Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
69779309
Commit
69779309
authored
May 07, 2013
by
Vladislav Vinogradov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
refactored GMG algorithm
parent
b8f0d1a0
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
234 additions
and
186 deletions
+234
-186
gpubgsegm.hpp
modules/gpubgsegm/include/opencv2/gpubgsegm.hpp
+14
-71
perf_bgsegm.cpp
modules/gpubgsegm/perf/perf_bgsegm.cpp
+6
-7
gmg.cu
modules/gpubgsegm/src/cuda/gmg.cu
+1
-1
gmg.cpp
modules/gpubgsegm/src/gmg.cpp
+182
-76
precomp.hpp
modules/gpubgsegm/src/precomp.hpp
+2
-0
test_bgsegm.cpp
modules/gpubgsegm/test/test_bgsegm.cpp
+6
-7
bgfg_segm.cpp
samples/gpu/bgfg_segm.cpp
+23
-24
No files found.
modules/gpubgsegm/include/opencv2/gpubgsegm.hpp
View file @
69779309
...
...
@@ -91,6 +91,20 @@ CV_EXPORTS Ptr<gpu::BackgroundSubtractorMOG2>
createBackgroundSubtractorMOG2
(
int
history
=
500
,
double
varThreshold
=
16
,
bool
detectShadows
=
true
);
////////////////////////////////////////////////////
// GMG
class
CV_EXPORTS
BackgroundSubtractorGMG
:
public
cv
::
BackgroundSubtractorGMG
{
public
:
using
cv
::
BackgroundSubtractorGMG
::
apply
;
virtual
void
apply
(
InputArray
image
,
OutputArray
fgmask
,
double
learningRate
,
Stream
&
stream
)
=
0
;
};
CV_EXPORTS
Ptr
<
gpu
::
BackgroundSubtractorGMG
>
createBackgroundSubtractorGMG
(
int
initializationFrames
=
120
,
double
decisionThreshold
=
0.8
);
...
...
@@ -161,77 +175,6 @@ private:
std
::
auto_ptr
<
Impl
>
impl_
;
};
/**
* Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
* images of the same size, where 255 indicates Foreground and 0 represents Background.
* This class implements an algorithm described in "Visual Tracking of Human Visitors under
* Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
* A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
*/
class
CV_EXPORTS
GMG_GPU
{
public
:
GMG_GPU
();
/**
* Validate parameters and set up data structures for appropriate frame size.
* @param frameSize Input frame size
* @param min Minimum value taken on by pixels in image sequence. Usually 0
* @param max Maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
*/
void
initialize
(
Size
frameSize
,
float
min
=
0.0
f
,
float
max
=
255.0
f
);
/**
* Performs single-frame background subtraction and builds up a statistical background image
* model.
* @param frame Input frame
* @param fgmask Output mask image representing foreground and background pixels
* @param stream Stream for the asynchronous version
*/
void
operator
()(
const
GpuMat
&
frame
,
GpuMat
&
fgmask
,
float
learningRate
=
-
1.0
f
,
Stream
&
stream
=
Stream
::
Null
());
//! Releases all inner buffers
void
release
();
//! Total number of distinct colors to maintain in histogram.
int
maxFeatures
;
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
float
learningRate
;
//! Number of frames of video to use to initialize histograms.
int
numInitializationFrames
;
//! Number of discrete levels in each channel to be used in histograms.
int
quantizationLevels
;
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
float
backgroundPrior
;
//! Value above which pixel is determined to be FG.
float
decisionThreshold
;
//! Smoothing radius, in pixels, for cleaning up FG image.
int
smoothingRadius
;
//! Perform background model update.
bool
updateBackgroundModel
;
private
:
float
maxVal_
,
minVal_
;
Size
frameSize_
;
int
frameNum_
;
GpuMat
nfeatures_
;
GpuMat
colors_
;
GpuMat
weights_
;
Ptr
<
gpu
::
Filter
>
boxFilter_
;
GpuMat
buf_
;
};
}}
// namespace cv { namespace gpu {
#endif
/* __OPENCV_GPUBGSEGM_HPP__ */
modules/gpubgsegm/perf/perf_bgsegm.cpp
View file @
69779309
...
...
@@ -462,10 +462,10 @@ PERF_TEST_P(Video_Cn_MaxFeatures, GMG,
cv
::
gpu
::
GpuMat
d_frame
(
frame
);
cv
::
gpu
::
GpuMat
foreground
;
cv
::
gpu
::
GMG_GPU
d_gmg
;
d_gmg
.
maxFeatures
=
maxFeatures
;
cv
::
Ptr
<
cv
::
BackgroundSubtractorGMG
>
d_gmg
=
cv
::
gpu
::
createBackgroundSubtractorGMG
()
;
d_gmg
->
setMaxFeatures
(
maxFeatures
)
;
d_gmg
(
d_frame
,
foreground
);
d_gmg
->
apply
(
d_frame
,
foreground
);
for
(
int
i
=
0
;
i
<
150
;
++
i
)
{
...
...
@@ -490,7 +490,7 @@ PERF_TEST_P(Video_Cn_MaxFeatures, GMG,
d_frame
.
upload
(
frame
);
startTimer
();
next
();
d_gmg
(
d_frame
,
foreground
);
d_gmg
->
apply
(
d_frame
,
foreground
);
stopTimer
();
}
...
...
@@ -501,9 +501,8 @@ PERF_TEST_P(Video_Cn_MaxFeatures, GMG,
cv
::
Mat
foreground
;
cv
::
Mat
zeros
(
frame
.
size
(),
CV_8UC1
,
cv
::
Scalar
::
all
(
0
));
cv
::
Ptr
<
cv
::
BackgroundSubtractor
>
gmg
=
cv
::
createBackgroundSubtractorGMG
();
gmg
->
set
(
"maxFeatures"
,
maxFeatures
);
//gmg.initialize(frame.size(), 0.0, 255.0);
cv
::
Ptr
<
cv
::
BackgroundSubtractorGMG
>
gmg
=
cv
::
createBackgroundSubtractorGMG
();
gmg
->
setMaxFeatures
(
maxFeatures
);
gmg
->
apply
(
frame
,
foreground
);
...
...
modules/gpubgsegm/src/cuda/gmg.cu
View file @
69779309
...
...
@@ -47,7 +47,7 @@
#include "opencv2/core/cuda/limits.hpp"
namespace cv { namespace gpu { namespace cudev {
namespace
bgfg_
gmg
namespace gmg
{
__constant__ int c_width;
__constant__ int c_height;
...
...
modules/gpubgsegm/src/gmg.cpp
View file @
69779309
...
...
@@ -42,17 +42,17 @@
#include "precomp.hpp"
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
using
namespace
cv
;
using
namespace
cv
::
gpu
;
cv
::
gpu
::
GMG_GPU
::
GMG_GPU
()
{
throw_no_cuda
();
}
void
cv
::
gpu
::
GMG_GPU
::
initialize
(
cv
::
Size
,
float
,
float
)
{
throw_no_cuda
();
}
void
cv
::
gpu
::
GMG_GPU
::
operator
()(
const
cv
::
gpu
::
GpuMat
&
,
cv
::
gpu
::
GpuMat
&
,
float
,
cv
::
gpu
::
Stream
&
)
{
throw_no_cuda
();
}
void
cv
::
gpu
::
GMG_GPU
::
release
()
{}
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) || !defined(HAVE_OPENCV_GPUFILTERS)
Ptr
<
gpu
::
BackgroundSubtractorGMG
>
cv
::
gpu
::
createBackgroundSubtractorGMG
(
int
,
double
)
{
throw_no_cuda
();
return
Ptr
<
gpu
::
BackgroundSubtractorGMG
>
();
}
#else
namespace
cv
{
namespace
gpu
{
namespace
cudev
{
namespace
bgfg_
gmg
namespace
gmg
{
void
loadConstants
(
int
width
,
int
height
,
float
minVal
,
float
maxVal
,
int
quantizationLevels
,
float
backgroundPrior
,
float
decisionThreshold
,
int
maxFeatures
,
int
numInitializationFrames
);
...
...
@@ -63,103 +63,209 @@ namespace cv { namespace gpu { namespace cudev {
}
}}}
cv
::
gpu
::
GMG_GPU
::
GMG_GPU
()
namespace
{
maxFeatures
=
64
;
learningRate
=
0.025
f
;
numInitializationFrames
=
120
;
quantizationLevels
=
16
;
backgroundPrior
=
0.8
f
;
decisionThreshold
=
0.8
f
;
smoothingRadius
=
7
;
updateBackgroundModel
=
true
;
}
class
GMGImpl
:
public
gpu
::
BackgroundSubtractorGMG
{
public
:
GMGImpl
(
int
initializationFrames
,
double
decisionThreshold
);
void
cv
::
gpu
::
GMG_GPU
::
initialize
(
cv
::
Size
frameSize
,
float
min
,
float
max
)
{
using
namespace
cv
::
gpu
::
cudev
::
bgfg_gmg
;
void
apply
(
InputArray
image
,
OutputArray
fgmask
,
double
learningRate
=-
1
);
void
apply
(
InputArray
image
,
OutputArray
fgmask
,
double
learningRate
,
Stream
&
stream
);
CV_Assert
(
min
<
max
);
CV_Assert
(
maxFeatures
>
0
);
CV_Assert
(
learningRate
>=
0.0
f
&&
learningRate
<=
1.0
f
);
CV_Assert
(
numInitializationFrames
>=
1
);
CV_Assert
(
quantizationLevels
>=
1
&&
quantizationLevels
<=
255
);
CV_Assert
(
backgroundPrior
>=
0.0
f
&&
backgroundPrior
<=
1.0
f
);
void
getBackgroundImage
(
OutputArray
backgroundImage
)
const
;
minVal_
=
min
;
maxVal_
=
max
;
int
getMaxFeatures
()
const
{
return
maxFeatures_
;
}
void
setMaxFeatures
(
int
maxFeatures
)
{
maxFeatures_
=
maxFeatures
;
}
frameSize_
=
frameSize
;
double
getDefaultLearningRate
()
const
{
return
learningRate_
;
}
void
setDefaultLearningRate
(
double
lr
)
{
learningRate_
=
(
float
)
lr
;
}
frameNum_
=
0
;
int
getNumFrames
()
const
{
return
numInitializationFrames_
;
}
void
setNumFrames
(
int
nframes
)
{
numInitializationFrames_
=
nframes
;
}
nfeatures_
.
create
(
frameSize_
,
CV_32SC1
);
colors_
.
create
(
maxFeatures
*
frameSize_
.
height
,
frameSize_
.
width
,
CV_32SC1
);
weights_
.
create
(
maxFeatures
*
frameSize_
.
height
,
frameSize_
.
width
,
CV_32FC1
);
int
getQuantizationLevels
()
const
{
return
quantizationLevels_
;
}
void
setQuantizationLevels
(
int
nlevels
)
{
quantizationLevels_
=
nlevels
;
}
nfeatures_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
double
getBackgroundPrior
()
const
{
return
backgroundPrior_
;
}
void
setBackgroundPrior
(
double
bgprior
)
{
backgroundPrior_
=
(
float
)
bgprior
;
}
if
(
smoothingRadius
>
0
)
boxFilter_
=
cv
::
gpu
::
createBoxFilter
(
CV_8UC1
,
-
1
,
cv
::
Size
(
smoothingRadius
,
smoothingRadius
));
int
getSmoothingRadius
()
const
{
return
smoothingRadius_
;
}
void
setSmoothingRadius
(
int
radius
)
{
smoothingRadius_
=
radius
;
}
loadConstants
(
frameSize_
.
width
,
frameSize_
.
height
,
minVal_
,
maxVal_
,
quantizationLevels
,
backgroundPrior
,
decisionThreshold
,
maxFeatures
,
numInitializationFrames
);
}
double
getDecisionThreshold
()
const
{
return
decisionThreshold_
;
}
void
setDecisionThreshold
(
double
thresh
)
{
decisionThreshold_
=
(
float
)
thresh
;
}
void
cv
::
gpu
::
GMG_GPU
::
operator
()(
const
cv
::
gpu
::
GpuMat
&
frame
,
cv
::
gpu
::
GpuMat
&
fgmask
,
float
newLearningRate
,
cv
::
gpu
::
Stream
&
stream
)
{
using
namespace
cv
::
gpu
::
cudev
::
bgfg_gmg
;
bool
getUpdateBackgroundModel
()
const
{
return
updateBackgroundModel_
;
}
void
setUpdateBackgroundModel
(
bool
update
)
{
updateBackgroundModel_
=
update
;
}
typedef
void
(
*
func_t
)(
PtrStepSzb
frame
,
PtrStepb
fgmask
,
PtrStepSzi
colors
,
PtrStepf
weights
,
PtrStepi
nfeatures
,
int
frameNum
,
float
learningRate
,
bool
updateBackgroundModel
,
cudaStream_t
stream
);
static
const
func_t
funcs
[
6
][
4
]
=
{
{
update_gpu
<
uchar
>
,
0
,
update_gpu
<
uchar3
>
,
update_gpu
<
uchar4
>
},
{
0
,
0
,
0
,
0
},
{
update_gpu
<
ushort
>
,
0
,
update_gpu
<
ushort3
>
,
update_gpu
<
ushort4
>
},
{
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
},
{
update_gpu
<
float
>
,
0
,
update_gpu
<
float3
>
,
update_gpu
<
float4
>
}
double
getMinVal
()
const
{
return
minVal_
;
}
void
setMinVal
(
double
val
)
{
minVal_
=
(
float
)
val
;
}
double
getMaxVal
()
const
{
return
maxVal_
;
}
void
setMaxVal
(
double
val
)
{
maxVal_
=
(
float
)
val
;
}
private
:
void
initialize
(
Size
frameSize
,
float
min
,
float
max
);
//! Total number of distinct colors to maintain in histogram.
int
maxFeatures_
;
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
float
learningRate_
;
//! Number of frames of video to use to initialize histograms.
int
numInitializationFrames_
;
//! Number of discrete levels in each channel to be used in histograms.
int
quantizationLevels_
;
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
float
backgroundPrior_
;
//! Smoothing radius, in pixels, for cleaning up FG image.
int
smoothingRadius_
;
//! Value above which pixel is determined to be FG.
float
decisionThreshold_
;
//! Perform background model update.
bool
updateBackgroundModel_
;
float
minVal_
,
maxVal_
;
Size
frameSize_
;
int
frameNum_
;
GpuMat
nfeatures_
;
GpuMat
colors_
;
GpuMat
weights_
;
Ptr
<
gpu
::
Filter
>
boxFilter_
;
GpuMat
buf_
;
};
CV_Assert
(
frame
.
depth
()
==
CV_8U
||
frame
.
depth
()
==
CV_16U
||
frame
.
depth
()
==
CV_32F
);
CV_Assert
(
frame
.
channels
()
==
1
||
frame
.
channels
()
==
3
||
frame
.
channels
()
==
4
);
GMGImpl
::
GMGImpl
(
int
initializationFrames
,
double
decisionThreshold
)
{
maxFeatures_
=
64
;
learningRate_
=
0.025
f
;
numInitializationFrames_
=
initializationFrames
;
quantizationLevels_
=
16
;
backgroundPrior_
=
0.8
f
;
decisionThreshold_
=
(
float
)
decisionThreshold
;
smoothingRadius_
=
7
;
updateBackgroundModel_
=
true
;
minVal_
=
maxVal_
=
0
;
}
if
(
newLearningRate
!=
-
1.0
f
)
void
GMGImpl
::
apply
(
InputArray
image
,
OutputArray
fgmask
,
double
learningRate
)
{
CV_Assert
(
newLearningRate
>=
0.0
f
&&
newLearningRate
<=
1.0
f
);
learningRate
=
newLearningRate
;
apply
(
image
,
fgmask
,
learningRate
,
Stream
::
Null
());
}
if
(
frame
.
size
()
!=
frameSize_
)
initialize
(
frame
.
size
(),
0.0
f
,
frame
.
depth
()
==
CV_8U
?
255.0
f
:
frame
.
depth
()
==
CV_16U
?
std
::
numeric_limits
<
ushort
>::
max
()
:
1.0
f
);
void
GMGImpl
::
apply
(
InputArray
_frame
,
OutputArray
_fgmask
,
double
newLearningRate
,
Stream
&
stream
)
{
using
namespace
cv
::
gpu
::
cudev
::
gmg
;
typedef
void
(
*
func_t
)(
PtrStepSzb
frame
,
PtrStepb
fgmask
,
PtrStepSzi
colors
,
PtrStepf
weights
,
PtrStepi
nfeatures
,
int
frameNum
,
float
learningRate
,
bool
updateBackgroundModel
,
cudaStream_t
stream
);
static
const
func_t
funcs
[
6
][
4
]
=
{
{
update_gpu
<
uchar
>
,
0
,
update_gpu
<
uchar3
>
,
update_gpu
<
uchar4
>
},
{
0
,
0
,
0
,
0
},
{
update_gpu
<
ushort
>
,
0
,
update_gpu
<
ushort3
>
,
update_gpu
<
ushort4
>
},
{
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
},
{
update_gpu
<
float
>
,
0
,
update_gpu
<
float3
>
,
update_gpu
<
float4
>
}
};
GpuMat
frame
=
_frame
.
getGpuMat
();
CV_Assert
(
frame
.
depth
()
==
CV_8U
||
frame
.
depth
()
==
CV_16U
||
frame
.
depth
()
==
CV_32F
);
CV_Assert
(
frame
.
channels
()
==
1
||
frame
.
channels
()
==
3
||
frame
.
channels
()
==
4
);
if
(
newLearningRate
!=
-
1.0
)
{
CV_Assert
(
newLearningRate
>=
0.0
&&
newLearningRate
<=
1.0
);
learningRate_
=
(
float
)
newLearningRate
;
}
if
(
frame
.
size
()
!=
frameSize_
)
{
double
minVal
=
minVal_
;
double
maxVal
=
maxVal_
;
fgmask
.
create
(
frameSize_
,
CV_8UC1
);
fgmask
.
setTo
(
cv
::
Scalar
::
all
(
0
),
stream
);
if
(
minVal_
==
0
&&
maxVal_
==
0
)
{
minVal
=
0
;
maxVal
=
frame
.
depth
()
==
CV_8U
?
255.0
:
frame
.
depth
()
==
CV_16U
?
std
::
numeric_limits
<
ushort
>::
max
()
:
1.0
;
}
funcs
[
frame
.
depth
()][
frame
.
channels
()
-
1
](
frame
,
fgmask
,
colors_
,
weights_
,
nfeatures_
,
frameNum_
,
learningRate
,
updateBackgroundModel
,
cv
::
gpu
::
StreamAccessor
::
getStream
(
stream
));
initialize
(
frame
.
size
(),
(
float
)
minVal
,
(
float
)
maxVal
);
}
_fgmask
.
create
(
frameSize_
,
CV_8UC1
);
GpuMat
fgmask
=
_fgmask
.
getGpuMat
();
fgmask
.
setTo
(
Scalar
::
all
(
0
),
stream
);
funcs
[
frame
.
depth
()][
frame
.
channels
()
-
1
](
frame
,
fgmask
,
colors_
,
weights_
,
nfeatures_
,
frameNum_
,
learningRate_
,
updateBackgroundModel_
,
StreamAccessor
::
getStream
(
stream
));
// medianBlur
if
(
smoothingRadius_
>
0
)
{
boxFilter_
->
apply
(
fgmask
,
buf_
,
stream
);
const
int
minCount
=
(
smoothingRadius_
*
smoothingRadius_
+
1
)
/
2
;
const
double
thresh
=
255.0
*
minCount
/
(
smoothingRadius_
*
smoothingRadius_
);
gpu
::
threshold
(
buf_
,
fgmask
,
thresh
,
255.0
,
THRESH_BINARY
,
stream
);
}
// keep track of how many frames we have processed
++
frameNum_
;
}
// medianBlur
if
(
smoothingRadius
>
0
)
void
GMGImpl
::
getBackgroundImage
(
OutputArray
backgroundImage
)
const
{
boxFilter_
->
apply
(
fgmask
,
buf_
,
stream
);
int
minCount
=
(
smoothingRadius
*
smoothingRadius
+
1
)
/
2
;
double
thresh
=
255.0
*
minCount
/
(
smoothingRadius
*
smoothingRadius
);
cv
::
gpu
::
threshold
(
buf_
,
fgmask
,
thresh
,
255.0
,
cv
::
THRESH_BINARY
,
stream
);
(
void
)
backgroundImage
;
CV_Error
(
Error
::
StsNotImplemented
,
"Not implemented"
);
}
// keep track of how many frames we have processed
++
frameNum_
;
void
GMGImpl
::
initialize
(
Size
frameSize
,
float
min
,
float
max
)
{
using
namespace
cv
::
gpu
::
cudev
::
gmg
;
CV_Assert
(
maxFeatures_
>
0
);
CV_Assert
(
learningRate_
>=
0.0
f
&&
learningRate_
<=
1.0
f
);
CV_Assert
(
numInitializationFrames_
>=
1
);
CV_Assert
(
quantizationLevels_
>=
1
&&
quantizationLevels_
<=
255
);
CV_Assert
(
backgroundPrior_
>=
0.0
f
&&
backgroundPrior_
<=
1.0
f
);
minVal_
=
min
;
maxVal_
=
max
;
CV_Assert
(
minVal_
<
maxVal_
);
frameSize_
=
frameSize
;
frameNum_
=
0
;
nfeatures_
.
create
(
frameSize_
,
CV_32SC1
);
colors_
.
create
(
maxFeatures_
*
frameSize_
.
height
,
frameSize_
.
width
,
CV_32SC1
);
weights_
.
create
(
maxFeatures_
*
frameSize_
.
height
,
frameSize_
.
width
,
CV_32FC1
);
nfeatures_
.
setTo
(
Scalar
::
all
(
0
));
if
(
smoothingRadius_
>
0
)
boxFilter_
=
gpu
::
createBoxFilter
(
CV_8UC1
,
-
1
,
Size
(
smoothingRadius_
,
smoothingRadius_
));
loadConstants
(
frameSize_
.
width
,
frameSize_
.
height
,
minVal_
,
maxVal_
,
quantizationLevels_
,
backgroundPrior_
,
decisionThreshold_
,
maxFeatures_
,
numInitializationFrames_
);
}
}
void
cv
::
gpu
::
GMG_GPU
::
release
(
)
Ptr
<
gpu
::
BackgroundSubtractorGMG
>
cv
::
gpu
::
createBackgroundSubtractorGMG
(
int
initializationFrames
,
double
decisionThreshold
)
{
frameSize_
=
Size
();
nfeatures_
.
release
();
colors_
.
release
();
weights_
.
release
();
boxFilter_
.
release
();
buf_
.
release
();
return
new
GMGImpl
(
initializationFrames
,
decisionThreshold
);
}
#endif
modules/gpubgsegm/src/precomp.hpp
View file @
69779309
...
...
@@ -52,4 +52,6 @@
#include "opencv2/core/private.gpu.hpp"
#include "opencv2/opencv_modules.hpp"
#endif
/* __OPENCV_PRECOMP_H__ */
modules/gpubgsegm/test/test_bgsegm.cpp
View file @
69779309
...
...
@@ -372,16 +372,15 @@ GPU_TEST_P(GMG, Accuracy)
cv
::
Mat
frame
=
randomMat
(
size
,
type
,
0
,
100
);
cv
::
gpu
::
GpuMat
d_frame
=
loadMat
(
frame
,
useRoi
);
cv
::
gpu
::
GMG_GPU
gmg
;
gmg
.
numInitializationFrames
=
5
;
gmg
.
smoothingRadius
=
0
;
gmg
.
initialize
(
d_frame
.
size
(),
0
,
255
);
cv
::
Ptr
<
cv
::
BackgroundSubtractorGMG
>
gmg
=
cv
::
gpu
::
createBackgroundSubtractorGMG
();
gmg
->
setNumFrames
(
5
);
gmg
->
setSmoothingRadius
(
0
);
cv
::
gpu
::
GpuMat
d_fgmask
=
createMat
(
size
,
CV_8UC1
,
useRoi
);
for
(
int
i
=
0
;
i
<
gmg
.
numInitializationFrames
;
++
i
)
for
(
int
i
=
0
;
i
<
gmg
->
getNumFrames
()
;
++
i
)
{
gmg
(
d_frame
,
d_fgmask
);
gmg
->
apply
(
d_frame
,
d_fgmask
);
// fgmask should be entirely background during training
ASSERT_MAT_NEAR
(
zeros
,
d_fgmask
,
0
);
...
...
@@ -389,7 +388,7 @@ GPU_TEST_P(GMG, Accuracy)
frame
=
randomMat
(
size
,
type
,
160
,
255
);
d_frame
=
loadMat
(
frame
,
useRoi
);
gmg
(
d_frame
,
d_fgmask
);
gmg
->
apply
(
d_frame
,
d_fgmask
);
// now fgmask should be entirely foreground
ASSERT_MAT_NEAR
(
fullfg
,
d_fgmask
,
0
);
...
...
samples/gpu/bgfg_segm.cpp
View file @
69779309
...
...
@@ -18,10 +18,10 @@ using namespace cv::gpu;
enum
Method
{
FGD_STAT
,
MOG
,
MOG2
,
GMG
GMG
,
FGD_STAT
};
int
main
(
int
argc
,
const
char
**
argv
)
...
...
@@ -29,7 +29,7 @@ int main(int argc, const char** argv)
cv
::
CommandLineParser
cmd
(
argc
,
argv
,
"{ c camera | | use camera }"
"{ f file | 768x576.avi | input video file }"
"{ m method | mog | method (
fgd, mog, mog2, gmg
) }"
"{ m method | mog | method (
mog, mog2, gmg, fgd
) }"
"{ h help | | print help message }"
);
if
(
cmd
.
has
(
"help"
)
||
!
cmd
.
check
())
...
...
@@ -43,18 +43,18 @@ int main(int argc, const char** argv)
string
file
=
cmd
.
get
<
string
>
(
"file"
);
string
method
=
cmd
.
get
<
string
>
(
"method"
);
if
(
method
!=
"fgd"
&&
method
!=
"mog"
if
(
method
!=
"mog"
&&
method
!=
"mog2"
&&
method
!=
"gmg"
)
&&
method
!=
"gmg"
&&
method
!=
"fgd"
)
{
cerr
<<
"Incorrect method"
<<
endl
;
return
-
1
;
}
Method
m
=
method
==
"fgd"
?
FGD_STAT
:
method
==
"mog"
?
MOG
:
Method
m
=
method
==
"mog"
?
MOG
:
method
==
"mog2"
?
MOG2
:
method
==
"fgd"
?
FGD_STAT
:
GMG
;
VideoCapture
cap
;
...
...
@@ -75,11 +75,10 @@ int main(int argc, const char** argv)
GpuMat
d_frame
(
frame
);
Ptr
<
BackgroundSubtractor
>
mog
=
gpu
::
createBackgroundSubtractorMOG
();
Ptr
<
BackgroundSubtractor
>
mog2
=
gpu
::
createBackgroundSubtractorMOG2
();
Ptr
<
BackgroundSubtractor
>
gmg
=
gpu
::
createBackgroundSubtractorGMG
(
40
);
FGDStatModel
fgd_stat
;
cv
::
Ptr
<
cv
::
BackgroundSubtractor
>
mog
=
cv
::
gpu
::
createBackgroundSubtractorMOG
();
cv
::
Ptr
<
cv
::
BackgroundSubtractor
>
mog2
=
cv
::
gpu
::
createBackgroundSubtractorMOG2
();
GMG_GPU
gmg
;
gmg
.
numInitializationFrames
=
40
;
GpuMat
d_fgmask
;
GpuMat
d_fgimg
;
...
...
@@ -91,10 +90,6 @@ int main(int argc, const char** argv)
switch
(
m
)
{
case
FGD_STAT
:
fgd_stat
.
create
(
d_frame
);
break
;
case
MOG
:
mog
->
apply
(
d_frame
,
d_fgmask
,
0.01
);
break
;
...
...
@@ -104,7 +99,11 @@ int main(int argc, const char** argv)
break
;
case
GMG
:
gmg
.
initialize
(
d_frame
.
size
());
gmg
->
apply
(
d_frame
,
d_fgmask
);
break
;
case
FGD_STAT
:
fgd_stat
.
create
(
d_frame
);
break
;
}
...
...
@@ -128,12 +127,6 @@ int main(int argc, const char** argv)
//update the model
switch
(
m
)
{
case
FGD_STAT
:
fgd_stat
.
update
(
d_frame
);
d_fgmask
=
fgd_stat
.
foreground
;
d_bgimg
=
fgd_stat
.
background
;
break
;
case
MOG
:
mog
->
apply
(
d_frame
,
d_fgmask
,
0.01
);
mog
->
getBackgroundImage
(
d_bgimg
);
...
...
@@ -145,7 +138,13 @@ int main(int argc, const char** argv)
break
;
case
GMG
:
gmg
(
d_frame
,
d_fgmask
);
gmg
->
apply
(
d_frame
,
d_fgmask
);
break
;
case
FGD_STAT
:
fgd_stat
.
update
(
d_frame
);
d_fgmask
=
fgd_stat
.
foreground
;
d_bgimg
=
fgd_stat
.
background
;
break
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment