Commit 6d500cc6 authored by Ievgen Khvedchenia's avatar Ievgen Khvedchenia

Merge KAZE and AKAZE features with most recent version

parent d27ed856
This diff is collapsed.
......@@ -6,148 +6,84 @@
* @author Pablo F. Alcantarilla, Jesus Nuevo
*/
#ifndef _AKAZE_H_
#define _AKAZE_H_
//*************************************************************************************
//*************************************************************************************
#pragma once
/* ************************************************************************* */
// Includes
#include "config.h"
#include "fed.h"
#include "nldiffusion_functions.h"
//*************************************************************************************
//*************************************************************************************
#include "precomp.hpp"
#include "AKAZEConfig.h"
/* ************************************************************************* */
// AKAZE Class Declaration
class AKAZEFeatures {
private:
// Parameters of the AKAZE class
int omax_; // Maximum octave level
int noctaves_; // Number of octaves
int nsublevels_; // Number of sublevels per octave level
int img_width_; // Width of the original image
int img_height_; // Height of the original image
float soffset_; // Base scale offset
float factor_size_; // Factor for the multiscale derivatives
float sderivatives_; // Standard deviation of the Gaussian for the nonlinear diff. derivatives
float kcontrast_; // The contrast parameter for the scalar nonlinear diffusion
float dthreshold_; // Feature detector threshold response
int diffusivity_; // Diffusivity type, 0->PM G1, 1->PM G2, 2-> Weickert, 3->Charbonnier
int descriptor_; // Descriptor mode:
// 0-> SURF_UPRIGHT, 1->SURF
// 2-> M-SURF_UPRIGHT, 3->M-SURF
// 4-> M-LDB_UPRIGHT, 5->M-LDB
int descriptor_size_; // Size of the descriptor in bits. Use 0 for the full descriptor
int descriptor_pattern_size_; // Size of the pattern. Actual size sampled is 2*pattern_size
int descriptor_channels_; // Number of channels to consider in the M-LDB descriptor
bool save_scale_space_; // For saving scale space images
bool verbosity_; // Verbosity level
std::vector<tevolution> evolution_; // Vector of nonlinear diffusion evolution
// FED parameters
int ncycles_; // Number of cycles
bool reordering_; // Flag for reordering time steps
std::vector<std::vector<float > > tsteps_; // Vector of FED dynamic time steps
std::vector<int> nsteps_; // Vector of number of steps per cycle
// Some matrices for the M-LDB descriptor computation
cv::Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from.
cv::Mat descriptorBits_;
cv::Mat bitMask_;
// Computation times variables in ms
double tkcontrast_; // Kcontrast factor computation
double tscale_; // Nonlinear Scale space generation
double tderivatives_; // Multiscale derivatives
double tdetector_; // Feature detector
double textrema_; // Scale Space extrema
double tsubpixel_; // Subpixel refinement
double tdescriptor_; // Feature descriptors
AKAZEOptions options_; ///< Configuration options for AKAZE
std::vector<TEvolution> evolution_; ///< Vector of nonlinear diffusion evolution
/// FED parameters
int ncycles_; ///< Number of cycles
bool reordering_; ///< Flag for reordering time steps
std::vector<std::vector<float > > tsteps_; ///< Vector of FED dynamic time steps
std::vector<int> nsteps_; ///< Vector of number of steps per cycle
/// Matrices for the M-LDB descriptor computation
cv::Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from.
cv::Mat descriptorBits_;
cv::Mat bitMask_;
/// Computation times variables in ms
AKAZETiming timing_;
public:
// Constructor
AKAZEFeatures(const AKAZEOptions &options);
// Destructor
~AKAZEFeatures(void);
// Setters
void Set_Octave_Max(const int& omax) {
omax_ = omax;
}
void Set_NSublevels(const int& nsublevels) {
nsublevels_ = nsublevels;
}
void Set_Save_Scale_Space_Flag(const bool& save_scale_space) {
save_scale_space_ = save_scale_space;
}
void Set_Image_Width(const int& img_width) {
img_width_ = img_width;
}
void Set_Image_Height(const int& img_height) {
img_height_ = img_height;
}
// Getters
int Get_Image_Width(void) {
return img_width_;
}
int Get_Image_Height(void) {
return img_height_;
}
double Get_Time_KContrast(void) {
return tkcontrast_;
}
double Get_Time_Scale_Space(void) {
return tscale_;
}
double Get_Time_Derivatives(void) {
return tderivatives_;
}
double Get_Time_Detector(void) {
return tdetector_;
}
double Get_Time_Descriptor(void) {
return tdescriptor_;
}
// Scale Space methods
void Allocate_Memory_Evolution(void);
int Create_Nonlinear_Scale_Space(const cv::Mat& img);
void Feature_Detection(std::vector<cv::KeyPoint>& kpts);
void Compute_Determinant_Hessian_Response(void);
void Compute_Multiscale_Derivatives(void);
void Find_Scale_Space_Extrema(std::vector<cv::KeyPoint>& kpts);
void Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts);
void Feature_Suppression_Distance(std::vector<cv::KeyPoint>& kpts, float mdist);
// Feature description methods
void Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc);
void Compute_Main_Orientation_SURF(cv::KeyPoint& kpt);
// SURF Pattern Descriptor
void Get_SURF_Descriptor_Upright_64(const cv::KeyPoint& kpt, float *desc);
void Get_SURF_Descriptor_64(const cv::KeyPoint& kpt, float *desc);
// M-SURF Pattern Descriptor
void Get_MSURF_Upright_Descriptor_64(const cv::KeyPoint& kpt, float *desc);
void Get_MSURF_Descriptor_64(const cv::KeyPoint& kpt, float *desc);
// M-LDB Pattern Descriptor
void Get_Upright_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned char *desc);
void Get_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned char *desc);
void Get_Upright_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char *desc);
void Get_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char *desc);
/// Constructor with input arguments
AKAZEFeatures(const AKAZEOptions& options);
/// Destructor
~AKAZEFeatures();
/// Scale Space methods
void Allocate_Memory_Evolution();
int Create_Nonlinear_Scale_Space(const cv::Mat& img);
void Feature_Detection(std::vector<cv::KeyPoint>& kpts);
void Compute_Determinant_Hessian_Response(void);
void Compute_Multiscale_Derivatives(void);
void Find_Scale_Space_Extrema(std::vector<cv::KeyPoint>& kpts);
void Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts);
void Feature_Suppression_Distance(std::vector<cv::KeyPoint>& kpts, float mdist) const;
// Feature description methods
void Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc);
void Compute_Main_Orientation(cv::KeyPoint& kpt) const;
// SURF Pattern Descriptor
void Get_SURF_Descriptor_Upright_64(const cv::KeyPoint& kpt, float* desc) const;
void Get_SURF_Descriptor_64(const cv::KeyPoint& kpt, float* desc) const;
// M-SURF Pattern Descriptor
void Get_MSURF_Upright_Descriptor_64(const cv::KeyPoint& kpt, float* desc) const;
void Get_MSURF_Descriptor_64(const cv::KeyPoint& kpt, float* desc) const;
// M-LDB Pattern Descriptor
void Get_Upright_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned char* desc) const;
void Get_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned char* desc) const;
void Get_Upright_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char* desc);
void Get_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char* desc);
// Methods for saving some results and showing computation times
void Save_Scale_Space();
void Save_Detector_Responses();
void Show_Computation_Times() const;
/// Return the computation times
AKAZETiming Get_Computation_Times() const {
return timing_;
}
};
//*************************************************************************************
//*************************************************************************************
/* ************************************************************************* */
// Inline functions
/**
* @brief This function sets default parameters for the A-KAZE detector.
......@@ -157,13 +93,8 @@ void setDefaultAKAZEOptions(AKAZEOptions& options);
// Inline functions
void generateDescriptorSubsample(cv::Mat& sampleList, cv::Mat& comparisons,
int nbits, int pattern_size, int nchannels);
int nbits, int pattern_size, int nchannels);
float get_angle(float x, float y);
float gaussian(float x, float y, float sigma);
void check_descriptor_limits(int& x, int& y, const int width, const int height);
void check_descriptor_limits(int& x, int& y, int width, int height);
int fRound(float flt);
//*************************************************************************************
//*************************************************************************************
#endif
......@@ -9,13 +9,7 @@
/* ************************************************************************* */
// OpenCV
#include <opencv2/opencv.hpp>
#include <opencv2/features2d/features2d.hpp>
// OpenMP
#ifdef _OPENMP
# include <omp.h>
#endif
#include "precomp.hpp"
// System Includes
#include <string>
......
#ifndef _NLDIFFUSION_FUNCTIONS_H_
#define _NLDIFFUSION_FUNCTIONS_H_
/**
* @file nldiffusion_functions.h
* @brief Functions for nonlinear diffusion filtering applications
* @date Sep 15, 2013
* @author Pablo F. Alcantarilla, Jesus Nuevo
*/
//******************************************************************************
//******************************************************************************
#pragma once
/* ************************************************************************* */
// Includes
#include "precomp.hpp"
// OpenMP Includes
#ifdef _OPENMP
# include <omp.h>
#endif
//*************************************************************************************
//*************************************************************************************
/* ************************************************************************* */
// Declaration of functions
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, const size_t& ksize_x,
const size_t& ksize_y, const float& sigma);
......@@ -24,8 +21,8 @@ void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
void pm_g2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
float compute_k_percentile(const cv::Mat& img, const float& perc, const float& gscale,
const size_t& nbins, const size_t& ksize_x, const size_t& ksize_y);
float compute_k_percentile(const cv::Mat& img, float perc, float gscale,
size_t nbins, size_t ksize_x, size_t ksize_y);
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, const size_t& xorder,
const size_t& yorder, const size_t& scale);
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, const float& stepsize);
......@@ -33,9 +30,5 @@ void downsample_image(const cv::Mat& src, cv::Mat& dst);
void halfsample_image(const cv::Mat& src, cv::Mat& dst);
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_,
const size_t& dx, const size_t& dy, const size_t& scale);
//*************************************************************************************
//*************************************************************************************
#endif
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value,
int row, int col, bool same_img);
......@@ -262,11 +262,7 @@ void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky,
for (int k = 0; k < 2; k++) {
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
std::vector<float> kerI(ksize);
for (int t=0; t<ksize; t++) {
kerI[t] = 0;
}
std::vector<float> kerI(ksize, 0.0f);
if (order == 0) {
kerI[0] = norm, kerI[ksize/2] = w*norm, kerI[ksize-1] = norm;
......
File mode changed from 100755 to 100644
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment