Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
6a5a0fe8
Commit
6a5a0fe8
authored
Apr 15, 2014
by
Vadim Pisarevsky
Committed by
OpenCV Buildbot
Apr 15, 2014
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #2016 from pemmanuelviel:kmeansppSquareDist
parents
df8e2828
0d19685f
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
80 additions
and
4 deletions
+80
-4
dist.h
modules/flann/include/opencv2/flann/dist.h
+60
-0
hierarchical_clustering_index.h
...ann/include/opencv2/flann/hierarchical_clustering_index.h
+11
-2
kmeans_index.h
modules/flann/include/opencv2/flann/kmeans_index.h
+9
-2
No files found.
modules/flann/include/opencv2/flann/dist.h
View file @
6a5a0fe8
...
...
@@ -812,6 +812,66 @@ struct ZeroIterator
};
/*
* Depending on processed distances, some of them are already squared (e.g. L2)
* and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure
* we are working on ^2 distances, thus following templates to ensure that.
*/
template
<
typename
Distance
,
typename
ElementType
>
struct
squareDistance
{
typedef
typename
Distance
::
ResultType
ResultType
;
ResultType
operator
()(
ResultType
dist
)
{
return
dist
*
dist
;
}
};
template
<
typename
ElementType
>
struct
squareDistance
<
L2_Simple
<
ElementType
>
,
ElementType
>
{
typedef
typename
L2_Simple
<
ElementType
>::
ResultType
ResultType
;
ResultType
operator
()(
ResultType
dist
)
{
return
dist
;
}
};
template
<
typename
ElementType
>
struct
squareDistance
<
L2
<
ElementType
>
,
ElementType
>
{
typedef
typename
L2
<
ElementType
>::
ResultType
ResultType
;
ResultType
operator
()(
ResultType
dist
)
{
return
dist
;
}
};
template
<
typename
ElementType
>
struct
squareDistance
<
MinkowskiDistance
<
ElementType
>
,
ElementType
>
{
typedef
typename
MinkowskiDistance
<
ElementType
>::
ResultType
ResultType
;
ResultType
operator
()(
ResultType
dist
)
{
return
dist
;
}
};
template
<
typename
ElementType
>
struct
squareDistance
<
HellingerDistance
<
ElementType
>
,
ElementType
>
{
typedef
typename
HellingerDistance
<
ElementType
>::
ResultType
ResultType
;
ResultType
operator
()(
ResultType
dist
)
{
return
dist
;
}
};
template
<
typename
ElementType
>
struct
squareDistance
<
ChiSquareDistance
<
ElementType
>
,
ElementType
>
{
typedef
typename
ChiSquareDistance
<
ElementType
>::
ResultType
ResultType
;
ResultType
operator
()(
ResultType
dist
)
{
return
dist
;
}
};
template
<
typename
Distance
>
typename
Distance
::
ResultType
ensureSquareDistance
(
typename
Distance
::
ResultType
dist
)
{
typedef
typename
Distance
::
ElementType
ElementType
;
squareDistance
<
Distance
,
ElementType
>
dummy
;
return
dummy
(
dist
);
}
}
#endif //OPENCV_FLANN_DIST_H_
modules/flann/include/opencv2/flann/hierarchical_clustering_index.h
View file @
6a5a0fe8
...
...
@@ -210,8 +210,11 @@ private:
assert
(
index
>=
0
&&
index
<
n
);
centers
[
0
]
=
dsindices
[
index
];
// Computing distance^2 will have the advantage of even higher probability further to pick new centers
// far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
closestDistSq
[
i
]
=
distance
(
dataset
[
dsindices
[
i
]],
dataset
[
dsindices
[
index
]],
dataset
.
cols
);
closestDistSq
[
i
]
=
ensureSquareDistance
<
Distance
>
(
closestDistSq
[
i
]
);
currentPot
+=
closestDistSq
[
i
];
}
...
...
@@ -237,7 +240,10 @@ private:
// Compute the new potential
double
newPot
=
0
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
newPot
+=
std
::
min
(
distance
(
dataset
[
dsindices
[
i
]],
dataset
[
dsindices
[
index
]],
dataset
.
cols
),
closestDistSq
[
i
]
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
DistanceType
dist
=
distance
(
dataset
[
dsindices
[
i
]],
dataset
[
dsindices
[
index
]],
dataset
.
cols
);
newPot
+=
std
::
min
(
ensureSquareDistance
<
Distance
>
(
dist
),
closestDistSq
[
i
]
);
}
// Store the best result
if
((
bestNewPot
<
0
)
||
(
newPot
<
bestNewPot
))
{
...
...
@@ -249,7 +255,10 @@ private:
// Add the appropriate center
centers
[
centerCount
]
=
dsindices
[
bestNewIndex
];
currentPot
=
bestNewPot
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
closestDistSq
[
i
]
=
std
::
min
(
distance
(
dataset
[
dsindices
[
i
]],
dataset
[
dsindices
[
bestNewIndex
]],
dataset
.
cols
),
closestDistSq
[
i
]
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
DistanceType
dist
=
distance
(
dataset
[
dsindices
[
i
]],
dataset
[
dsindices
[
bestNewIndex
]],
dataset
.
cols
);
closestDistSq
[
i
]
=
std
::
min
(
ensureSquareDistance
<
Distance
>
(
dist
),
closestDistSq
[
i
]
);
}
}
centers_length
=
centerCount
;
...
...
modules/flann/include/opencv2/flann/kmeans_index.h
View file @
6a5a0fe8
...
...
@@ -211,6 +211,7 @@ public:
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
closestDistSq
[
i
]
=
distance_
(
dataset_
[
indices
[
i
]],
dataset_
[
indices
[
index
]],
dataset_
.
cols
);
closestDistSq
[
i
]
=
ensureSquareDistance
<
Distance
>
(
closestDistSq
[
i
]
);
currentPot
+=
closestDistSq
[
i
];
}
...
...
@@ -236,7 +237,10 @@ public:
// Compute the new potential
double
newPot
=
0
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
newPot
+=
std
::
min
(
distance_
(
dataset_
[
indices
[
i
]],
dataset_
[
indices
[
index
]],
dataset_
.
cols
),
closestDistSq
[
i
]
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
DistanceType
dist
=
distance_
(
dataset_
[
indices
[
i
]],
dataset_
[
indices
[
index
]],
dataset_
.
cols
);
newPot
+=
std
::
min
(
ensureSquareDistance
<
Distance
>
(
dist
),
closestDistSq
[
i
]
);
}
// Store the best result
if
((
bestNewPot
<
0
)
||
(
newPot
<
bestNewPot
))
{
...
...
@@ -248,7 +252,10 @@ public:
// Add the appropriate center
centers
[
centerCount
]
=
indices
[
bestNewIndex
];
currentPot
=
bestNewPot
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
closestDistSq
[
i
]
=
std
::
min
(
distance_
(
dataset_
[
indices
[
i
]],
dataset_
[
indices
[
bestNewIndex
]],
dataset_
.
cols
),
closestDistSq
[
i
]
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
DistanceType
dist
=
distance_
(
dataset_
[
indices
[
i
]],
dataset_
[
indices
[
bestNewIndex
]],
dataset_
.
cols
);
closestDistSq
[
i
]
=
std
::
min
(
ensureSquareDistance
<
Distance
>
(
dist
),
closestDistSq
[
i
]
);
}
}
centers_length
=
centerCount
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment