Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
6a395d88
Commit
6a395d88
authored
Jan 13, 2018
by
Dmitry Kurtaev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
dnn::blobFromImage with OutputArray
parent
0c00652f
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
63 additions
and
21 deletions
+63
-21
dnn.hpp
modules/dnn/include/opencv2/dnn/dnn.hpp
+20
-1
dnn.cpp
modules/dnn/src/dnn.cpp
+33
-20
test_misc.cpp
modules/dnn/test/test_misc.cpp
+10
-0
No files found.
modules/dnn/include/opencv2/dnn/dnn.hpp
View file @
6a395d88
...
...
@@ -695,6 +695,16 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
*/
CV_EXPORTS_W
Mat
blobFromImage
(
InputArray
image
,
double
scalefactor
=
1.0
,
const
Size
&
size
=
Size
(),
const
Scalar
&
mean
=
Scalar
(),
bool
swapRB
=
true
,
bool
crop
=
true
);
/** @brief Creates 4-dimensional blob from image.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
*/
CV_EXPORTS
void
blobFromImage
(
InputArray
image
,
OutputArray
blob
,
double
scalefactor
=
1.0
,
const
Size
&
size
=
Size
(),
const
Scalar
&
mean
=
Scalar
(),
bool
swapRB
=
true
,
bool
crop
=
true
);
/** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
* crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
* swap Blue and Red channels.
...
...
@@ -711,9 +721,18 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
* @returns 4-dimansional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W
Mat
blobFromImages
(
const
std
::
vector
<
Mat
>&
images
,
double
scalefactor
=
1.0
,
CV_EXPORTS_W
Mat
blobFromImages
(
InputArrayOfArrays
images
,
double
scalefactor
=
1.0
,
Size
size
=
Size
(),
const
Scalar
&
mean
=
Scalar
(),
bool
swapRB
=
true
,
bool
crop
=
true
);
/** @brief Creates 4-dimensional blob from series of images.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
*/
CV_EXPORTS
void
blobFromImages
(
InputArrayOfArrays
images
,
OutputArray
blob
,
double
scalefactor
=
1.0
,
Size
size
=
Size
(),
const
Scalar
&
mean
=
Scalar
(),
bool
swapRB
=
true
,
bool
crop
=
true
);
/** @brief Convert all weights of Caffe network to half precision floating point.
* @param src Path to origin model from Caffe framework contains single
* precision floating point weights (usually has `.caffemodel` extension).
...
...
modules/dnn/src/dnn.cpp
View file @
6a395d88
...
...
@@ -81,27 +81,39 @@ namespace
};
}
template
<
typename
T
>
static
String
toString
(
const
T
&
v
)
Mat
blobFromImage
(
InputArray
image
,
double
scalefactor
,
const
Size
&
size
,
const
Scalar
&
mean
,
bool
swapRB
,
bool
crop
)
{
std
::
ostringstream
ss
;
ss
<<
v
;
return
ss
.
str
();
CV_TRACE_FUNCTION
();
Mat
blob
;
blobFromImage
(
image
,
blob
,
scalefactor
,
size
,
mean
,
swapRB
,
crop
);
return
blob
;
}
Mat
blobFromImage
(
InputArray
image
,
double
scalefactor
,
const
Size
&
size
,
const
Scalar
&
mean
,
bool
swapRB
,
bool
crop
)
void
blobFromImage
(
InputArray
image
,
OutputArray
blob
,
double
scalefactor
,
const
Size
&
size
,
const
Scalar
&
mean
,
bool
swapRB
,
bool
crop
)
{
CV_TRACE_FUNCTION
();
std
::
vector
<
Mat
>
images
(
1
,
image
.
getMat
());
return
blobFromImages
(
images
,
scalefactor
,
size
,
mean
,
swapRB
,
crop
);
blobFromImages
(
images
,
blob
,
scalefactor
,
size
,
mean
,
swapRB
,
crop
);
}
Mat
blobFromImages
(
const
std
::
vector
<
Mat
>&
images_
,
double
scalefactor
,
Size
size
,
const
Scalar
&
mean
_
,
bool
swapRB
,
bool
crop
)
Mat
blobFromImages
(
InputArrayOfArrays
images
,
double
scalefactor
,
Size
size
,
const
Scalar
&
mean
,
bool
swapRB
,
bool
crop
)
{
CV_TRACE_FUNCTION
();
std
::
vector
<
Mat
>
images
=
images_
;
Mat
blob
;
blobFromImages
(
images
,
blob
,
scalefactor
,
size
,
mean
,
swapRB
,
crop
);
return
blob
;
}
void
blobFromImages
(
InputArrayOfArrays
images_
,
OutputArray
blob_
,
double
scalefactor
,
Size
size
,
const
Scalar
&
mean_
,
bool
swapRB
,
bool
crop
)
{
CV_TRACE_FUNCTION
();
std
::
vector
<
Mat
>
images
;
images_
.
getMatVector
(
images
);
CV_Assert
(
!
images
.
empty
());
for
(
int
i
=
0
;
i
<
images
.
size
();
i
++
)
{
Size
imgSize
=
images
[
i
].
size
();
...
...
@@ -133,16 +145,15 @@ Mat blobFromImages(const std::vector<Mat>& images_, double scalefactor, Size siz
}
size_t
i
,
nimages
=
images
.
size
();
if
(
nimages
==
0
)
return
Mat
();
Mat
image0
=
images
[
0
];
int
nch
=
image0
.
channels
();
CV_Assert
(
image0
.
dims
==
2
);
Mat
blob
,
image
;
Mat
image
;
if
(
nch
==
3
||
nch
==
4
)
{
int
sz
[]
=
{
(
int
)
nimages
,
nch
,
image0
.
rows
,
image0
.
cols
};
blob
=
Mat
(
4
,
sz
,
CV_32F
);
blob_
.
create
(
4
,
sz
,
CV_32F
);
Mat
blob
=
blob_
.
getMat
();
Mat
ch
[
4
];
for
(
i
=
0
;
i
<
nimages
;
i
++
)
...
...
@@ -164,7 +175,8 @@ Mat blobFromImages(const std::vector<Mat>& images_, double scalefactor, Size siz
{
CV_Assert
(
nch
==
1
);
int
sz
[]
=
{
(
int
)
nimages
,
1
,
image0
.
rows
,
image0
.
cols
};
blob
=
Mat
(
4
,
sz
,
CV_32F
);
blob_
.
create
(
4
,
sz
,
CV_32F
);
Mat
blob
=
blob_
.
getMat
();
for
(
i
=
0
;
i
<
nimages
;
i
++
)
{
...
...
@@ -177,7 +189,6 @@ Mat blobFromImages(const std::vector<Mat>& images_, double scalefactor, Size siz
image
.
copyTo
(
Mat
(
image
.
rows
,
image
.
cols
,
CV_32F
,
blob
.
ptr
((
int
)
i
,
0
)));
}
}
return
blob
;
}
class
OpenCLBackendWrapper
:
public
BackendWrapper
...
...
@@ -886,7 +897,8 @@ struct Net::Impl
{
LayerPin
storedFrom
=
ld
.
inputBlobsId
[
inNum
];
if
(
storedFrom
.
valid
()
&&
!
storedFrom
.
equal
(
from
))
CV_Error
(
Error
::
StsError
,
"Input #"
+
toString
(
inNum
)
+
"of layer
\"
"
+
ld
.
name
+
"
\"
already was connected"
);
CV_Error
(
Error
::
StsError
,
format
(
"Input #%d of layer
\"
%s
\"
already was connected"
,
inNum
,
ld
.
name
.
c_str
()));
}
ld
.
inputBlobsId
[
inNum
]
=
from
;
...
...
@@ -1665,8 +1677,9 @@ struct Net::Impl
LayerData
&
ld
=
layers
[
pin
.
lid
];
if
((
size_t
)
pin
.
oid
>=
ld
.
outputBlobs
.
size
())
{
CV_Error
(
Error
::
StsOutOfRange
,
"Layer
\"
"
+
ld
.
name
+
"
\"
produce only "
+
toString
(
ld
.
outputBlobs
.
size
())
+
" outputs, the #"
+
toString
(
pin
.
oid
)
+
" was requsted"
);
CV_Error
(
Error
::
StsOutOfRange
,
format
(
"Layer
\"
%s
\"
produce only %d outputs, "
"the #%d was requsted"
,
ld
.
name
.
c_str
(),
ld
.
outputBlobs
.
size
(),
pin
.
oid
));
}
if
(
preferableTarget
!=
DNN_TARGET_CPU
)
{
...
...
modules/dnn/test/test_misc.cpp
View file @
6a395d88
...
...
@@ -27,4 +27,14 @@ TEST(blobFromImage_4ch, Regression)
}
}
TEST
(
blobFromImage
,
allocated
)
{
int
size
[]
=
{
1
,
3
,
4
,
5
};
Mat
img
(
size
[
2
],
size
[
3
],
CV_32FC
(
size
[
1
]));
Mat
blob
(
4
,
size
,
CV_32F
);
void
*
blobData
=
blob
.
data
;
dnn
::
blobFromImage
(
img
,
blob
,
1.0
/
255
,
Size
(),
Scalar
(),
false
,
false
);
ASSERT_EQ
(
blobData
,
blob
.
data
);
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment