Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
6c196d30
Commit
6c196d30
authored
Jun 28, 2018
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #11852 from dkurt:dnn_dldt_ir_outs
parents
e4b51fa8
346871e2
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
81 additions
and
49 deletions
+81
-49
dnn.cpp
modules/dnn/src/dnn.cpp
+7
-1
test_layers.cpp
modules/dnn/test/test_layers.cpp
+4
-0
object_detection.cpp
samples/dnn/object_detection.cpp
+26
-17
object_detection.py
samples/dnn/object_detection.py
+44
-31
No files found.
modules/dnn/src/dnn.cpp
View file @
6c196d30
...
...
@@ -1993,11 +1993,17 @@ Net Net::readFromModelOptimizer(const String& xml, const String& bin)
backendNode
->
net
=
Ptr
<
InfEngineBackendNet
>
(
new
InfEngineBackendNet
(
ieNet
));
for
(
auto
&
it
:
ieNet
.
getOutputsInfo
())
{
Ptr
<
Layer
>
cvLayer
(
new
InfEngineBackendLayer
(
it
.
second
));
InferenceEngine
::
CNNLayerPtr
ieLayer
=
ieNet
.
getLayerByName
(
it
.
first
.
c_str
());
CV_Assert
(
ieLayer
);
LayerParams
lp
;
int
lid
=
cvNet
.
addLayer
(
it
.
first
,
""
,
lp
);
LayerData
&
ld
=
cvNet
.
impl
->
layers
[
lid
];
ld
.
layerInstance
=
Ptr
<
Layer
>
(
new
InfEngineBackendLayer
(
it
.
second
));
cvLayer
->
name
=
it
.
first
;
cvLayer
->
type
=
ieLayer
->
type
;
ld
.
layerInstance
=
cvLayer
;
ld
.
backendNodes
[
DNN_BACKEND_INFERENCE_ENGINE
]
=
backendNode
;
for
(
int
i
=
0
;
i
<
inputsNames
.
size
();
++
i
)
...
...
modules/dnn/test/test_layers.cpp
View file @
6c196d30
...
...
@@ -925,6 +925,10 @@ TEST(Layer_Test_Convolution_DLDT, Accuracy)
Mat
out
=
net
.
forward
();
normAssert
(
outDefault
,
out
);
std
::
vector
<
int
>
outLayers
=
net
.
getUnconnectedOutLayers
();
ASSERT_EQ
(
net
.
getLayer
(
outLayers
[
0
])
->
name
,
"output_merge"
);
ASSERT_EQ
(
net
.
getLayer
(
outLayers
[
0
])
->
type
,
"Concat"
);
}
// 1. Create a .prototxt file with the following network:
...
...
samples/dnn/object_detection.cpp
View file @
6c196d30
...
...
@@ -22,6 +22,7 @@ const char* keys =
"{ height | -1 | Preprocess input image by resizing to a specific height. }"
"{ rgb | | Indicate that model works with RGB input images instead BGR ones. }"
"{ thr | .5 | Confidence threshold. }"
"{ thr | .4 | Non-maximum suppression threshold. }"
"{ backend | 0 | Choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
...
...
@@ -37,7 +38,7 @@ const char* keys =
using
namespace
cv
;
using
namespace
dnn
;
float
confThreshold
;
float
confThreshold
,
nmsThreshold
;
std
::
vector
<
std
::
string
>
classes
;
void
postprocess
(
Mat
&
frame
,
const
std
::
vector
<
Mat
>&
out
,
Net
&
net
);
...
...
@@ -59,6 +60,7 @@ int main(int argc, char** argv)
}
confThreshold
=
parser
.
get
<
float
>
(
"thr"
);
nmsThreshold
=
parser
.
get
<
float
>
(
"nms"
);
float
scale
=
parser
.
get
<
float
>
(
"scale"
);
Scalar
mean
=
parser
.
get
<
Scalar
>
(
"mean"
);
bool
swapRB
=
parser
.
get
<
bool
>
(
"rgb"
);
...
...
@@ -144,6 +146,9 @@ void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
static
std
::
vector
<
int
>
outLayers
=
net
.
getUnconnectedOutLayers
();
static
std
::
string
outLayerType
=
net
.
getLayer
(
outLayers
[
0
])
->
type
;
std
::
vector
<
int
>
classIds
;
std
::
vector
<
float
>
confidences
;
std
::
vector
<
Rect
>
boxes
;
if
(
net
.
getLayer
(
0
)
->
outputNameToIndex
(
"im_info"
)
!=
-
1
)
// Faster-RCNN or R-FCN
{
// Network produces output blob with a shape 1x1xNx7 where N is a number of
...
...
@@ -160,8 +165,11 @@ void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
int
top
=
(
int
)
data
[
i
+
4
];
int
right
=
(
int
)
data
[
i
+
5
];
int
bottom
=
(
int
)
data
[
i
+
6
];
int
classId
=
(
int
)(
data
[
i
+
1
])
-
1
;
// Skip 0th background class id.
drawPred
(
classId
,
confidence
,
left
,
top
,
right
,
bottom
,
frame
);
int
width
=
right
-
left
+
1
;
int
height
=
bottom
-
top
+
1
;
classIds
.
push_back
((
int
)(
data
[
i
+
1
])
-
1
);
// Skip 0th background class id.
boxes
.
push_back
(
Rect
(
left
,
top
,
width
,
height
));
confidences
.
push_back
(
confidence
);
}
}
}
...
...
@@ -181,16 +189,16 @@ void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
int
top
=
(
int
)(
data
[
i
+
4
]
*
frame
.
rows
);
int
right
=
(
int
)(
data
[
i
+
5
]
*
frame
.
cols
);
int
bottom
=
(
int
)(
data
[
i
+
6
]
*
frame
.
rows
);
int
classId
=
(
int
)(
data
[
i
+
1
])
-
1
;
// Skip 0th background class id.
drawPred
(
classId
,
confidence
,
left
,
top
,
right
,
bottom
,
frame
);
int
width
=
right
-
left
+
1
;
int
height
=
bottom
-
top
+
1
;
classIds
.
push_back
((
int
)(
data
[
i
+
1
])
-
1
);
// Skip 0th background class id.
boxes
.
push_back
(
Rect
(
left
,
top
,
width
,
height
));
confidences
.
push_back
(
confidence
);
}
}
}
else
if
(
outLayerType
==
"Region"
)
{
std
::
vector
<
int
>
classIds
;
std
::
vector
<
float
>
confidences
;
std
::
vector
<
Rect
>
boxes
;
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
++
i
)
{
// Network produces output blob with a shape NxC where N is a number of
...
...
@@ -218,18 +226,19 @@ void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
}
}
}
std
::
vector
<
int
>
indices
;
NMSBoxes
(
boxes
,
confidences
,
confThreshold
,
0.4
f
,
indices
);
for
(
size_t
i
=
0
;
i
<
indices
.
size
();
++
i
)
{
int
idx
=
indices
[
i
];
Rect
box
=
boxes
[
idx
];
drawPred
(
classIds
[
idx
],
confidences
[
idx
],
box
.
x
,
box
.
y
,
box
.
x
+
box
.
width
,
box
.
y
+
box
.
height
,
frame
);
}
}
else
CV_Error
(
Error
::
StsNotImplemented
,
"Unknown output layer type: "
+
outLayerType
);
std
::
vector
<
int
>
indices
;
NMSBoxes
(
boxes
,
confidences
,
confThreshold
,
nmsThreshold
,
indices
);
for
(
size_t
i
=
0
;
i
<
indices
.
size
();
++
i
)
{
int
idx
=
indices
[
i
];
Rect
box
=
boxes
[
idx
];
drawPred
(
classIds
[
idx
],
confidences
[
idx
],
box
.
x
,
box
.
y
,
box
.
x
+
box
.
width
,
box
.
y
+
box
.
height
,
frame
);
}
}
void
drawPred
(
int
classId
,
float
conf
,
int
left
,
int
top
,
int
right
,
int
bottom
,
Mat
&
frame
)
...
...
samples/dnn/object_detection.py
View file @
6c196d30
...
...
@@ -31,6 +31,7 @@ parser.add_argument('--height', type=int,
parser
.
add_argument
(
'--rgb'
,
action
=
'store_true'
,
help
=
'Indicate that model works with RGB input images instead BGR ones.'
)
parser
.
add_argument
(
'--thr'
,
type
=
float
,
default
=
0.5
,
help
=
'Confidence threshold'
)
parser
.
add_argument
(
'--nms'
,
type
=
float
,
default
=
0.4
,
help
=
'Non-maximum suppression threshold'
)
parser
.
add_argument
(
'--backend'
,
choices
=
backends
,
default
=
cv
.
dnn
.
DNN_BACKEND_DEFAULT
,
type
=
int
,
help
=
"Choose one of computation backends: "
"
%
d: automatically (by default), "
...
...
@@ -57,6 +58,7 @@ net.setPreferableBackend(args.backend)
net
.
setPreferableTarget
(
args
.
target
)
confThreshold
=
args
.
thr
nmsThreshold
=
args
.
nms
def
getOutputsNames
(
net
):
layersNames
=
net
.
getLayerNames
()
...
...
@@ -86,36 +88,43 @@ def postprocess(frame, outs):
lastLayerId
=
net
.
getLayerId
(
layerNames
[
-
1
])
lastLayer
=
net
.
getLayer
(
lastLayerId
)
classIds
=
[]
confidences
=
[]
boxes
=
[]
if
net
.
getLayer
(
0
)
.
outputNameToIndex
(
'im_info'
)
!=
-
1
:
# Faster-RCNN or R-FCN
# Network produces output blob with a shape 1x1xNx7 where N is a number of
# detections and an every detection is a vector of values
# [batchId, classId, confidence, left, top, right, bottom]
assert
(
len
(
outs
)
==
1
)
out
=
outs
[
0
]
for
detection
in
out
[
0
,
0
]:
confidence
=
detection
[
2
]
if
confidence
>
confThreshold
:
left
=
int
(
detection
[
3
])
top
=
int
(
detection
[
4
])
right
=
int
(
detection
[
5
])
bottom
=
int
(
detection
[
6
])
classId
=
int
(
detection
[
1
])
-
1
# Skip background label
drawPred
(
classId
,
confidence
,
left
,
top
,
right
,
bottom
)
for
out
in
outs
:
for
detection
in
out
[
0
,
0
]:
confidence
=
detection
[
2
]
if
confidence
>
confThreshold
:
left
=
int
(
detection
[
3
])
top
=
int
(
detection
[
4
])
right
=
int
(
detection
[
5
])
bottom
=
int
(
detection
[
6
])
width
=
right
-
left
+
1
height
=
bottom
-
top
+
1
classIds
.
append
(
int
(
detection
[
1
])
-
1
)
# Skip background label
confidences
.
append
(
float
(
confidence
))
boxes
.
append
([
left
,
top
,
width
,
height
])
elif
lastLayer
.
type
==
'DetectionOutput'
:
# Network produces output blob with a shape 1x1xNx7 where N is a number of
# detections and an every detection is a vector of values
# [batchId, classId, confidence, left, top, right, bottom]
assert
(
len
(
outs
)
==
1
)
out
=
outs
[
0
]
for
detection
in
out
[
0
,
0
]:
confidence
=
detection
[
2
]
if
confidence
>
confThreshold
:
left
=
int
(
detection
[
3
]
*
frameWidth
)
top
=
int
(
detection
[
4
]
*
frameHeight
)
right
=
int
(
detection
[
5
]
*
frameWidth
)
bottom
=
int
(
detection
[
6
]
*
frameHeight
)
classId
=
int
(
detection
[
1
])
-
1
# Skip background label
drawPred
(
classId
,
confidence
,
left
,
top
,
right
,
bottom
)
for
out
in
outs
:
for
detection
in
out
[
0
,
0
]:
confidence
=
detection
[
2
]
if
confidence
>
confThreshold
:
left
=
int
(
detection
[
3
]
*
frameWidth
)
top
=
int
(
detection
[
4
]
*
frameHeight
)
right
=
int
(
detection
[
5
]
*
frameWidth
)
bottom
=
int
(
detection
[
6
]
*
frameHeight
)
width
=
right
-
left
+
1
height
=
bottom
-
top
+
1
classIds
.
append
(
int
(
detection
[
1
])
-
1
)
# Skip background label
confidences
.
append
(
float
(
confidence
))
boxes
.
append
([
left
,
top
,
width
,
height
])
elif
lastLayer
.
type
==
'Region'
:
# Network produces output blob with a shape NxC where N is a number of
# detected objects and C is a number of classes + 4 where the first 4
...
...
@@ -138,15 +147,19 @@ def postprocess(frame, outs):
classIds
.
append
(
classId
)
confidences
.
append
(
float
(
confidence
))
boxes
.
append
([
left
,
top
,
width
,
height
])
indices
=
cv
.
dnn
.
NMSBoxes
(
boxes
,
confidences
,
confThreshold
,
0.4
)
for
i
in
indices
:
i
=
i
[
0
]
box
=
boxes
[
i
]
left
=
box
[
0
]
top
=
box
[
1
]
width
=
box
[
2
]
height
=
box
[
3
]
drawPred
(
classIds
[
i
],
confidences
[
i
],
left
,
top
,
left
+
width
,
top
+
height
)
else
:
print
(
'Unknown output layer type: '
+
lastLayer
.
type
)
exit
()
indices
=
cv
.
dnn
.
NMSBoxes
(
boxes
,
confidences
,
confThreshold
,
nmsThreshold
)
for
i
in
indices
:
i
=
i
[
0
]
box
=
boxes
[
i
]
left
=
box
[
0
]
top
=
box
[
1
]
width
=
box
[
2
]
height
=
box
[
3
]
drawPred
(
classIds
[
i
],
confidences
[
i
],
left
,
top
,
left
+
width
,
top
+
height
)
# Process inputs
winName
=
'Deep learning object detection in OpenCV'
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment