandLineParser parser( argc, argv, "{@input | | input image}" );
Mat src = imread( parser.get<String>( "@input" ) );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
/// Transform it to HSV
cvtColor( src, hsv, COLOR_BGR2HSV );
/// Use only the Hue value
hue.create( hsv.size(), hsv.depth() );
int ch[] = { 0, 0 };
mixChannels( &hsv, 1, &hue, 1, ch, 1 );
/// Create Trackbar to enter the number of bins
const char* window_image = "Source image";
namedWindow( window_image, WINDOW_AUTOSIZE );
createTrackbar("* Hue bins: ", window_image, &bins, 180, Hist_and_Backproj );
Hist_and_Backproj(0, 0);
/// Show the image
imshow( window_image, src );
/// Wait until user exits the program
waitKey(0);
return 0;
//! [Read the image]
//! [Transform it to HSV]
Mat hsv;
cvtColor( src, hsv, COLOR_BGR2HSV );
//! [Transform it to HSV]
//! [Use only the Hue value]
hue.create(hsv.size(), hsv.depth());
int ch[] = { 0, 0 };
mixChannels( &hsv, 1, &hue, 1, ch, 1 );
//! [Use only the Hue value]
//! [Create Trackbar to enter the number of bins]
const char* window_image = "Source image";
namedWindow( window_image );
createTrackbar("* Hue bins: ", window_image, &bins, 180, Hist_and_Backproj );
Hist_and_Backproj(0, 0);
//! [Create Trackbar to enter the number of bins]
//! [Show the image]
imshow( window_image, src );
// Wait until user exits the program
waitKey();
//! [Show the image]
return 0;
}
/**
* @function Hist_and_Backproj
* @brief Callback to Trackbar
*/
void Hist_and_Backproj(int, void* )
{
MatND hist;
int histSize = MAX( bins, 2 );
float hue_range[] = { 0, 180 };
const float* ranges = { hue_range };
/// Get the Histogram and normalize it
calcHist( &hue, 1, 0, Mat(), hist, 1, &histSize, &ranges, true, false );
normalize( hist, hist, 0, 255, NORM_MINMAX, -1, Mat() );
/// Get Backprojection
MatND backproj;
calcBackProject( &hue, 1, 0, hist, backproj, &ranges, 1, true );
/// Draw the backproj
imshow( "BackProj", backproj );
/// Draw the histogram
int w = 400; int h = 400;
int bin_w = cvRound( (double) w / histSize );
Mat histImg = Mat::zeros( w, h, CV_8UC3 );
for( int i = 0; i < bins; i ++ )
{ rectangle( histImg, Point( i*bin_w, h ), Point( (i+1)*bin_w, h - cvRound( hist.at<float>(i)*h/255.0 ) ), Scalar( 0, 0, 255 ), -1 ); }
imshow( "Histogram", histImg );
//! [initialize]
int histSize = MAX( bins, 2 );
float hue_range[] = { 0, 180 };
const float* ranges = { hue_range };
//! [initialize]
//! [Get the Histogram and normalize it]
Mat hist;
calcHist( &hue, 1, 0, Mat(), hist, 1, &histSize, &ranges, true, false );
normalize( hist, hist, 0, 255, NORM_MINMAX, -1, Mat() );
//! [Get the Histogram and normalize it]
//! [Get Backprojection]
Mat backproj;
calcBackProject( &hue, 1, 0, hist, backproj, &ranges, 1, true );
//! [Get Backprojection]
//! [Draw the backproj]
imshow( "BackProj", backproj );
//! [Draw the backproj]
//! [Draw the histogram]
int w = 400, h = 400;
int bin_w = cvRound( (double) w / histSize );
Mat histImg = Mat::zeros( h, w, CV_8UC3 );
for (int i = 0; i < bins; i++)
{
rectangle( histImg, Point( i*bin_w, h ), Point( (i+1)*bin_w, h - cvRound( hist.at<float>(i)*h/255.0 ) ),
Scalar( 0, 0, 255 ), FILLED );
}
imshow( "Histogram", histImg );
//! [Draw the histogram]
}
......@@ -14,10 +14,9 @@ using namespace cv;
using namespace std;
/// Global Variables
Mat src; Mat hsv;
Mat mask;
Mat src, hsv, mask;
int lo = 20; int up = 20;
int low = 20, up = 20;
const char* window_image = "Source image";
/// Function Headers
......@@ -29,23 +28,24 @@ void pickPoint (int event, int x, int y, int, void* );
*/
int main( int, char** argv )
{
/// Read the image
src = imread( argv[1], IMREAD_COLOR );
/// Transform it to HSV
cvtColor( src, hsv, COLOR_BGR2HSV );
/// Show the image
namedWindow( window_image, WINDOW_AUTOSIZE );
imshow( window_image, src );
/// Set Trackbars for floodfill thresholds
createTrackbar( "Low thresh", window_image, &lo, 255, 0 );
createTrackbar( "High thresh", window_image, &up, 255, 0 );
/// Set a Mouse Callback
setMouseCallback( window_image, pickPoint, 0 );
waitKey(0);
return 0;
/// Read the image
src = imread( argv[1] );
/// Transform it to HSV
cvtColor( src, hsv, COLOR_BGR2HSV );
/// Show the image
namedWindow( window_image );
imshow( window_image, src );
/// Set Trackbars for floodfill thresholds
createTrackbar( "Low thresh", window_image, &low, 255, 0 );
createTrackbar( "High thresh", window_image, &up, 255, 0 );
/// Set a Mouse Callback
setMouseCallback( window_image, pickPoint, 0 );
waitKey();
return 0;
}
/**
......@@ -53,25 +53,27 @@ int main( int, char** argv )
*/
void pickPoint (int event, int x, int y, int, void* )
{
if( event != EVENT_LBUTTONDOWN )
{ return; }
if( event != EVENT_LBUTTONDOWN )
{
return;
}
// Fill and get the mask
Point seed = Point( x, y );
// Fill and get the mask
Point seed = Point( x, y );
int newMaskVal = 255;
Scalar newVal = Scalar( 120, 120, 120 );
int newMaskVal = 255;
Scalar newVal = Scalar( 120, 120, 120 );
int connectivity = 8;
int flags = connectivity + (newMaskVal << 8 ) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
int connectivity = 8;
int flags = connectivity + (newMaskVal << 8 ) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
Mat mask2 = Mat::zeros( src.rows + 2, src.cols + 2, CV_8UC1 );
floodFill( src, mask2, seed, newVal, 0, Scalar( lo, lo, lo ), Scalar( up, up, up), flags );
mask = mask2( Range( 1, mask2.rows - 1 ), Range( 1, mask2.cols - 1 ) );
Mat mask2 = Mat::zeros( src.rows + 2, src.cols + 2, CV_8U );
floodFill( src, mask2, seed, newVal, 0, Scalar( low, low, low ), Scalar( up, up, up), flags );
mask = mask2( Range( 1, mask2.rows - 1 ), Range( 1, mask2.cols - 1 ) );
imshow( "Mask", mask );
imshow( "Mask", mask );
Hist_and_Backproj( );
Hist_and_Backproj( );
}
/**
......@@ -79,26 +81,25 @@ void pickPoint (int event, int x, int y, int, void* )
*/
void Hist_and_Backproj( )
{
MatND hist;
int h_bins = 30; int s_bins = 32;
int histSize[] = { h_bins, s_bins };
float h_range[] = { 0, 179 };
float s_range[] = { 0, 255 };
const float* ranges[] = { h_range, s_range };
Mat hist;
int h_bins = 30; int s_bins = 32;
int histSize[] = { h_bins, s_bins };
int channels[] = { 0, 1 };
float h_range[] = { 0, 180 };
float s_range[] = { 0, 256 };
const float* ranges[] = { h_range, s_range };
/// Get the Histogram and normalize it
calcHist( &hsv, 1, channels, mask, hist, 2, histSize, ranges, true, false );
int channels[] = { 0, 1 };
normalize( hist, hist, 0, 255, NORM_MINMAX, -1, Mat() );
/// Get the Histogram and normalize it
calcHist( &hsv, 1, channels, mask, hist, 2, histSize, ranges, true, false );
/// Get Backprojection
MatND backproj;
calcBackProject( &hsv, 1, channels, hist, backproj, ranges, 1, true );
normalize( hist, hist, 0, 255, NORM_MINMAX, -1, Mat() );
/// Draw the backproj
imshow( "BackProj", backproj );
/// Get Backprojection
Mat backproj;
calcBackProject( &hsv, 1, channels, hist, backproj, ranges, 1, true );
/// Draw the backproj
imshow( "BackProj", backproj );
}
......@@ -17,72 +17,73 @@ using namespace cv;
*/
int main(int argc, char** argv)
{
Mat src, dst;
/// Load image
String imageName( "../data/lena.jpg" ); // by default
if (argc > 1)
{
imageName = argv[1];
}
src = imread( imageName, IMREAD_COLOR );
if( src.empty() )
{ return -1; }
/// Separate the image in 3 places ( B, G and R )
vector<Mat> bgr_planes;
split( src, bgr_planes );
/// Establish the number of bins
int histSize = 256;
/// Set the ranges ( for B,G,R) )
float range[] = { 0, 256 } ;
const float* histRange = { range };
bool uniform = true; bool accumulate = false;
Mat b_hist, g_hist, r_hist;
/// Compute the histograms:
calcHist( &bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate );
// Draw the histograms for B, G and R
int hist_w = 512; int hist_h = 400;
int bin_w = cvRound( (double) hist_w/histSize );
Mat histImage( hist_h, hist_w, CV_8UC3, Scalar( 0,0,0) );
/// Normalize the result to [ 0, histImage.rows ]
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
/// Draw for each channel
for( int i = 1; i < histSize; i++ )
{
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1)) ) ,
Point( bin_w*(i), hist_h - cvRound(b_hist.at<float>(i)) ),
Scalar( 255, 0, 0), 2, 8, 0 );
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1)) ) ,
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
Scalar( 0, 255, 0), 2, 8, 0 );
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1)) ) ,
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
Scalar( 0, 0, 255), 2, 8, 0 );
}
/// Display
namedWindow("calcHist Demo", WINDOW_AUTOSIZE );
imshow("calcHist Demo", histImage );
waitKey(0);
return 0;
//! [Load image]
CommandLineParser parser( argc, argv, "{@input | ../data/lena.jpg | input image}" );
Mat src = imread( parser.get<String>( "@input" ), IMREAD_COLOR );
if( src.empty() )
{
return -1;
}
//! [Load image]
//! [Separate the image in 3 places ( B, G and R )]
vector<Mat> bgr_planes;
split( src, bgr_planes );
//! [Separate the image in 3 places ( B, G and R )]
//! [Establish the number of bins]
int histSize = 256;
//! [Establish the number of bins]
//! [Set the ranges ( for B,G,R) )]
float range[] = { 0, 256 }; //the upper boundary is exclusive
const float* histRange = { range };
//! [Set the ranges ( for B,G,R) )]
//! [Set histogram param]
bool uniform = true, accumulate = false;
//! [Set histogram param]
//! [Compute the histograms]
Mat b_hist, g_hist, r_hist;
calcHist( &bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate );
//! [Compute the histograms]
//! [Draw the histograms for B, G and R]
int hist_w = 512, hist_h = 400;
int bin_w = cvRound( (double) hist_w/histSize );
Mat histImage( hist_h, hist_w, CV_8UC3, Scalar( 0,0,0) );
//! [Draw the histograms for B, G and R]
//! [Normalize the result to ( 0, histImage.rows )]
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
//! [Normalize the result to ( 0, histImage.rows )]
//! [Draw for each channel]
for( int i = 1; i < histSize; i++ )
{
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1)) ),
Point( bin_w*(i), hist_h - cvRound(b_hist.at<float>(i)) ),
Scalar( 255, 0, 0), 2, 8, 0 );
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1)) ),
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
Scalar( 0, 255, 0), 2, 8, 0 );
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1)) ),
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
Scalar( 0, 0, 255), 2, 8, 0 );
}
//! [Draw for each channel]
//! [Display]
imshow("Source image", src );
imshow("calcHist Demo", histImage );
waitKey();
//! [Display]
return 0;
}
......@@ -12,42 +12,43 @@
using namespace std;
using namespace cv;
const char* keys =
"{ help h| | Print help message. }"
"{ input1 | | Path to input image 1. }"
"{ input2 | | Path to input image 2. }"
"{ input3 | | Path to input image 3. }";
/**
* @function main
*/
int main( int argc, char** argv )
{
Mat src_base, hsv_base;
Mat src_test1, hsv_test1;
Mat src_test2, hsv_test2;
Mat hsv_half_down;
/// Load three images with different environment settings
if( argc < 4 )
//! [Load three images with different environment settings]
CommandLineParser parser( argc, argv, keys );
Mat src_base = imread( parser.get<String>("input1") );
Mat src_test1 = imread( parser.get<String>("input2") );
Mat src_test2 = imread( parser.get<String>("input3") );
if( src_base.empty() || src_test1.empty() || src_test2.empty() )
{
printf("** Error. Usage: ./compareHist_Demo <image_settings0> <image_settings1> <image_settings2>\n");
cout << "Could not open or find the images!\n" << endl;
parser.printMessage();
return -1;
}
//! [Load three images with different environment settings]
src_base = imread( argv[1], IMREAD_COLOR );
src_test1 = imread( argv[2], IMREAD_COLOR );
src_test2 = imread( argv[3], IMREAD_COLOR );
if(src_base.empty() || src_test1.empty() || src_test2.empty())
{
cout << "Can't read one of the images" << endl;
return -1;
}
/// Convert to HSV
//! [Convert to HSV]
Mat hsv_base, hsv_test1, hsv_test2;
cvtColor( src_base, hsv_base, COLOR_BGR2HSV );
cvtColor( src_test1, hsv_test1, COLOR_BGR2HSV );
cvtColor( src_test2, hsv_test2, COLOR_BGR2HSV );
//! [Convert to HSV]
hsv_half_down = hsv_base( Range( hsv_base.rows/2, hsv_base.rows - 1 ), Range( 0, hsv_base.cols - 1 ) );
//! [Convert to HSV half]
Mat hsv_half_down = hsv_base( Range( hsv_base.rows/2, hsv_base.rows ), Range( 0, hsv_base.cols ) );
//! [Convert to HSV half]
/// Using 50 bins for hue and 60 for saturation
int h_bins = 50; int s_bins = 60;
//! [Using 50 bins for hue and 60 for saturation]
int h_bins = 50, s_bins = 60;
int histSize[] = { h_bins, s_bins };
// hue varies from 0 to 179, saturation from 0 to 255
......@@ -56,17 +57,13 @@ int main( int argc, char** argv )
const float* ranges[] = { h_ranges, s_ranges };
// Use the o-th and 1-st channels
// Use the 0-th and 1-st channels
int channels[] = { 0, 1 };
//! [Using 50 bins for hue and 60 for saturation]
//! [Calculate the histograms for the HSV images]
Mat hist_base, hist_half_down, hist_test1, hist_test2;
/// Histograms
MatND hist_base;
MatND hist_half_down;
MatND hist_test1;
MatND hist_test2;
/// Calculate the histograms for the HSV images
calcHist( &hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false );
normalize( hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat() );
......@@ -78,20 +75,21 @@ int main( int argc, char** argv )
calcHist( &hsv_test2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false );
normalize( hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat() );
//! [Calculate the histograms for the HSV images]
/// Apply the histogram comparison methods
for( int i = 0; i < 4; i++ )
//! [Apply the histogram comparison methods]
for( int compare_method = 0; compare_method < 4; compare_method++ )
{
int compare_method = i;
double base_base = compareHist( hist_base, hist_base, compare_method );
double base_half = compareHist( hist_base, hist_half_down, compare_method );
double base_test1 = compareHist( hist_base, hist_test1, compare_method );
double base_test2 = compareHist( hist_base, hist_test2, compare_method );
printf( " Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half , base_test1, base_test2 );
cout << "Method " << compare_method << " Perfect, Base-Half, Base-Test(1), Base-Test(2) : "
<< base_base << " / " << base_half << " / " << base_test1 << " / " << base_test2 << endl;
}
//! [Apply the histogram comparison methods]
printf( "Done \n" );
cout << "Done \n";
return 0;
}
......@@ -12,77 +12,71 @@
using namespace cv;
using namespace std;
/// Global variables
const char* source_window = "Source image";
const char* warp_window = "Warp";
const char* warp_rotate_window = "Warp + Rotate";
/**
* @function main
*/
int main( int argc, char** argv )
{
Point2f srcTri[3];
Point2f dstTri[3];
Mat rot_mat( 2, 3, CV_32FC1 );
Mat warp_mat( 2, 3, CV_32FC1 );
Mat src, warp_dst, warp_rotate_dst;
/// Load the image
CommandLineParser parser( argc, argv, "{@input | ../data/lena.jpg | input image}" );
src = imread( parser.get<String>( "@input" ), IMREAD_COLOR );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
/// Set the dst image the same type and size as src
warp_dst = Mat::zeros( src.rows, src.cols, src.type() );
/// Set your 3 points to calculate the Affine Transform
srcTri[0] = Point2f( 0,0 );
srcTri[1] = Point2f( src.cols - 1.f, 0 );
srcTri[2] = Point2f( 0, src.rows - 1.f );
dstTri[0] = Point2f( src.cols*0.0f, src.rows*0.33f );
dstTri[1] = Point2f( src.cols*0.85f, src.rows*0.25f );
dstTri[2] = Point2f( src.cols*0.15f, src.rows*0.7f );
/// Get the Affine Transform
warp_mat = getAffineTransform( srcTri, dstTri );
/// Apply the Affine Transform just found to the src image
warpAffine( src, warp_dst, warp_mat, warp_dst.size() );
/** Rotating the image after Warp */
/// Compute a rotation matrix with respect to the center of the image
Point center = Point( warp_dst.cols/2, warp_dst.rows/2 );
double angle = -50.0;
double scale = 0.6;
/// Get the rotation matrix with the specifications above
rot_mat = getRotationMatrix2D( center, angle, scale );
/// Rotate the warped image
warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() );
/// Show what you got
namedWindow( source_window, WINDOW_AUTOSIZE );
imshow( source_window, src );
namedWindow( warp_window, WINDOW_AUTOSIZE );
imshow( warp_window, warp_dst );
namedWindow( warp_rotate_window, WINDOW_AUTOSIZE );
imshow( warp_rotate_window, warp_rotate_dst );
/// Wait until user exits the program
waitKey(0);
return 0;
//! [Load the image]
CommandLineParser parser( argc, argv, "{@input | ../data/lena.jpg | input image}" );
Mat src = imread( parser.get<String>( "@input" ) );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
//! [Load the image]
//! [Set your 3 points to calculate the Affine Transform]
Point2f srcTri[3];
srcTri[0] = Point2f( 0.f, 0.f );
srcTri[1] = Point2f( src.cols - 1.f, 0.f );
srcTri[2] = Point2f( 0.f, src.rows - 1.f );
Point2f dstTri[3];
dstTri[0] = Point2f( 0.f, src.rows*0.33f );
dstTri[1] = Point2f( src.cols*0.85f, src.rows*0.25f );
dstTri[2] = Point2f( src.cols*0.15f, src.rows*0.7f );
//! [Set your 3 points to calculate the Affine Transform]
//! [Get the Affine Transform]
Mat warp_mat = getAffineTransform( srcTri, dstTri );
//! [Get the Affine Transform]
//! [Apply the Affine Transform just found to the src image]
/// Set the dst image the same type and size as src
Mat warp_dst = Mat::zeros( src.rows, src.cols, src.type() );
warpAffine( src, warp_dst, warp_mat, warp_dst.size() );
//! [Apply the Affine Transform just found to the src image]
/** Rotating the image after Warp */
//! [Compute a rotation matrix with respect to the center of the image]
Point center = Point( warp_dst.cols/2, warp_dst.rows/2 );
double angle = -50.0;
double scale = 0.6;
//! [Compute a rotation matrix with respect to the center of the image]
//! [Get the rotation matrix with the specifications above]
Mat rot_mat = getRotationMatrix2D( center, angle, scale );
//! [Get the rotation matrix with the specifications above]
//! [Rotate the warped image]
Mat warp_rotate_dst;
warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() );
//! [Rotate the warped image]
//! [Show what you got]
imshow( "Source image", src );
imshow( "Warp", warp_dst );
imshow( "Warp + Rotate", warp_rotate_dst );
//! [Show what you got]
//! [Wait until user exits the program]
waitKey();
//! [Wait until user exits the program]
return 0;
}
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.util.Arrays;
import java.util.List;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfInt;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class CalcBackProject1 {
private Mat hue;
private Mat histImg = new Mat();
private JFrame frame;
private JLabel imgLabel;
private JLabel backprojLabel;
private JLabel histImgLabel;
private static final int MAX_SLIDER = 180;
private int bins = 25;
public CalcBackProject1(String[] args) {
//! [Read the image]
if (args.length != 1) {
System.err.println("You must supply one argument that corresponds to the path to the image.");
System.exit(0);
}
Mat src = Imgcodecs.imread(args[0]);
if (src.empty()) {
System.err.println("Empty image: " + args[0]);
System.exit(0);
}
//! [Read the image]
//! [Transform it to HSV]
Mat hsv = new Mat();
Imgproc.cvtColor(src, hsv, Imgproc.COLOR_BGR2HSV);
//! [Transform it to HSV]
//! [Use only the Hue value]
hue = new Mat(hsv.size(), hsv.depth());
Core.mixChannels(Arrays.asList(hsv), Arrays.asList(hue), new MatOfInt(0, 0));
//! [Use only the Hue value]
// Create and set up the window.
frame = new JFrame("Back Projection 1 demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
//! [Show the image]
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
//! [Show the image]
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
//! [Create Trackbar to enter the number of bins]
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("* Hue bins: "));
JSlider slider = new JSlider(0, MAX_SLIDER, bins);
slider.setMajorTickSpacing(25);
slider.setMinorTickSpacing(5);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
bins = source.getValue();
update();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
//! [Create Trackbar to enter the number of bins]
JPanel imgPanel = new JPanel();
imgLabel = new JLabel(new ImageIcon(img));
imgPanel.add(imgLabel);
backprojLabel = new JLabel();
imgPanel.add(backprojLabel);
histImgLabel = new JLabel();
imgPanel.add(histImgLabel);
pane.add(imgPanel, BorderLayout.CENTER);
}
private void update() {
//! [initialize]
int histSize = Math.max(bins, 2);
float[] hueRange = {0, 180};
//! [initialize]
//! [Get the Histogram and normalize it]
Mat hist = new Mat();
List<Mat> hueList = Arrays.asList(hue);
Imgproc.calcHist(hueList, new MatOfInt(0), new Mat(), hist, new MatOfInt(histSize), new MatOfFloat(hueRange), false);
Core.normalize(hist, hist, 0, 255, Core.NORM_MINMAX);
//! [Get the Histogram and normalize it]
//! [Get Backprojection]
Mat backproj = new Mat();
Imgproc.calcBackProject(hueList, new MatOfInt(0), hist, backproj, new MatOfFloat(hueRange), 1);
//! [Get Backprojection]
//! [Draw the backproj]
Image backprojImg = HighGui.toBufferedImage(backproj);
backprojLabel.setIcon(new ImageIcon(backprojImg));
//! [Draw the backproj]
//! [Draw the histogram]
int w = 400, h = 400;
int binW = (int) Math.round((double) w / histSize);
histImg = Mat.zeros(h, w, CvType.CV_8UC3);
float[] histData = new float[(int) (hist.total() * hist.channels())];
hist.get(0, 0, histData);
for (int i = 0; i < bins; i++) {
Imgproc.rectangle(histImg, new Point(i * binW, h),
new Point((i + 1) * binW, h - Math.round(histData[i] * h / 255.0)), new Scalar(0, 0, 255), Core.FILLED);
}
Image histImage = HighGui.toBufferedImage(histImg);
histImgLabel.setIcon(new ImageIcon(histImage));
//! [Draw the histogram]
frame.repaint();
frame.pack();
}
}
public class CalcBackProjectDemo1 {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new CalcBackProject1(args);
}
});
}
}
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.util.Arrays;
import java.util.List;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfInt;
import org.opencv.core.Point;
import org.opencv.core.Range;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class CalcBackProject2 {
private Mat src;
private Mat hsv = new Mat();
private Mat mask = new Mat();
private JFrame frame;
private JLabel imgLabel;
private JLabel backprojLabel;
private JLabel maskImgLabel;
private static final int MAX_SLIDER = 255;
private int low = 20;
private int up = 20;
public CalcBackProject2(String[] args) {
/// Read the image
if (args.length != 1) {
System.err.println("You must supply one argument that corresponds to the path to the image.");
System.exit(0);
}
src = Imgcodecs.imread(args[0]);
if (src.empty()) {
System.err.println("Empty image: " + args[0]);
System.exit(0);
}
/// Transform it to HSV
Imgproc.cvtColor(src, hsv, Imgproc.COLOR_BGR2HSV);
// Create and set up the window.
frame = new JFrame("Back Projection 2 demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
/// Set Trackbars for floodfill thresholds
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("Low thresh"));
JSlider slider = new JSlider(0, MAX_SLIDER, low);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
low = source.getValue();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
sliderPanel.add(new JLabel("High thresh"));
slider = new JSlider(0, MAX_SLIDER, up);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
up = source.getValue();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
JPanel imgPanel = new JPanel();
imgLabel = new JLabel(new ImageIcon(img));
/// Set a Mouse Callback
imgLabel.addMouseListener(new MouseAdapter() {
@Override
public void mousePressed(MouseEvent e) {
update(e.getX(), e.getY());
}
});
imgPanel.add(imgLabel);
maskImgLabel = new JLabel();
imgPanel.add(maskImgLabel);
backprojLabel = new JLabel();
imgPanel.add(backprojLabel);
pane.add(imgPanel, BorderLayout.CENTER);
}
private void update(int x, int y) {
// Fill and get the mask
Point seed = new Point(x, y);
int newMaskVal = 255;
Scalar newVal = new Scalar(120, 120, 120);
int connectivity = 8;
int flags = connectivity + (newMaskVal << 8) + Imgproc.FLOODFILL_FIXED_RANGE + Imgproc.FLOODFILL_MASK_ONLY;
Mat mask2 = Mat.zeros(src.rows() + 2, src.cols() + 2, CvType.CV_8U);
Imgproc.floodFill(src, mask2, seed, newVal, new Rect(), new Scalar(low, low, low), new Scalar(up, up, up), flags);
mask = mask2.submat(new Range(1, mask2.rows() - 1), new Range(1, mask2.cols() - 1));
Image maskImg = HighGui.toBufferedImage(mask);
maskImgLabel.setIcon(new ImageIcon(maskImg));
int hBins = 30, sBins = 32;
int[] histSize = { hBins, sBins };
float[] ranges = { 0, 180, 0, 256 };
int[] channels = { 0, 1 };
/// Get the Histogram and normalize it
Mat hist = new Mat();
List<Mat> hsvList = Arrays.asList(hsv);
Imgproc.calcHist(hsvList, new MatOfInt(channels), mask, hist, new MatOfInt(histSize), new MatOfFloat(ranges), false );
Core.normalize(hist, hist, 0, 255, Core.NORM_MINMAX);
/// Get Backprojection
Mat backproj = new Mat();
Imgproc.calcBackProject(hsvList, new MatOfInt(channels), hist, backproj, new MatOfFloat(ranges), 1);
Image backprojImg = HighGui.toBufferedImage(backproj);
backprojLabel.setIcon(new ImageIcon(backprojImg));
frame.repaint();
frame.pack();
}
}
public class CalcBackProjectDemo2 {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new CalcBackProject2(args);
}
});
}
}
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfInt;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class CalcHist {
public void run(String[] args) {
//! [Load image]
String filename = args.length > 0 ? args[0] : "../data/lena.jpg";
Mat src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
//! [Load image]
//! [Separate the image in 3 places ( B, G and R )]
List<Mat> bgrPlanes = new ArrayList<>();
Core.split(src, bgrPlanes);
//! [Separate the image in 3 places ( B, G and R )]
//! [Establish the number of bins]
int histSize = 256;
//! [Establish the number of bins]
//! [Set the ranges ( for B,G,R) )]
float[] range = {0, 256}; //the upper boundary is exclusive
MatOfFloat histRange = new MatOfFloat(range);
//! [Set the ranges ( for B,G,R) )]
//! [Set histogram param]
boolean accumulate = false;
//! [Set histogram param]
//! [Compute the histograms]
Mat bHist = new Mat(), gHist = new Mat(), rHist = new Mat();
Imgproc.calcHist(bgrPlanes, new MatOfInt(0), new Mat(), bHist, new MatOfInt(histSize), histRange, accumulate);
Imgproc.calcHist(bgrPlanes, new MatOfInt(1), new Mat(), gHist, new MatOfInt(histSize), histRange, accumulate);
Imgproc.calcHist(bgrPlanes, new MatOfInt(2), new Mat(), rHist, new MatOfInt(histSize), histRange, accumulate);
//! [Compute the histograms]
//! [Draw the histograms for B, G and R]
int histW = 512, histH = 400;
int binW = (int) Math.round((double) histW / histSize);
Mat histImage = new Mat( histH, histW, CvType.CV_8UC3, new Scalar( 0,0,0) );
//! [Draw the histograms for B, G and R]
//! [Normalize the result to ( 0, histImage.rows )]
Core.normalize(bHist, bHist, 0, histImage.rows(), Core.NORM_MINMAX);
Core.normalize(gHist, gHist, 0, histImage.rows(), Core.NORM_MINMAX);
Core.normalize(rHist, rHist, 0, histImage.rows(), Core.NORM_MINMAX);
//! [Normalize the result to ( 0, histImage.rows )]
//! [Draw for each channel]
float[] bHistData = new float[(int) (bHist.total() * bHist.channels())];
bHist.get(0, 0, bHistData);
float[] gHistData = new float[(int) (gHist.total() * gHist.channels())];
gHist.get(0, 0, gHistData);
float[] rHistData = new float[(int) (rHist.total() * rHist.channels())];
rHist.get(0, 0, rHistData);
for( int i = 1; i < histSize; i++ ) {
Imgproc.line(histImage, new Point(binW * (i - 1), histH - Math.round(bHistData[i - 1])),
new Point(binW * (i), histH - Math.round(bHistData[i])), new Scalar(255, 0, 0), 2);
Imgproc.line(histImage, new Point(binW * (i - 1), histH - Math.round(gHistData[i - 1])),
new Point(binW * (i), histH - Math.round(gHistData[i])), new Scalar(0, 255, 0), 2);
Imgproc.line(histImage, new Point(binW * (i - 1), histH - Math.round(rHistData[i - 1])),
new Point(binW * (i), histH - Math.round(rHistData[i])), new Scalar(0, 0, 255), 2);
}
//! [Draw for each channel]
//! [Display]
HighGui.imshow( "Source image", src );
HighGui.imshow( "calcHist Demo", histImage );
HighGui.waitKey(0);
//! [Display]
System.exit(0);
}
}
public class CalcHistDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new CalcHist().run(args);
}
}
import java.util.Arrays;
import java.util.List;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfInt;
import org.opencv.core.Range;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class CompareHist {
public void run(String[] args) {
//! [Load three images with different environment settings]
if (args.length != 3) {
System.err.println("You must supply 3 arguments that correspond to the paths to 3 images.");
System.exit(0);
}
Mat srcBase = Imgcodecs.imread(args[0]);
Mat srcTest1 = Imgcodecs.imread(args[1]);
Mat srcTest2 = Imgcodecs.imread(args[2]);
if (srcBase.empty() || srcTest1.empty() || srcTest2.empty()) {
System.err.println("Cannot read the images");
System.exit(0);
}
//! [Load three images with different environment settings]
//! [Convert to HSV]
Mat hsvBase = new Mat(), hsvTest1 = new Mat(), hsvTest2 = new Mat();
Imgproc.cvtColor( srcBase, hsvBase, Imgproc.COLOR_BGR2HSV );
Imgproc.cvtColor( srcTest1, hsvTest1, Imgproc.COLOR_BGR2HSV );
Imgproc.cvtColor( srcTest2, hsvTest2, Imgproc.COLOR_BGR2HSV );
//! [Convert to HSV]
//! [Convert to HSV half]
Mat hsvHalfDown = hsvBase.submat( new Range( hsvBase.rows()/2, hsvBase.rows() - 1 ), new Range( 0, hsvBase.cols() - 1 ) );
//! [Convert to HSV half]
//! [Using 50 bins for hue and 60 for saturation]
int hBins = 50, sBins = 60;
int[] histSize = { hBins, sBins };
// hue varies from 0 to 179, saturation from 0 to 255
float[] ranges = { 0, 180, 0, 256 };
// Use the 0-th and 1-st channels
int[] channels = { 0, 1 };
//! [Using 50 bins for hue and 60 for saturation]
//! [Calculate the histograms for the HSV images]
Mat histBase = new Mat(), histHalfDown = new Mat(), histTest1 = new Mat(), histTest2 = new Mat();
List<Mat> hsvBaseList = Arrays.asList(hsvBase);
Imgproc.calcHist(hsvBaseList, new MatOfInt(channels), new Mat(), histBase, new MatOfInt(histSize), new MatOfFloat(ranges), false);
Core.normalize(histBase, histBase, 0, 1, Core.NORM_MINMAX);
List<Mat> hsvHalfDownList = Arrays.asList(hsvHalfDown);
Imgproc.calcHist(hsvHalfDownList, new MatOfInt(channels), new Mat(), histHalfDown, new MatOfInt(histSize), new MatOfFloat(ranges), false);
Core.normalize(histHalfDown, histHalfDown, 0, 1, Core.NORM_MINMAX);
List<Mat> hsvTest1List = Arrays.asList(hsvTest1);
Imgproc.calcHist(hsvTest1List, new MatOfInt(channels), new Mat(), histTest1, new MatOfInt(histSize), new MatOfFloat(ranges), false);
Core.normalize(histTest1, histTest1, 0, 1, Core.NORM_MINMAX);
List<Mat> hsvTest2List = Arrays.asList(hsvTest2);
Imgproc.calcHist(hsvTest2List, new MatOfInt(channels), new Mat(), histTest2, new MatOfInt(histSize), new MatOfFloat(ranges), false);
Core.normalize(histTest2, histTest2, 0, 1, Core.NORM_MINMAX);
//! [Calculate the histograms for the HSV images]
//! [Apply the histogram comparison methods]
for( int compareMethod = 0; compareMethod < 4; compareMethod++ ) {
double baseBase = Imgproc.compareHist( histBase, histBase, compareMethod );
double baseHalf = Imgproc.compareHist( histBase, histHalfDown, compareMethod );
double baseTest1 = Imgproc.compareHist( histBase, histTest1, compareMethod );
double baseTest2 = Imgproc.compareHist( histBase, histTest2, compareMethod );
System.out.println("Method " + compareMethod + " Perfect, Base-Half, Base-Test(1), Base-Test(2) : " + baseBase + " / " + baseHalf
+ " / " + baseTest1 + " / " + baseTest2);
}
//! [Apply the histogram comparison methods]
}
}
public class CompareHistDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new CompareHist().run(args);
}
}
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class EqualizeHist {
public void run(String[] args) {
//! [Load image]
String filename = args.length > 0 ? args[0] : "../data/lena.jpg";
Mat src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
//! [Load image]
//! [Convert to grayscale]
Imgproc.cvtColor(src, src, Imgproc.COLOR_BGR2GRAY);
//! [Convert to grayscale]
//! [Apply Histogram Equalization]
Mat dst = new Mat();
Imgproc.equalizeHist( src, dst );
//! [Apply Histogram Equalization]
//! [Display results]
HighGui.imshow( "Source image", src );
HighGui.imshow( "Equalized Image", dst );
//! [Display results]
//! [Wait until user exits the program]
HighGui.waitKey(0);
//! [Wait until user exits the program]
System.exit(0);
}
}
public class EqualizeHistDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new EqualizeHist().run(args);
}
}
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class GeometricTransforms {
public void run(String[] args) {
//! [Load the image]
String filename = args.length > 0 ? args[0] : "../data/lena.jpg";
Mat src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
//! [Load the image]
//! [Set your 3 points to calculate the Affine Transform]
Point[] srcTri = new Point[3];
srcTri[0] = new Point( 0, 0 );
srcTri[1] = new Point( src.cols() - 1, 0 );
srcTri[2] = new Point( 0, src.rows() - 1 );
Point[] dstTri = new Point[3];
dstTri[0] = new Point( 0, src.rows()*0.33 );
dstTri[1] = new Point( src.cols()*0.85, src.rows()*0.25 );
dstTri[2] = new Point( src.cols()*0.15, src.rows()*0.7 );
//! [Set your 3 points to calculate the Affine Transform]
//! [Get the Affine Transform]
Mat warpMat = Imgproc.getAffineTransform( new MatOfPoint2f(srcTri), new MatOfPoint2f(dstTri) );
//! [Get the Affine Transform]
//! [Apply the Affine Transform just found to the src image]
Mat warpDst = Mat.zeros( src.rows(), src.cols(), src.type() );
Imgproc.warpAffine( src, warpDst, warpMat, warpDst.size() );
//! [Apply the Affine Transform just found to the src image]
/** Rotating the image after Warp */
//! [Compute a rotation matrix with respect to the center of the image]
Point center = new Point(warpDst.cols() / 2, warpDst.rows() / 2);
double angle = -50.0;
double scale = 0.6;
//! [Compute a rotation matrix with respect to the center of the image]
//! [Get the rotation matrix with the specifications above]
Mat rotMat = Imgproc.getRotationMatrix2D( center, angle, scale );
//! [Get the rotation matrix with the specifications above]
//! [Rotate the warped image]
Mat warpRotateDst = new Mat();
Imgproc.warpAffine( warpDst, warpRotateDst, rotMat, warpDst.size() );
//! [Rotate the warped image]
//! [Show what you got]
HighGui.imshow( "Source image", src );
HighGui.imshow( "Warp", warpDst );
HighGui.imshow( "Warp + Rotate", warpRotateDst );
//! [Show what you got]
//! [Wait until user exits the program]
HighGui.waitKey(0);
//! [Wait until user exits the program]
System.exit(0);
}
}
public class GeometricTransformsDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new GeometricTransforms().run(args);
}
}
from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
def Hist_and_Backproj(val):
## [initialize]
bins = val
histSize = max(bins, 2)
ranges = [0, 180] # hue_range
## [initialize]
## [Get the Histogram and normalize it]
hist = cv.calcHist([hue], [0], None, [histSize], ranges, accumulate=False)
cv.normalize(hist, hist, alpha=0, beta=255, norm_type=cv.NORM_MINMAX)
## [Get the Histogram and normalize it]
## [Get Backprojection]
backproj = cv.calcBackProject([hue], [0], hist, ranges, scale=1)
## [Get Backprojection]
## [Draw the backproj]
cv.imshow('BackProj', backproj)
## [Draw the backproj]
## [Draw the histogram]
w = 400
h = 400
bin_w = int(round(w / histSize))
histImg = np.zeros((h, w, 3), dtype=np.uint8)
for i in range(bins):
cv.rectangle(histImg, (i*bin_w, h), ( (i+1)*bin_w, h - int(round( hist[i]*h/255.0 )) ), (0, 0, 255), cv.FILLED)
cv.imshow('Histogram', histImg)
## [Draw the histogram]
## [Read the image]
parser = argparse.ArgumentParser(description='Code for Back Projection tutorial.')
parser.add_argument('--input', help='Path to input image.')
args = parser.parse_args()
src = cv.imread(args.input)
if src is None:
print('Could not open or find the image:', args.input)
exit(0)
## [Read the image]
## [Transform it to HSV]
hsv = cv.cvtColor(src, cv.COLOR_BGR2HSV)
## [Transform it to HSV]
## [Use only the Hue value]
ch = (0, 0)
hue = np.empty(hsv.shape, hsv.dtype)
cv.mixChannels([hsv], [hue], ch)
## [Use only the Hue value]
## [Create Trackbar to enter the number of bins]
window_image = 'Source image'
cv.namedWindow(window_image)
bins = 25
cv.createTrackbar('* Hue bins: ', window_image, bins, 180, Hist_and_Backproj )
Hist_and_Backproj(bins)
## [Create Trackbar to enter the number of bins]
## [Show the image]
cv.imshow(window_image, src)
cv.waitKey()
## [Show the image]
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
low = 20
up = 20
def callback_low(val):
global low
low = val
def callback_up(val):
global up
up = val
def pickPoint(event, x, y, flags, param):
if event != cv.EVENT_LBUTTONDOWN:
return
# Fill and get the mask
seed = (x, y)
newMaskVal = 255
newVal = (120, 120, 120)
connectivity = 8
flags = connectivity + (newMaskVal << 8 ) + cv.FLOODFILL_FIXED_RANGE + cv.FLOODFILL_MASK_ONLY
mask2 = np.zeros((src.shape[0] + 2, src.shape[1] + 2), dtype=np.uint8)
print('low:', low, 'up:', up)
cv.floodFill(src, mask2, seed, newVal, (low, low, low), (up, up, up), flags)
mask = mask2[1:-1,1:-1]
cv.imshow('Mask', mask)
Hist_and_Backproj(mask)
def Hist_and_Backproj(mask):
h_bins = 30
s_bins = 32
histSize = [h_bins, s_bins]
h_range = [0, 180]
s_range = [0, 256]
ranges = h_range + s_range # Concat list
channels = [0, 1]
# Get the Histogram and normalize it
hist = cv.calcHist([hsv], channels, mask, histSize, ranges, accumulate=False)
cv.normalize(hist, hist, alpha=0, beta=255, norm_type=cv.NORM_MINMAX)
# Get Backprojection
backproj = cv.calcBackProject([hsv], channels, hist, ranges, scale=1)
# Draw the backproj
cv.imshow('BackProj', backproj)
# Read the image
parser = argparse.ArgumentParser(description='Code for Back Projection tutorial.')
parser.add_argument('--input', help='Path to input image.')
args = parser.parse_args()
src = cv.imread(args.input)
if src is None:
print('Could not open or find the image:', args.input)
exit(0)
# Transform it to HSV
hsv = cv.cvtColor(src, cv.COLOR_BGR2HSV)
# Show the image
window_image = 'Source image'
cv.namedWindow(window_image)
cv.imshow(window_image, src)
# Set Trackbars for floodfill thresholds
cv.createTrackbar('Low thresh', window_image, low, 255, callback_low)
cv.createTrackbar('High thresh', window_image, up, 255, callback_up)
# Set a Mouse Callback
cv.setMouseCallback(window_image, pickPoint)
cv.waitKey()
from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
## [Load image]
parser = argparse.ArgumentParser(description='Code for Histogram Calculation tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/lena.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
if src is None:
print('Could not open or find the image:', args.input)
exit(0)
## [Load image]
## [Separate the image in 3 places ( B, G and R )]
bgr_planes = cv.split(src)
## [Separate the image in 3 places ( B, G and R )]
## [Establish the number of bins]
histSize = 256
## [Establish the number of bins]
## [Set the ranges ( for B,G,R) )]
histRange = (0, 256) # the upper boundary is exclusive
## [Set the ranges ( for B,G,R) )]
## [Set histogram param]
accumulate = False
## [Set histogram param]
## [Compute the histograms]
b_hist = cv.calcHist(bgr_planes, [0], None, [histSize], histRange, accumulate=accumulate)
g_hist = cv.calcHist(bgr_planes, [1], None, [histSize], histRange, accumulate=accumulate)
r_hist = cv.calcHist(bgr_planes, [2], None, [histSize], histRange, accumulate=accumulate)
## [Compute the histograms]
## [Draw the histograms for B, G and R]
hist_w = 512
hist_h = 400
bin_w = int(round( hist_w/histSize ))
histImage = np.zeros((hist_h, hist_w, 3), dtype=np.uint8)
## [Draw the histograms for B, G and R]
## [Normalize the result to ( 0, histImage.rows )]
cv.normalize(b_hist, b_hist, alpha=0, beta=hist_h, norm_type=cv.NORM_MINMAX)
cv.normalize(g_hist, g_hist, alpha=0, beta=hist_h, norm_type=cv.NORM_MINMAX)
cv.normalize(r_hist, r_hist, alpha=0, beta=hist_h, norm_type=cv.NORM_MINMAX)
## [Normalize the result to ( 0, histImage.rows )]
## [Draw for each channel]
for i in range(1, histSize):
cv.line(histImage, ( bin_w*(i-1), hist_h - int(round(b_hist[i-1])) ),
( bin_w*(i), hist_h - int(round(b_hist[i])) ),
( 255, 0, 0), thickness=2)
cv.line(histImage, ( bin_w*(i-1), hist_h - int(round(g_hist[i-1])) ),
( bin_w*(i), hist_h - int(round(g_hist[i])) ),
( 0, 255, 0), thickness=2)
cv.line(histImage, ( bin_w*(i-1), hist_h - int(round(r_hist[i-1])) ),
( bin_w*(i), hist_h - int(round(r_hist[i])) ),
( 0, 0, 255), thickness=2)
## [Draw for each channel]
## [Display]
cv.imshow('Source image', src)
cv.imshow('calcHist Demo', histImage)
cv.waitKey()
## [Display]
from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
## [Load three images with different environment settings]
parser = argparse.ArgumentParser(description='Code for Histogram Comparison tutorial.')
parser.add_argument('--input1', help='Path to input image 1.')
parser.add_argument('--input2', help='Path to input image 2.')
parser.add_argument('--input3', help='Path to input image 3.')
args = parser.parse_args()
src_base = cv.imread(args.input1)
src_test1 = cv.imread(args.input2)
src_test2 = cv.imread(args.input3)
if src_base is None or src_test1 is None or src_test2 is None:
print('Could not open or find the images!')
exit(0)
## [Load three images with different environment settings]
## [Convert to HSV]
hsv_base = cv.cvtColor(src_base, cv.COLOR_BGR2HSV)
hsv_test1 = cv.cvtColor(src_test1, cv.COLOR_BGR2HSV)
hsv_test2 = cv.cvtColor(src_test2, cv.COLOR_BGR2HSV)
## [Convert to HSV]
## [Convert to HSV half]
hsv_half_down = hsv_base[hsv_base.shape[0]//2:,:]
## [Convert to HSV half]
## [Using 50 bins for hue and 60 for saturation]
h_bins = 50
s_bins = 60
histSize = [h_bins, s_bins]
# hue varies from 0 to 179, saturation from 0 to 255
h_ranges = [0, 180]
s_ranges = [0, 256]
ranges = h_ranges + s_ranges # concat lists
# Use the 0-th and 1-st channels
channels = [0, 1]
## [Using 50 bins for hue and 60 for saturation]
## [Calculate the histograms for the HSV images]
hist_base = cv.calcHist([hsv_base], channels, None, histSize, ranges, accumulate=False)
cv.normalize(hist_base, hist_base, alpha=0, beta=1, norm_type=cv.NORM_MINMAX)
hist_half_down = cv.calcHist([hsv_half_down], channels, None, histSize, ranges, accumulate=False)
cv.normalize(hist_half_down, hist_half_down, alpha=0, beta=1, norm_type=cv.NORM_MINMAX)
hist_test1 = cv.calcHist([hsv_test1], channels, None, histSize, ranges, accumulate=False)
cv.normalize(hist_test1, hist_test1, alpha=0, beta=1, norm_type=cv.NORM_MINMAX)
hist_test2 = cv.calcHist([hsv_test2], channels, None, histSize, ranges, accumulate=False)
cv.normalize(hist_test2, hist_test2, alpha=0, beta=1, norm_type=cv.NORM_MINMAX)
## [Calculate the histograms for the HSV images]
## [Apply the histogram comparison methods]
for compare_method in range(4):
base_base = cv.compareHist(hist_base, hist_base, compare_method)
base_half = cv.compareHist(hist_base, hist_half_down, compare_method)
base_test1 = cv.compareHist(hist_base, hist_test1, compare_method)
base_test2 = cv.compareHist(hist_base, hist_test2, compare_method)
print('Method:', compare_method, 'Perfect, Base-Half, Base-Test(1), Base-Test(2) :',\
base_base, '/', base_half, '/', base_test1, '/', base_test2)
## [Apply the histogram comparison methods]
from __future__ import print_function
import cv2 as cv
import argparse
## [Load image]
parser = argparse.ArgumentParser(description='Code for Histogram Equalization tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/lena.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
if src is None:
print('Could not open or find the image:', args.input)
exit(0)
## [Load image]
## [Convert to grayscale]
src = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
## [Convert to grayscale]
## [Apply Histogram Equalization]
dst = cv.equalizeHist(src);
## [Apply Histogram Equalization]
## [Display results]
cv.imshow('Source image', src)
cv.imshow('Equalized Image', dst)
## [Display results]
## [Wait until user exits the program]
cv.waitKey()
## [Wait until user exits the program]
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
## [Load the image]
parser = argparse.ArgumentParser(description='Code for Affine Transformations tutorial.')
parser.add_argument('--input', help='Path to input image.', default='../data/lena.jpg')
args = parser.parse_args()
src = cv.imread(args.input)
if src is None:
print('Could not open or find the image:', args.input)
exit(0)
## [Load the image]
## [Set your 3 points to calculate the Affine Transform]
srcTri = np.array( [[0, 0], [src.shape[1] - 1, 0], [0, src.shape[0] - 1]] ).astype(np.float32)
dstTri = np.array( [[0, src.shape[1]*0.33], [src.shape[1]*0.85, src.shape[0]*0.25], [src.shape[1]*0.15, src.shape[0]*0.7]] ).astype(np.float32)
## [Set your 3 points to calculate the Affine Transform]
## [Get the Affine Transform]
warp_mat = cv.getAffineTransform(srcTri, dstTri)
## [Get the Affine Transform]
## [Apply the Affine Transform just found to the src image]
warp_dst = cv.warpAffine(src, warp_mat, (src.shape[1], src.shape[0]))
## [Apply the Affine Transform just found to the src image]
# Rotating the image after Warp
## [Compute a rotation matrix with respect to the center of the image]
center = (warp_dst.shape[1]//2, warp_dst.shape[0]//2)
angle = -50
scale = 0.6
## [Compute a rotation matrix with respect to the center of the image]
## [Get the rotation matrix with the specifications above]
rot_mat = cv.getRotationMatrix2D( center, angle, scale )
## [Get the rotation matrix with the specifications above]
## [Rotate the warped image]
warp_rotate_dst = cv.warpAffine(warp_dst, rot_mat, (warp_dst.shape[1], warp_dst.shape[0]))
## [Rotate the warped image]
## [Show what you got]
cv.imshow('Source image', src)
cv.imshow('Warp', warp_dst)
cv.imshow('Warp + Rotate', warp_rotate_dst)
## [Show what you got]
## [Wait until user exits the program]
cv.waitKey()
## [Wait until user exits the program]
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment