Commit 6b6cfa89 authored by Andrey Pavlenko's avatar Andrey Pavlenko Committed by OpenCV Buildbot

Merge pull request #2382 from ilya-lavrenov:tapi_nlmeans

parents 553673ee 9b31e6cd
......@@ -26,7 +26,7 @@ OCL_PERF_TEST(Photo, DenoisingGrayscale)
OCL_TEST_CYCLE()
cv::fastNlMeansDenoising(original, result, 10);
SANITY_CHECK(result);
SANITY_CHECK(result, 1);
}
OCL_PERF_TEST(Photo, DenoisingColored)
......@@ -42,10 +42,10 @@ OCL_PERF_TEST(Photo, DenoisingColored)
OCL_TEST_CYCLE()
cv::fastNlMeansDenoisingColored(original, result, 10, 10);
SANITY_CHECK(result);
SANITY_CHECK(result, 2);
}
OCL_PERF_TEST(Photo, DenoisingGrayscaleMulti)
OCL_PERF_TEST(Photo, DISABLED_DenoisingGrayscaleMulti)
{
const int imgs_count = 3;
......@@ -68,7 +68,7 @@ OCL_PERF_TEST(Photo, DenoisingGrayscaleMulti)
SANITY_CHECK(result);
}
OCL_PERF_TEST(Photo, DenoisingColoredMulti)
OCL_PERF_TEST(Photo, DISABLED_DenoisingColoredMulti)
{
const int imgs_count = 3;
......
......@@ -39,10 +39,14 @@
//
//M*/
#include "opencv2/core/base.hpp"
#ifndef __OPENCV_DENOISING_ARRAYS_HPP__
#define __OPENCV_DENOISING_ARRAYS_HPP__
template <class T> struct Array2d {
template <class T>
struct Array2d
{
T* a;
int n1,n2;
bool needToDeallocArray;
......@@ -50,14 +54,16 @@ template <class T> struct Array2d {
Array2d(const Array2d& array2d):
a(array2d.a), n1(array2d.n1), n2(array2d.n2), needToDeallocArray(false)
{
if (array2d.needToDeallocArray) {
// copy constructor for self allocating arrays not supported
throw new std::exception();
if (array2d.needToDeallocArray)
{
CV_Error(Error::BadDataPtr, "Copy constructor for self allocating arrays not supported");
}
}
Array2d(T* _a, int _n1, int _n2):
a(_a), n1(_n1), n2(_n2), needToDeallocArray(false) {}
a(_a), n1(_n1), n2(_n2), needToDeallocArray(false)
{
}
Array2d(int _n1, int _n2):
n1(_n1), n2(_n2), needToDeallocArray(true)
......@@ -65,28 +71,34 @@ template <class T> struct Array2d {
a = new T[n1*n2];
}
~Array2d() {
if (needToDeallocArray) {
~Array2d()
{
if (needToDeallocArray)
delete[] a;
}
}
T* operator [] (int i) {
T* operator [] (int i)
{
return a + i*n2;
}
inline T* row_ptr(int i) {
inline T* row_ptr(int i)
{
return (*this)[i];
}
};
template <class T> struct Array3d {
template <class T>
struct Array3d
{
T* a;
int n1,n2,n3;
bool needToDeallocArray;
Array3d(T* _a, int _n1, int _n2, int _n3):
a(_a), n1(_n1), n2(_n2), n3(_n3), needToDeallocArray(false) {}
a(_a), n1(_n1), n2(_n2), n3(_n3), needToDeallocArray(false)
{
}
Array3d(int _n1, int _n2, int _n3):
n1(_n1), n2(_n2), n3(_n3), needToDeallocArray(true)
......@@ -94,64 +106,72 @@ template <class T> struct Array3d {
a = new T[n1*n2*n3];
}
~Array3d() {
if (needToDeallocArray) {
~Array3d()
{
if (needToDeallocArray)
delete[] a;
}
}
Array2d<T> operator [] (int i) {
Array2d<T> operator [] (int i)
{
Array2d<T> array2d(a + i*n2*n3, n2, n3);
return array2d;
}
inline T* row_ptr(int i1, int i2) {
inline T* row_ptr(int i1, int i2)
{
return a + i1*n2*n3 + i2*n3;
}
};
template <class T> struct Array4d {
template <class T>
struct Array4d
{
T* a;
int n1,n2,n3,n4;
bool needToDeallocArray;
int steps[4];
void init_steps() {
void init_steps()
{
steps[0] = n2*n3*n4;
steps[1] = n3*n4;
steps[2] = n4;
steps[3] = 1;
}
Array4d(T* _a, int _n1, int _n2, int _n3, int _n4):
Array4d(T* _a, int _n1, int _n2, int _n3, int _n4) :
a(_a), n1(_n1), n2(_n2), n3(_n3), n4(_n4), needToDeallocArray(false)
{
{
init_steps();
}
}
Array4d(int _n1, int _n2, int _n3, int _n4):
Array4d(int _n1, int _n2, int _n3, int _n4) :
n1(_n1), n2(_n2), n3(_n3), n4(_n4), needToDeallocArray(true)
{
a = new T[n1*n2*n3*n4];
init_steps();
}
}
~Array4d() {
if (needToDeallocArray) {
~Array4d()
{
if (needToDeallocArray)
delete[] a;
}
}
Array3d<T> operator [] (int i) {
Array3d<T> operator [] (int i)
{
Array3d<T> array3d(a + i*n2*n3*n4, n2, n3, n4);
return array3d;
}
inline T* row_ptr(int i1, int i2, int i3) {
inline T* row_ptr(int i1, int i2, int i3)
{
return a + i1*n2*n3*n4 + i2*n3*n4 + i3*n4;
}
inline int step_size(int dimension) {
inline int step_size(int dimension)
{
return steps[dimension];
}
};
......
......@@ -40,14 +40,17 @@
//M*/
#include "precomp.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
#include "fast_nlmeans_denoising_invoker.hpp"
#include "fast_nlmeans_multi_denoising_invoker.hpp"
#include "fast_nlmeans_denoising_opencl.hpp"
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
int templateWindowSize, int searchWindowSize)
{
CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()),
ocl_fastNlMeansDenoising(_src, _dst, h, templateWindowSize, searchWindowSize))
Mat src = _src.getMat();
_dst.create(src.size(), src.type());
Mat dst = _dst.getMat();
......@@ -83,15 +86,20 @@ void cv::fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst,
float h, float hForColorComponents,
int templateWindowSize, int searchWindowSize)
{
Mat src = _src.getMat();
_dst.create(src.size(), src.type());
Mat dst = _dst.getMat();
if (src.type() != CV_8UC3) {
if (_src.type() != CV_8UC3)
{
CV_Error(Error::StsBadArg, "Type of input image should be CV_8UC3!");
return;
}
CV_OCL_RUN(_src.dims() <= 2 && (_dst.isUMat() || _src.isUMat()),
ocl_fastNlMeansDenoisingColored(_src, _dst, h, hForColorComponents,
templateWindowSize, searchWindowSize))
Mat src = _src.getMat();
_dst.create(src.size(), src.type());
Mat dst = _dst.getMat();
Mat src_lab;
cvtColor(src, src_lab, COLOR_LBGR2Lab);
......@@ -117,7 +125,8 @@ static void fastNlMeansDenoisingMultiCheckPreconditions(
int templateWindowSize, int searchWindowSize)
{
int src_imgs_size = static_cast<int>(srcImgs.size());
if (src_imgs_size == 0) {
if (src_imgs_size == 0)
{
CV_Error(Error::StsBadArg, "Input images vector should not be empty!");
}
......@@ -136,11 +145,11 @@ static void fastNlMeansDenoisingMultiCheckPreconditions(
"should be chosen corresponding srcImgs size!");
}
for (int i = 1; i < src_imgs_size; i++) {
if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type()) {
for (int i = 1; i < src_imgs_size; i++)
if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type())
{
CV_Error(Error::StsBadArg, "Input images should have the same size and type!");
}
}
}
void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
......@@ -152,12 +161,13 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
fastNlMeansDenoisingMultiCheckPreconditions(
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize
);
temporalWindowSize, templateWindowSize, searchWindowSize);
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
switch (srcImgs[0].type()) {
switch (srcImgs[0].type())
{
case CV_8U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<uchar>(
......@@ -192,15 +202,15 @@ void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputAr
fastNlMeansDenoisingMultiCheckPreconditions(
srcImgs, imgToDenoiseIndex,
temporalWindowSize, templateWindowSize, searchWindowSize
);
temporalWindowSize, templateWindowSize, searchWindowSize);
_dst.create(srcImgs[0].size(), srcImgs[0].type());
Mat dst = _dst.getMat();
int src_imgs_size = static_cast<int>(srcImgs.size());
if (srcImgs[0].type() != CV_8UC3) {
if (srcImgs[0].type() != CV_8UC3)
{
CV_Error(Error::StsBadArg, "Type of input images should be CV_8UC3!");
return;
}
......@@ -211,7 +221,8 @@ void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputAr
std::vector<Mat> src_lab(src_imgs_size);
std::vector<Mat> l(src_imgs_size);
std::vector<Mat> ab(src_imgs_size);
for (int i = 0; i < src_imgs_size; i++) {
for (int i = 0; i < src_imgs_size; i++)
{
src_lab[i] = Mat::zeros(srcImgs[0].size(), CV_8UC3);
l[i] = Mat::zeros(srcImgs[0].size(), CV_8UC1);
ab[i] = Mat::zeros(srcImgs[0].size(), CV_8UC2);
......
......@@ -51,61 +51,61 @@
using namespace cv;
template <typename T>
struct FastNlMeansDenoisingInvoker : ParallelLoopBody {
public:
FastNlMeansDenoisingInvoker(const Mat& src, Mat& dst,
int template_window_size, int search_window_size, const float h);
struct FastNlMeansDenoisingInvoker :
public ParallelLoopBody
{
public:
FastNlMeansDenoisingInvoker(const Mat& src, Mat& dst,
int template_window_size, int search_window_size, const float h);
void operator() (const Range& range) const;
void operator() (const Range& range) const;
private:
void operator= (const FastNlMeansDenoisingInvoker&);
private:
void operator= (const FastNlMeansDenoisingInvoker&);
const Mat& src_;
Mat& dst_;
const Mat& src_;
Mat& dst_;
Mat extended_src_;
int border_size_;
Mat extended_src_;
int border_size_;
int template_window_size_;
int search_window_size_;
int template_window_size_;
int search_window_size_;
int template_window_half_size_;
int search_window_half_size_;
int template_window_half_size_;
int search_window_half_size_;
int fixed_point_mult_;
int almost_template_window_size_sq_bin_shift_;
std::vector<int> almost_dist2weight_;
int fixed_point_mult_;
int almost_template_window_size_sq_bin_shift_;
std::vector<int> almost_dist2weight_;
void calcDistSumsForFirstElementInRow(
int i,
Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const;
void calcDistSumsForFirstElementInRow(
int i, Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const;
void calcDistSumsForElementInFirstRow(
int i,
int j,
int first_col_num,
Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const;
void calcDistSumsForElementInFirstRow(
int i, int j, int first_col_num,
Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const;
};
inline int getNearestPowerOf2(int value)
{
int p = 0;
while( 1 << p < value) ++p;
while( 1 << p < value)
++p;
return p;
}
template <class T>
FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
const cv::Mat& src,
cv::Mat& dst,
const Mat& src, Mat& dst,
int template_window_size,
int search_window_size,
const float h) : src_(src), dst_(dst)
const float h) :
src_(src), dst_(dst)
{
CV_Assert(src.channels() == sizeof(T)); //T is Vec1b or Vec2b or Vec3b
......@@ -115,26 +115,25 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
search_window_size_ = search_window_half_size_ * 2 + 1;
border_size_ = search_window_half_size_ + template_window_half_size_;
copyMakeBorder(src_, extended_src_,
border_size_, border_size_, border_size_, border_size_, cv::BORDER_DEFAULT);
copyMakeBorder(src_, extended_src_, border_size_, border_size_, border_size_, border_size_, BORDER_DEFAULT);
const int max_estimate_sum_value = search_window_size_ * search_window_size_ * 255;
fixed_point_mult_ = std::numeric_limits<int>::max() / max_estimate_sum_value;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
CV_Assert(template_window_size_ <= 46340 ); // sqrt(INT_MAX)
CV_Assert(template_window_size_ <= 46340); // sqrt(INT_MAX)
int template_window_size_sq = template_window_size_ * template_window_size_;
almost_template_window_size_sq_bin_shift_ = getNearestPowerOf2(template_window_size_sq);
double almost_dist2actual_dist_multiplier = ((double)(1 << almost_template_window_size_sq_bin_shift_)) / template_window_size_sq;
int max_dist = 255 * 255 * sizeof(T);
int almost_max_dist = (int) (max_dist / almost_dist2actual_dist_multiplier + 1);
int almost_max_dist = (int)(max_dist / almost_dist2actual_dist_multiplier + 1);
almost_dist2weight_.resize(almost_max_dist);
const double WEIGHT_THRESHOLD = 0.001;
for (int almost_dist = 0; almost_dist < almost_max_dist; almost_dist++) {
for (int almost_dist = 0; almost_dist < almost_max_dist; almost_dist++)
{
double dist = almost_dist * almost_dist2actual_dist_multiplier;
int weight = cvRound(fixed_point_mult_ * std::exp(-dist / (h * h * sizeof(T))));
......@@ -144,50 +143,56 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
almost_dist2weight_[almost_dist] = weight;
}
CV_Assert(almost_dist2weight_[0] == fixed_point_mult_);
// additional optimization init end
if (dst_.empty()) {
// additional optimization init end
if (dst_.empty())
dst_ = Mat::zeros(src_.size(), src_.type());
}
}
template <class T>
void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const {
void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
{
int row_from = range.start;
int row_to = range.end - 1;
// sums of cols anf rows for current pixel p
Array2d<int> dist_sums(search_window_size_, search_window_size_);
// for lazy calc optimization
// for lazy calc optimization (sum of cols for current pixel)
Array3d<int> col_dist_sums(template_window_size_, search_window_size_, search_window_size_);
int first_col_num = -1;
// last elements of column sum (for each element in row)
Array3d<int> up_col_dist_sums(src_.cols, search_window_size_, search_window_size_);
for (int i = row_from; i <= row_to; i++) {
for (int j = 0; j < src_.cols; j++) {
for (int i = row_from; i <= row_to; i++)
{
for (int j = 0; j < src_.cols; j++)
{
int search_window_y = i - search_window_half_size_;
int search_window_x = j - search_window_half_size_;
// calc dist_sums
if (j == 0) {
if (j == 0)
{
calcDistSumsForFirstElementInRow(i, dist_sums, col_dist_sums, up_col_dist_sums);
first_col_num = 0;
} else { // calc cur dist_sums using previous dist_sums
if (i == row_from) {
}
else
{
// calc cur dist_sums using previous dist_sums
if (i == row_from)
{
calcDistSumsForElementInFirstRow(i, j, first_col_num,
dist_sums, col_dist_sums, up_col_dist_sums);
} else {
}
else
{
int ay = border_size_ + i;
int ax = border_size_ + j + template_window_half_size_;
int start_by =
border_size_ + i - search_window_half_size_;
int start_bx =
border_size_ + j - search_window_half_size_ + template_window_half_size_;
int start_by = border_size_ + i - search_window_half_size_;
int start_bx = border_size_ + j - search_window_half_size_ + template_window_half_size_;
T a_up = extended_src_.at<T>(ay - template_window_half_size_ - 1, ax);
T a_down = extended_src_.at<T>(ay + template_window_half_size_, ax);
......@@ -195,33 +200,25 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const {
// copy class member to local variable for optimization
int search_window_size = search_window_size_;
for (int y = 0; y < search_window_size; y++) {
int* dist_sums_row = dist_sums.row_ptr(y);
int* col_dist_sums_row = col_dist_sums.row_ptr(first_col_num,y);
int* up_col_dist_sums_row = up_col_dist_sums.row_ptr(j, y);
const T* b_up_ptr =
extended_src_.ptr<T>(start_by - template_window_half_size_ - 1 + y);
for (int y = 0; y < search_window_size; y++)
{
int * dist_sums_row = dist_sums.row_ptr(y);
int * col_dist_sums_row = col_dist_sums.row_ptr(first_col_num, y);
int * up_col_dist_sums_row = up_col_dist_sums.row_ptr(j, y);
const T* b_down_ptr =
extended_src_.ptr<T>(start_by + template_window_half_size_ + y);
const T * b_up_ptr = extended_src_.ptr<T>(start_by - template_window_half_size_ - 1 + y);
const T * b_down_ptr = extended_src_.ptr<T>(start_by + template_window_half_size_ + y);
for (int x = 0; x < search_window_size; x++) {
for (int x = 0; x < search_window_size; x++)
{
// remove from current pixel sum column sum with index "first_col_num"
dist_sums_row[x] -= col_dist_sums_row[x];
col_dist_sums_row[x] =
up_col_dist_sums_row[x] +
calcUpDownDist(
a_up, a_down,
b_up_ptr[start_bx + x], b_down_ptr[start_bx + x]
);
int bx = start_bx + x;
col_dist_sums_row[x] = up_col_dist_sums_row[x] + calcUpDownDist(a_up, a_down, b_up_ptr[bx], b_down_ptr[bx]);
dist_sums_row[x] += col_dist_sums_row[x];
up_col_dist_sums_row[x] = col_dist_sums_row[x];
}
}
}
......@@ -230,20 +227,17 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const {
}
// calc weights
int weights_sum = 0;
int estimation[3];
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++) {
int estimation[3], weights_sum = 0;
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++)
estimation[channel_num] = 0;
}
for (int y = 0; y < search_window_size_; y++) {
for (int y = 0; y < search_window_size_; y++)
{
const T* cur_row_ptr = extended_src_.ptr<T>(border_size_ + search_window_y + y);
int* dist_sums_row = dist_sums.row_ptr(y);
for (int x = 0; x < search_window_size_; x++) {
int almostAvgDist =
dist_sums_row[x] >> almost_template_window_size_sq_bin_shift_;
for (int x = 0; x < search_window_size_; x++)
{
int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift_;
int weight = almost_dist2weight_[almostAvgDist];
weights_sum += weight;
......@@ -269,18 +263,19 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
{
int j = 0;
for (int y = 0; y < search_window_size_; y++) {
for (int x = 0; x < search_window_size_; x++) {
for (int y = 0; y < search_window_size_; y++)
for (int x = 0; x < search_window_size_; x++)
{
dist_sums[y][x] = 0;
for (int tx = 0; tx < template_window_size_; tx++) {
for (int tx = 0; tx < template_window_size_; tx++)
col_dist_sums[tx][y][x] = 0;
}
int start_y = i + y - search_window_half_size_;
int start_x = j + x - search_window_half_size_;
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) {
for (int tx = -template_window_half_size_; tx <= template_window_half_size_; tx++) {
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++)
for (int tx = -template_window_half_size_; tx <= template_window_half_size_; tx++)
{
int dist = calcDist<T>(extended_src_,
border_size_ + i + ty, border_size_ + j + tx,
border_size_ + start_y + ty, border_size_ + start_x + tx);
......@@ -288,18 +283,14 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
dist_sums[y][x] += dist;
col_dist_sums[tx + template_window_half_size_][y][x] += dist;
}
}
up_col_dist_sums[j][y][x] = col_dist_sums[template_window_size_ - 1][y][x];
}
}
}
template <class T>
inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
int i,
int j,
int first_col_num,
int i, int j, int first_col_num,
Array2d<int>& dist_sums,
Array3d<int>& col_dist_sums,
Array3d<int>& up_col_dist_sums) const
......@@ -312,23 +303,20 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
int new_last_col_num = first_col_num;
for (int y = 0; y < search_window_size_; y++) {
for (int x = 0; x < search_window_size_; x++) {
for (int y = 0; y < search_window_size_; y++)
for (int x = 0; x < search_window_size_; x++)
{
dist_sums[y][x] -= col_dist_sums[first_col_num][y][x];
col_dist_sums[new_last_col_num][y][x] = 0;
int by = start_by + y;
int bx = start_bx + x;
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) {
col_dist_sums[new_last_col_num][y][x] +=
calcDist<T>(extended_src_, ay + ty, ax, by + ty, bx);
}
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++)
col_dist_sums[new_last_col_num][y][x] += calcDist<T>(extended_src_, ay + ty, ax, by + ty, bx);
dist_sums[y][x] += col_dist_sums[new_last_col_num][y][x];
up_col_dist_sums[j][y][x] = col_dist_sums[new_last_col_num][y][x];
}
}
}
#endif
......@@ -46,29 +46,35 @@ using namespace cv;
template <typename T> static inline int calcDist(const T a, const T b);
template <> inline int calcDist(const uchar a, const uchar b) {
template <> inline int calcDist(const uchar a, const uchar b)
{
return (a-b) * (a-b);
}
template <> inline int calcDist(const Vec2b a, const Vec2b b) {
template <> inline int calcDist(const Vec2b a, const Vec2b b)
{
return (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]);
}
template <> inline int calcDist(const Vec3b a, const Vec3b b) {
template <> inline int calcDist(const Vec3b a, const Vec3b b)
{
return (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]) + (a[2]-b[2])*(a[2]-b[2]);
}
template <typename T> static inline int calcDist(const Mat& m, int i1, int j1, int i2, int j2) {
template <typename T> static inline int calcDist(const Mat& m, int i1, int j1, int i2, int j2)
{
const T a = m.at<T>(i1, j1);
const T b = m.at<T>(i2, j2);
return calcDist<T>(a,b);
}
template <typename T> static inline int calcUpDownDist(T a_up, T a_down, T b_up, T b_down) {
return calcDist(a_down,b_down) - calcDist(a_up, b_up);
template <typename T> static inline int calcUpDownDist(T a_up, T a_down, T b_up, T b_down)
{
return calcDist(a_down, b_down) - calcDist(a_up, b_up);
}
template <> inline int calcUpDownDist(uchar a_up, uchar a_down, uchar b_up, uchar b_down) {
template <> inline int calcUpDownDist(uchar a_up, uchar a_down, uchar b_up, uchar b_down)
{
int A = a_down - b_down;
int B = a_up - b_up;
return (A-B)*(A+B);
......@@ -76,16 +82,37 @@ template <> inline int calcUpDownDist(uchar a_up, uchar a_down, uchar b_up, uch
template <typename T> static inline void incWithWeight(int* estimation, int weight, T p);
template <> inline void incWithWeight(int* estimation, int weight, uchar p) {
template <> inline void incWithWeight(int* estimation, int weight, uchar p)
{
estimation[0] += weight * p;
}
template <> inline void incWithWeight(int* estimation, int weight, Vec2b p) {
template <> inline void incWithWeight(int* estimation, int weight, Vec2b p)
{
estimation[0] += weight * p[0];
estimation[1] += weight * p[1];
}
template <> inline void incWithWeight(int* estimation, int weight, Vec3b p) {
template <> inline void incWithWeight(int* estimation, int weight, Vec3b p)
{
estimation[0] += weight * p[0];
estimation[1] += weight * p[1];
estimation[2] += weight * p[2];
}
template <> inline void incWithWeight(int* estimation, int weight, int p)
{
estimation[0] += weight * p;
}
template <> inline void incWithWeight(int* estimation, int weight, Vec2i p)
{
estimation[0] += weight * p[0];
estimation[1] += weight * p[1];
}
template <> inline void incWithWeight(int* estimation, int weight, Vec3i p)
{
estimation[0] += weight * p[0];
estimation[1] += weight * p[1];
estimation[2] += weight * p[2];
......@@ -93,18 +120,21 @@ template <> inline void incWithWeight(int* estimation, int weight, Vec3b p) {
template <typename T> static inline T saturateCastFromArray(int* estimation);
template <> inline uchar saturateCastFromArray(int* estimation) {
template <> inline uchar saturateCastFromArray(int* estimation)
{
return saturate_cast<uchar>(estimation[0]);
}
template <> inline Vec2b saturateCastFromArray(int* estimation) {
template <> inline Vec2b saturateCastFromArray(int* estimation)
{
Vec2b res;
res[0] = saturate_cast<uchar>(estimation[0]);
res[1] = saturate_cast<uchar>(estimation[1]);
return res;
}
template <> inline Vec3b saturateCastFromArray(int* estimation) {
template <> inline Vec3b saturateCastFromArray(int* estimation)
{
Vec3b res;
res[0] = saturate_cast<uchar>(estimation[0]);
res[1] = saturate_cast<uchar>(estimation[1]);
......@@ -112,4 +142,20 @@ template <> inline Vec3b saturateCastFromArray(int* estimation) {
return res;
}
template <> inline int saturateCastFromArray(int* estimation)
{
return estimation[0];
}
template <> inline Vec2i saturateCastFromArray(int* estimation)
{
estimation[1] = 0;
return Vec2i(estimation);
}
template <> inline Vec3i saturateCastFromArray(int* estimation)
{
return Vec3i(estimation);
}
#endif
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_FAST_NLMEANS_DENOISING_OPENCL_HPP__
#define __OPENCV_FAST_NLMEANS_DENOISING_OPENCL_HPP__
#include "precomp.hpp"
#include "opencl_kernels.hpp"
#ifdef HAVE_OPENCL
namespace cv {
enum
{
BLOCK_ROWS = 32,
BLOCK_COLS = 32,
CTA_SIZE = 256
};
static int divUp(int a, int b)
{
return (a + b - 1) / b;
}
template <typename FT>
static bool ocl_calcAlmostDist2Weight(UMat & almostDist2Weight, int searchWindowSize, int templateWindowSize, FT h, int cn,
int & almostTemplateWindowSizeSqBinShift)
{
const int maxEstimateSumValue = searchWindowSize * searchWindowSize * 255;
int fixedPointMult = std::numeric_limits<int>::max() / maxEstimateSumValue;
int depth = DataType<FT>::depth;
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if (depth == CV_64F && !doubleSupport)
return false;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
CV_Assert(templateWindowSize <= 46340); // sqrt(INT_MAX)
int templateWindowSizeSq = templateWindowSize * templateWindowSize;
almostTemplateWindowSizeSqBinShift = getNearestPowerOf2(templateWindowSizeSq);
FT almostDist2ActualDistMultiplier = (FT)(1 << almostTemplateWindowSizeSqBinShift) / templateWindowSizeSq;
const FT WEIGHT_THRESHOLD = 1e-3f;
int maxDist = 255 * 255 * cn;
int almostMaxDist = (int)(maxDist / almostDist2ActualDistMultiplier + 1);
FT den = 1.0f / (h * h * cn);
almostDist2Weight.create(1, almostMaxDist, CV_32SC1);
ocl::Kernel k("calcAlmostDist2Weight", ocl::photo::nlmeans_oclsrc,
format("-D OP_CALC_WEIGHTS -D FT=%s%s", ocl::typeToStr(depth),
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (k.empty())
return false;
k.args(ocl::KernelArg::PtrWriteOnly(almostDist2Weight), almostMaxDist,
almostDist2ActualDistMultiplier, fixedPointMult, den, WEIGHT_THRESHOLD);
size_t globalsize[1] = { almostMaxDist };
return k.run(1, globalsize, NULL, false);
}
static bool ocl_fastNlMeansDenoising(InputArray _src, OutputArray _dst, float h,
int templateWindowSize, int searchWindowSize)
{
int type = _src.type(), cn = CV_MAT_CN(type);
Size size = _src.size();
if ( type != CV_8UC1 || type != CV_8UC2 || type != CV_8UC4 )
return false;
int templateWindowHalfWize = templateWindowSize / 2;
int searchWindowHalfSize = searchWindowSize / 2;
templateWindowSize = templateWindowHalfWize * 2 + 1;
searchWindowSize = searchWindowHalfSize * 2 + 1;
int nblocksx = divUp(size.width, BLOCK_COLS), nblocksy = divUp(size.height, BLOCK_ROWS);
int almostTemplateWindowSizeSqBinShift = -1;
char cvt[2][40];
String opts = format("-D OP_CALC_FASTNLMEANS -D TEMPLATE_SIZE=%d -D SEARCH_SIZE=%d"
" -D uchar_t=%s -D int_t=%s -D BLOCK_COLS=%d -D BLOCK_ROWS=%d"
" -D CTA_SIZE=%d -D TEMPLATE_SIZE2=%d -D SEARCH_SIZE2=%d"
" -D convert_int_t=%s -D cn=%d -D CTA_SIZE2=%d -D convert_uchar_t=%s",
templateWindowSize, searchWindowSize, ocl::typeToStr(type),
ocl::typeToStr(CV_32SC(cn)), BLOCK_COLS, BLOCK_ROWS, CTA_SIZE,
templateWindowHalfWize, searchWindowHalfSize,
ocl::convertTypeStr(CV_8U, CV_32S, cn, cvt[0]), cn,
CTA_SIZE >> 1, ocl::convertTypeStr(CV_32S, CV_8U, cn, cvt[1]));
ocl::Kernel k("fastNlMeansDenoising", ocl::photo::nlmeans_oclsrc, opts);
if (k.empty())
return false;
UMat almostDist2Weight;
if (!ocl_calcAlmostDist2Weight<float>(almostDist2Weight, searchWindowSize, templateWindowSize, h, cn,
almostTemplateWindowSizeSqBinShift))
return false;
CV_Assert(almostTemplateWindowSizeSqBinShift >= 0);
UMat srcex;
int borderSize = searchWindowHalfSize + templateWindowHalfWize;
copyMakeBorder(_src, srcex, borderSize, borderSize, borderSize, borderSize, BORDER_DEFAULT);
_dst.create(size, type);
UMat dst = _dst.getUMat();
int searchWindowSizeSq = searchWindowSize * searchWindowSize;
Size upColSumSize(size.width, searchWindowSizeSq * nblocksy);
Size colSumSize(nblocksx * templateWindowSize, searchWindowSizeSq * nblocksy);
UMat buffer(upColSumSize + colSumSize, CV_32SC(cn));
srcex = srcex(Rect(Point(borderSize, borderSize), size));
k.args(ocl::KernelArg::ReadOnlyNoSize(srcex), ocl::KernelArg::WriteOnly(dst),
ocl::KernelArg::PtrReadOnly(almostDist2Weight),
ocl::KernelArg::PtrReadOnly(buffer), almostTemplateWindowSizeSqBinShift);
size_t globalsize[2] = { nblocksx * CTA_SIZE, nblocksy }, localsize[2] = { CTA_SIZE, 1 };
return k.run(2, globalsize, localsize, false);
}
static bool ocl_fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst,
float h, float hForColorComponents,
int templateWindowSize, int searchWindowSize)
{
UMat src = _src.getUMat();
_dst.create(src.size(), src.type());
UMat dst = _dst.getUMat();
UMat src_lab;
cvtColor(src, src_lab, COLOR_LBGR2Lab);
UMat l(src.size(), CV_8U);
UMat ab(src.size(), CV_8UC2);
std::vector<UMat> l_ab(2), l_ab_denoised(2);
l_ab[0] = l;
l_ab[1] = ab;
l_ab_denoised[0].create(src.size(), CV_8U);
l_ab_denoised[1].create(src.size(), CV_8UC2);
int from_to[] = { 0,0, 1,1, 2,2 };
mixChannels(std::vector<UMat>(1, src_lab), l_ab, from_to, 3);
fastNlMeansDenoising(l_ab[0], l_ab_denoised[0], h, templateWindowSize, searchWindowSize);
fastNlMeansDenoising(l_ab[1], l_ab_denoised[1], hForColorComponents, templateWindowSize, searchWindowSize);
UMat dst_lab(src.size(), src.type());
mixChannels(l_ab_denoised, std::vector<UMat>(1, dst_lab), from_to, 3);
cvtColor(dst_lab, dst, COLOR_Lab2LBGR);
return true;
}
}
#endif
#endif
......@@ -51,51 +51,47 @@
using namespace cv;
template <typename T>
struct FastNlMeansMultiDenoisingInvoker : ParallelLoopBody {
public:
FastNlMeansMultiDenoisingInvoker(
const std::vector<Mat>& srcImgs, int imgToDenoiseIndex, int temporalWindowSize,
Mat& dst, int template_window_size, int search_window_size, const float h);
void operator() (const Range& range) const;
private:
void operator= (const FastNlMeansMultiDenoisingInvoker&);
int rows_;
int cols_;
Mat& dst_;
std::vector<Mat> extended_srcs_;
Mat main_extended_src_;
int border_size_;
int template_window_size_;
int search_window_size_;
int temporal_window_size_;
int template_window_half_size_;
int search_window_half_size_;
int temporal_window_half_size_;
int fixed_point_mult_;
int almost_template_window_size_sq_bin_shift;
std::vector<int> almost_dist2weight;
void calcDistSumsForFirstElementInRow(
int i,
Array3d<int>& dist_sums,
Array4d<int>& col_dist_sums,
Array4d<int>& up_col_dist_sums) const;
void calcDistSumsForElementInFirstRow(
int i,
int j,
int first_col_num,
Array3d<int>& dist_sums,
Array4d<int>& col_dist_sums,
Array4d<int>& up_col_dist_sums) const;
struct FastNlMeansMultiDenoisingInvoker :
ParallelLoopBody
{
public:
FastNlMeansMultiDenoisingInvoker(const std::vector<Mat>& srcImgs, int imgToDenoiseIndex,
int temporalWindowSize, Mat& dst, int template_window_size,
int search_window_size, const float h);
void operator() (const Range& range) const;
private:
void operator= (const FastNlMeansMultiDenoisingInvoker&);
int rows_;
int cols_;
Mat& dst_;
std::vector<Mat> extended_srcs_;
Mat main_extended_src_;
int border_size_;
int template_window_size_;
int search_window_size_;
int temporal_window_size_;
int template_window_half_size_;
int search_window_half_size_;
int temporal_window_half_size_;
int fixed_point_mult_;
int almost_template_window_size_sq_bin_shift;
std::vector<int> almost_dist2weight;
void calcDistSumsForFirstElementInRow(int i, Array3d<int>& dist_sums,
Array4d<int>& col_dist_sums,
Array4d<int>& up_col_dist_sums) const;
void calcDistSumsForElementInFirstRow(int i, int j, int first_col_num,
Array3d<int>& dist_sums, Array4d<int>& col_dist_sums,
Array4d<int>& up_col_dist_sums) const;
};
template <class T>
......@@ -106,7 +102,8 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
cv::Mat& dst,
int template_window_size,
int search_window_size,
const float h) : dst_(dst), extended_srcs_(srcImgs.size())
const float h) :
dst_(dst), extended_srcs_(srcImgs.size())
{
CV_Assert(srcImgs.size() > 0);
CV_Assert(srcImgs[0].channels() == sizeof(T));
......@@ -123,85 +120,84 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
temporal_window_size_ = temporal_window_half_size_ * 2 + 1;
border_size_ = search_window_half_size_ + template_window_half_size_;
for (int i = 0; i < temporal_window_size_; i++) {
copyMakeBorder(
srcImgs[imgToDenoiseIndex - temporal_window_half_size_ + i], extended_srcs_[i],
for (int i = 0; i < temporal_window_size_; i++)
copyMakeBorder(srcImgs[imgToDenoiseIndex - temporal_window_half_size_ + i], extended_srcs_[i],
border_size_, border_size_, border_size_, border_size_, cv::BORDER_DEFAULT);
}
main_extended_src_ = extended_srcs_[temporal_window_half_size_];
const int max_estimate_sum_value =
temporal_window_size_ * search_window_size_ * search_window_size_ * 255;
main_extended_src_ = extended_srcs_[temporal_window_half_size_];
const int max_estimate_sum_value = temporal_window_size_ * search_window_size_ * search_window_size_ * 255;
fixed_point_mult_ = std::numeric_limits<int>::max() / max_estimate_sum_value;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
int template_window_size_sq = template_window_size_ * template_window_size_;
almost_template_window_size_sq_bin_shift = 0;
while (1 << almost_template_window_size_sq_bin_shift < template_window_size_sq) {
while (1 << almost_template_window_size_sq_bin_shift < template_window_size_sq)
almost_template_window_size_sq_bin_shift++;
}
int almost_template_window_size_sq = 1 << almost_template_window_size_sq_bin_shift;
double almost_dist2actual_dist_multiplier =
((double) almost_template_window_size_sq) / template_window_size_sq;
double almost_dist2actual_dist_multiplier = (double) almost_template_window_size_sq / template_window_size_sq;
int max_dist = 255 * 255 * sizeof(T);
int almost_max_dist = (int) (max_dist / almost_dist2actual_dist_multiplier + 1);
almost_dist2weight.resize(almost_max_dist);
const double WEIGHT_THRESHOLD = 0.001;
for (int almost_dist = 0; almost_dist < almost_max_dist; almost_dist++) {
for (int almost_dist = 0; almost_dist < almost_max_dist; almost_dist++)
{
double dist = almost_dist * almost_dist2actual_dist_multiplier;
int weight = cvRound(fixed_point_mult_ * std::exp(-dist / (h * h * sizeof(T))));
if (weight < WEIGHT_THRESHOLD * fixed_point_mult_) {
if (weight < WEIGHT_THRESHOLD * fixed_point_mult_)
weight = 0;
}
almost_dist2weight[almost_dist] = weight;
}
CV_Assert(almost_dist2weight[0] == fixed_point_mult_);
// additional optimization init end
if (dst_.empty()) {
// additional optimization init end
if (dst_.empty())
dst_ = Mat::zeros(srcImgs[0].size(), srcImgs[0].type());
}
}
template <class T>
void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const {
void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
{
int row_from = range.start;
int row_to = range.end - 1;
Array3d<int> dist_sums(temporal_window_size_, search_window_size_, search_window_size_);
// for lazy calc optimization
Array4d<int> col_dist_sums(
template_window_size_, temporal_window_size_, search_window_size_, search_window_size_);
Array4d<int> col_dist_sums(template_window_size_, temporal_window_size_, search_window_size_, search_window_size_);
int first_col_num = -1;
Array4d<int> up_col_dist_sums(cols_, temporal_window_size_, search_window_size_, search_window_size_);
Array4d<int> up_col_dist_sums(
cols_, temporal_window_size_, search_window_size_, search_window_size_);
for (int i = row_from; i <= row_to; i++) {
for (int j = 0; j < cols_; j++) {
for (int i = row_from; i <= row_to; i++)
{
for (int j = 0; j < cols_; j++)
{
int search_window_y = i - search_window_half_size_;
int search_window_x = j - search_window_half_size_;
// calc dist_sums
if (j == 0) {
if (j == 0)
{
calcDistSumsForFirstElementInRow(i, dist_sums, col_dist_sums, up_col_dist_sums);
first_col_num = 0;
} else { // calc cur dist_sums using previous dist_sums
if (i == row_from) {
}
else
{
// calc cur dist_sums using previous dist_sums
if (i == row_from)
{
calcDistSumsForElementInFirstRow(i, j, first_col_num,
dist_sums, col_dist_sums, up_col_dist_sums);
} else {
}
else
{
int ay = border_size_ + i;
int ax = border_size_ + j + template_window_half_size_;
......@@ -217,36 +213,31 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
// copy class member to local variable for optimization
int search_window_size = search_window_size_;
for (int d = 0; d < temporal_window_size_; d++) {
for (int d = 0; d < temporal_window_size_; d++)
{
Mat cur_extended_src = extended_srcs_[d];
Array2d<int> cur_dist_sums = dist_sums[d];
Array2d<int> cur_col_dist_sums = col_dist_sums[first_col_num][d];
Array2d<int> cur_up_col_dist_sums = up_col_dist_sums[j][d];
for (int y = 0; y < search_window_size; y++) {
for (int y = 0; y < search_window_size; y++)
{
int* dist_sums_row = cur_dist_sums.row_ptr(y);
int* col_dist_sums_row = cur_col_dist_sums.row_ptr(y);
int* up_col_dist_sums_row = cur_up_col_dist_sums.row_ptr(y);
const T* b_up_ptr =
cur_extended_src.ptr<T>(start_by - template_window_half_size_ - 1 + y);
const T* b_down_ptr =
cur_extended_src.ptr<T>(start_by + template_window_half_size_ + y);
const T* b_up_ptr = cur_extended_src.ptr<T>(start_by - template_window_half_size_ - 1 + y);
const T* b_down_ptr = cur_extended_src.ptr<T>(start_by + template_window_half_size_ + y);
for (int x = 0; x < search_window_size; x++) {
for (int x = 0; x < search_window_size; x++)
{
dist_sums_row[x] -= col_dist_sums_row[x];
col_dist_sums_row[x] = up_col_dist_sums_row[x] +
calcUpDownDist(
a_up, a_down,
b_up_ptr[start_bx + x], b_down_ptr[start_bx + x]
);
calcUpDownDist(a_up, a_down, b_up_ptr[start_bx + x], b_down_ptr[start_bx + x]);
dist_sums_row[x] += col_dist_sums_row[x];
up_col_dist_sums_row[x] = col_dist_sums_row[x];
}
}
}
......@@ -259,19 +250,21 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
int weights_sum = 0;
int estimation[3];
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++) {
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++)
estimation[channel_num] = 0;
}
for (int d = 0; d < temporal_window_size_; d++) {
for (int d = 0; d < temporal_window_size_; d++)
{
const Mat& esrc_d = extended_srcs_[d];
for (int y = 0; y < search_window_size_; y++) {
for (int y = 0; y < search_window_size_; y++)
{
const T* cur_row_ptr = esrc_d.ptr<T>(border_size_ + search_window_y + y);
int* dist_sums_row = dist_sums.row_ptr(d, y);
for (int x = 0; x < search_window_size_; x++) {
int almostAvgDist =
dist_sums_row[x] >> almost_template_window_size_sq_bin_shift;
for (int x = 0; x < search_window_size_; x++)
{
int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift;
int weight = almost_dist2weight[almostAvgDist];
weights_sum += weight;
......@@ -293,21 +286,19 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
template <class T>
inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
int i,
Array3d<int>& dist_sums,
Array4d<int>& col_dist_sums,
Array4d<int>& up_col_dist_sums) const
int i, Array3d<int>& dist_sums, Array4d<int>& col_dist_sums, Array4d<int>& up_col_dist_sums) const
{
int j = 0;
for (int d = 0; d < temporal_window_size_; d++) {
for (int d = 0; d < temporal_window_size_; d++)
{
Mat cur_extended_src = extended_srcs_[d];
for (int y = 0; y < search_window_size_; y++) {
for (int x = 0; x < search_window_size_; x++) {
for (int y = 0; y < search_window_size_; y++)
for (int x = 0; x < search_window_size_; x++)
{
dist_sums[d][y][x] = 0;
for (int tx = 0; tx < template_window_size_; tx++) {
for (int tx = 0; tx < template_window_size_; tx++)
col_dist_sums[tx][d][y][x] = 0;
}
int start_y = i + y - search_window_half_size_;
int start_x = j + x - search_window_half_size_;
......@@ -315,14 +306,13 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRo
int* dist_sums_ptr = &dist_sums[d][y][x];
int* col_dist_sums_ptr = &col_dist_sums[0][d][y][x];
int col_dist_sums_step = col_dist_sums.step_size(0);
for (int tx = -template_window_half_size_; tx <= template_window_half_size_; tx++) {
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) {
for (int tx = -template_window_half_size_; tx <= template_window_half_size_; tx++)
{
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++)
{
int dist = calcDist<T>(
main_extended_src_.at<T>(
border_size_ + i + ty, border_size_ + j + tx),
cur_extended_src.at<T>(
border_size_ + start_y + ty, border_size_ + start_x + tx)
);
main_extended_src_.at<T>(border_size_ + i + ty, border_size_ + j + tx),
cur_extended_src.at<T>(border_size_ + start_y + ty, border_size_ + start_x + tx));
*dist_sums_ptr += dist;
*col_dist_sums_ptr += dist;
......@@ -332,18 +322,13 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRo
up_col_dist_sums[j][d][y][x] = col_dist_sums[template_window_size_ - 1][d][y][x];
}
}
}
}
template <class T>
inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
int i,
int j,
int first_col_num,
Array3d<int>& dist_sums,
Array4d<int>& col_dist_sums,
Array4d<int>& up_col_dist_sums) const
int i, int j, int first_col_num, Array3d<int>& dist_sums,
Array4d<int>& col_dist_sums, Array4d<int>& up_col_dist_sums) const
{
int ay = border_size_ + i;
int ax = border_size_ + j + template_window_half_size_;
......@@ -353,10 +338,12 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRo
int new_last_col_num = first_col_num;
for (int d = 0; d < temporal_window_size_; d++) {
for (int d = 0; d < temporal_window_size_; d++)
{
Mat cur_extended_src = extended_srcs_[d];
for (int y = 0; y < search_window_size_; y++) {
for (int x = 0; x < search_window_size_; x++) {
for (int y = 0; y < search_window_size_; y++)
for (int x = 0; x < search_window_size_; x++)
{
dist_sums[d][y][x] -= col_dist_sums[first_col_num][d][y][x];
col_dist_sums[new_last_col_num][d][y][x] = 0;
......@@ -364,19 +351,17 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRo
int bx = start_bx + x;
int* col_dist_sums_ptr = &col_dist_sums[new_last_col_num][d][y][x];
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) {
*col_dist_sums_ptr +=
calcDist<T>(
main_extended_src_.at<T>(ay + ty, ax),
cur_extended_src.at<T>(by + ty, bx)
);
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++)
{
*col_dist_sums_ptr += calcDist<T>(
main_extended_src_.at<T>(ay + ty, ax),
cur_extended_src.at<T>(by + ty, bx));
}
dist_sums[d][y][x] += col_dist_sums[new_last_col_num][d][y][x];
up_col_dist_sums[j][d][y][x] = col_dist_sums[new_last_col_num][d][y][x];
}
}
}
}
......
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#ifdef cl_amd_printf
#pragma OPENCL_EXTENSION cl_amd_printf:enable
#endif
#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif
#ifdef OP_CALC_WEIGHTS
__kernel void calcAlmostDist2Weight(__global int * almostDist2Weight, int almostMaxDist,
FT almostDist2ActualDistMultiplier, int fixedPointMult,
FT den, FT WEIGHT_THRESHOLD)
{
int almostDist = get_global_id(0);
if (almostDist < almostMaxDist)
{
FT dist = almostDist * almostDist2ActualDistMultiplier;
int weight = convert_int_sat_rte(fixedPointMult * exp(-dist * den));
if (weight < WEIGHT_THRESHOLD * fixedPointMult)
weight = 0;
almostDist2Weight[almostDist] = weight;
}
}
#elif defined OP_CALC_FASTNLMEANS
#define noconvert
#define SEARCH_SIZE_SQ (SEARCH_SIZE * SEARCH_SIZE)
inline int calcDist(uchar_t a, uchar_t b)
{
int_t diff = convert_int_t(a) - convert_int_t(b);
int_t retval = diff * diff;
#if cn == 1
return retval;
#elif cn == 2
return retval.x + retval.y;
#else
#error "cn should be either 1 or 2"
#endif
}
inline int calcDistUpDown(uchar_t down_value, uchar_t down_value_t, uchar_t up_value, uchar_t up_value_t)
{
int_t A = convert_int_t(down_value) - convert_int_t(down_value_t);
int_t B = convert_int_t(up_value) - convert_int_t(up_value_t);
int_t retval = (A - B) * (A + B);
#if cn == 1
return retval;
#elif cn == 2
return retval.x + retval.y;
#else
#error "cn should be either 1 or 2"
#endif
}
#define COND if (x == 0 && y == 0)
inline void calcFirstElementInRow(__global const uchar * src, int src_step, int src_offset,
__local int * dists, int y, int x, int id,
__global int * col_dists, __global int * up_col_dists)
{
y -= TEMPLATE_SIZE2;
int sx = x - SEARCH_SIZE2, sy = y - SEARCH_SIZE2;
int col_dists_current_private[TEMPLATE_SIZE];
for (int i = id, size = SEARCH_SIZE_SQ; i < size; i += CTA_SIZE)
{
int dist = 0, value;
__global const uchar_t * src_template = (__global const uchar_t *)(src +
mad24(sy + i / SEARCH_SIZE, src_step, mad24(cn, sx + i % SEARCH_SIZE, src_offset)));
__global const uchar_t * src_current = (__global const uchar_t *)(src + mad24(y, src_step, mad24(cn, x, src_offset)));
__global int * col_dists_current = col_dists + i * TEMPLATE_SIZE;
#pragma unroll
for (int j = 0; j < TEMPLATE_SIZE; ++j)
col_dists_current_private[j] = 0;
for (int ty = 0; ty < TEMPLATE_SIZE; ++ty)
{
#pragma unroll
for (int tx = -TEMPLATE_SIZE2; tx <= TEMPLATE_SIZE2; ++tx)
{
value = calcDist(src_template[tx], src_current[tx]);
col_dists_current_private[tx + TEMPLATE_SIZE2] += value;
dist += value;
}
src_current = (__global const uchar_t *)((__global const uchar *)src_current + src_step);
src_template = (__global const uchar_t *)((__global const uchar *)src_template + src_step);
}
#pragma unroll
for (int j = 0; j < TEMPLATE_SIZE; ++j)
col_dists_current[j] = col_dists_current_private[j];
dists[i] = dist;
up_col_dists[0 + i] = col_dists[TEMPLATE_SIZE - 1];
}
}
inline void calcElementInFirstRow(__global const uchar * src, int src_step, int src_offset,
__local int * dists, int y, int x0, int x, int id, int first,
__global int * col_dists, __global int * up_col_dists)
{
x += TEMPLATE_SIZE2;
y -= TEMPLATE_SIZE2;
int sx = x - SEARCH_SIZE2, sy = y - SEARCH_SIZE2;
for (int i = id, size = SEARCH_SIZE_SQ; i < size; i += CTA_SIZE)
{
__global const uchar_t * src_current = (__global const uchar_t *)(src + mad24(y, src_step, mad24(cn, x, src_offset)));
__global const uchar_t * src_template = (__global const uchar_t *)(src +
mad24(sy + i / SEARCH_SIZE, src_step, mad24(cn, sx + i % SEARCH_SIZE, src_offset)));
__global int * col_dists_current = col_dists + TEMPLATE_SIZE * i;
int col_dist = 0;
#pragma unroll
for (int ty = 0; ty < TEMPLATE_SIZE; ++ty)
{
col_dist += calcDist(src_current[0], src_template[0]);
src_current = (__global const uchar_t *)((__global const uchar *)src_current + src_step);
src_template = (__global const uchar_t *)((__global const uchar *)src_template + src_step);
}
dists[i] += col_dist - col_dists_current[first];
col_dists_current[first] = col_dist;
up_col_dists[mad24(x0, SEARCH_SIZE_SQ, i)] = col_dist;
}
}
inline void calcElement(__global const uchar * src, int src_step, int src_offset,
__local int * dists, int y, int x0, int x, int id, int first,
__global int * col_dists, __global int * up_col_dists)
{
int sx = x + TEMPLATE_SIZE2;
int sy_up = y - TEMPLATE_SIZE2 - 1;
int sy_down = y + TEMPLATE_SIZE2;
uchar_t up_value = *(__global const uchar_t *)(src + mad24(sy_up, src_step, mad24(cn, sx, src_offset)));
uchar_t down_value = *(__global const uchar_t *)(src + mad24(sy_down, src_step, mad24(cn, sx, src_offset)));
sx -= SEARCH_SIZE2;
sy_up -= SEARCH_SIZE2;
sy_down -= SEARCH_SIZE2;
for (int i = id, size = SEARCH_SIZE_SQ; i < size; i += CTA_SIZE)
{
int wx = i % SEARCH_SIZE, wy = i / SEARCH_SIZE;
uchar_t up_value_t = *(__global const uchar_t *)(src + mad24(sy_up + wy, src_step, mad24(cn, sx + wx, src_offset)));
uchar_t down_value_t = *(__global const uchar_t *)(src + mad24(sy_down + wy, src_step, mad24(cn, sx + wx, src_offset)));
__global int * col_dists_current = col_dists + mad24(i, TEMPLATE_SIZE, first);
__global int * up_col_dists_current = up_col_dists + mad24(x0, SEARCH_SIZE_SQ, i);
int col_dist = up_col_dists_current[0] + calcDistUpDown(down_value, down_value_t, up_value, up_value_t);
dists[i] += col_dist - col_dists_current[0];
col_dists_current[0] = col_dist;
up_col_dists_current[0] = col_dist;
}
}
inline void convolveWindow(__global const uchar * src, int src_step, int src_offset,
__local int * dists, __global const int * almostDist2Weight,
__global uchar * dst, int dst_step, int dst_offset,
int y, int x, int id, __local int * weights_local,
__local int_t * weighted_sum_local, int almostTemplateWindowSizeSqBinShift)
{
int sx = x - SEARCH_SIZE2, sy = y - SEARCH_SIZE2, weights = 0;
int_t weighted_sum = (int_t)(0);
for (int i = id, size = SEARCH_SIZE_SQ; i < size; i += CTA_SIZE)
{
int src_index = mad24(sy + i / SEARCH_SIZE, src_step, mad24(i % SEARCH_SIZE + sx, cn, src_offset));
int_t src_value = convert_int_t(*(__global const uchar_t *)(src + src_index));
int almostAvgDist = dists[i] >> almostTemplateWindowSizeSqBinShift;
int weight = almostDist2Weight[almostAvgDist];
weights += weight;
weighted_sum += (int_t)(weight) * src_value;
}
if (id >= CTA_SIZE2)
{
int id2 = id - CTA_SIZE2;
weights_local[id2] = weights;
weighted_sum_local[id2] = weighted_sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
if (id < CTA_SIZE2)
{
weights_local[id] += weights;
weighted_sum_local[id] += weighted_sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
for (int lsize = CTA_SIZE2 >> 1; lsize > 2; lsize >>= 1)
{
if (id < lsize)
{
int id2 = lsize + id;
weights_local[id] += weights_local[id2];
weighted_sum_local[id] += weighted_sum_local[id2];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (id == 0)
{
int dst_index = mad24(y, dst_step, mad24(cn, x, dst_offset));
int_t weighted_sum_local_0 = weighted_sum_local[0] + weighted_sum_local[1] +
weighted_sum_local[2] + weighted_sum_local[3];
int weights_local_0 = weights_local[0] + weights_local[1] + weights_local[2] + weights_local[3];
*(__global uchar_t *)(dst + dst_index) = convert_uchar_t(weighted_sum_local_0 / (int_t)(weights_local_0));
}
}
__kernel void fastNlMeansDenoising(__global const uchar * src, int src_step, int src_offset,
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global const int * almostDist2Weight, __global uchar * buffer,
int almostTemplateWindowSizeSqBinShift)
{
int block_x = get_group_id(0), nblocks_x = get_num_groups(0);
int block_y = get_group_id(1);
int id = get_local_id(0), first;
__local int dists[SEARCH_SIZE_SQ], weights[CTA_SIZE2];
__local int_t weighted_sum[CTA_SIZE2];
int x0 = block_x * BLOCK_COLS, x1 = min(x0 + BLOCK_COLS, dst_cols);
int y0 = block_y * BLOCK_ROWS, y1 = min(y0 + BLOCK_ROWS, dst_rows);
// for each group we need SEARCH_SIZE_SQ * TEMPLATE_SIZE integer buffer for storing part column sum for current element
// and SEARCH_SIZE_SQ * BLOCK_COLS integer buffer for storing last column sum for each element of search window of up row
int block_data_start = SEARCH_SIZE_SQ * (mad24(block_y, dst_cols, x0) + mad24(block_y, nblocks_x, block_x) * TEMPLATE_SIZE);
__global int * col_dists = (__global int *)(buffer + block_data_start * sizeof(int));
__global int * up_col_dists = col_dists + SEARCH_SIZE_SQ * TEMPLATE_SIZE;
for (int y = y0; y < y1; ++y)
for (int x = x0; x < x1; ++x)
{
if (x == x0)
{
calcFirstElementInRow(src, src_step, src_offset, dists, y, x, id, col_dists, up_col_dists);
first = 0;
}
else
{
if (y == y0)
calcElementInFirstRow(src, src_step, src_offset, dists, y, x - x0, x, id, first, col_dists, up_col_dists);
else
calcElement(src, src_step, src_offset, dists, y, x - x0, x, id, first, col_dists, up_col_dists);
first = (first + 1) % TEMPLATE_SIZE;
}
barrier(CLK_LOCAL_MEM_FENCE);
convolveWindow(src, src_step, src_offset, dists, almostDist2Weight, dst, dst_step, dst_offset,
y, x, id, weights, weighted_sum, almostTemplateWindowSizeSqBinShift);
}
}
#endif
......@@ -46,6 +46,8 @@
#include "opencv2/core/private.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/imgproc.hpp"
#ifdef HAVE_TEGRA_OPTIMIZATION
#include "opencv2/photo/photo_tegra.hpp"
......
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#include "test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace cvtest {
namespace ocl {
PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, bool)
{
int cn, templateWindowSize, searchWindowSize;
float h;
bool use_roi;
TEST_DECLARE_INPUT_PARAMETER(src)
TEST_DECLARE_OUTPUT_PARAMETER(dst)
virtual void SetUp()
{
cn = GET_PARAM(0);
use_roi = GET_PARAM(1);
templateWindowSize = 7;
searchWindowSize = 21;
h = 3.0f;
}
virtual void generateTestData()
{
Mat image;
if (cn == 1)
{
image = readImage("denoising/lena_noised_gaussian_sigma=10.png", IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
}
const int type = CV_8UC(cn);
Size roiSize = cn == 1 ? image.size() : randomSize(1, MAX_VALUE);
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, roiSize, srcBorder, type, 0, 255);
if (cn == 1)
image.copyTo(src_roi);
Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(dst, dst_roi, roiSize, dstBorder, type, 0, 255);
UMAT_UPLOAD_INPUT_PARAMETER(src)
UMAT_UPLOAD_OUTPUT_PARAMETER(dst)
}
};
typedef FastNlMeansDenoisingTestBase FastNlMeansDenoising;
OCL_TEST_P(FastNlMeansDenoising, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::fastNlMeansDenoising(src_roi, dst_roi, h, templateWindowSize, searchWindowSize));
OCL_ON(cv::fastNlMeansDenoising(usrc_roi, udst_roi, h, templateWindowSize, searchWindowSize));
OCL_EXPECT_MATS_NEAR(dst, 1)
}
}
typedef FastNlMeansDenoisingTestBase fastNlMeansDenoisingColored;
OCL_TEST_P(fastNlMeansDenoisingColored, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::fastNlMeansDenoisingColored(src_roi, dst_roi, h, h, templateWindowSize, searchWindowSize));
OCL_ON(cv::fastNlMeansDenoisingColored(usrc_roi, udst_roi, h, h, templateWindowSize, searchWindowSize));
OCL_EXPECT_MATS_NEAR(dst, 1)
}
}
OCL_INSTANTIATE_TEST_CASE_P(Photo, FastNlMeansDenoising, Combine(Values(1, 2), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Photo, fastNlMeansDenoisingColored, Combine(Values(Channels(3)), Bool()));
} } // namespace cvtest::ocl
#endif // HAVE_OPENCL
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment