Commit 656f06fa authored by yao's avatar yao

add bruteForceMatcher to ocl module

parent 23244a35
...@@ -946,6 +946,186 @@ namespace cv ...@@ -946,6 +946,186 @@ namespace cv
oclMat maxPosBuffer; oclMat maxPosBuffer;
}; };
////////////////////////////////// BruteForceMatcher //////////////////////////////////
class CV_EXPORTS BruteForceMatcher_OCL_base
{
public:
enum DistType {L1Dist = 0, L2Dist, HammingDist};
explicit BruteForceMatcher_OCL_base(DistType distType = L2Dist);
// Add descriptors to train descriptor collection
void add(const std::vector<oclMat>& descCollection);
// Get train descriptors collection
const std::vector<oclMat>& getTrainDescriptors() const;
// Clear train descriptors collection
void clear();
// Return true if there are not train descriptors in collection
bool empty() const;
// Return true if the matcher supports mask in match methods
bool isMaskSupported() const;
// Find one best match for each query descriptor
void matchSingle(const oclMat& query, const oclMat& train,
oclMat& trainIdx, oclMat& distance,
const oclMat& mask = oclMat());
// Download trainIdx and distance and convert it to CPU vector with DMatch
static void matchDownload(const oclMat& trainIdx, const oclMat& distance, std::vector<DMatch>& matches);
// Convert trainIdx and distance to vector with DMatch
static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches);
// Find one best match for each query descriptor
void match(const oclMat& query, const oclMat& train, std::vector<DMatch>& matches, const oclMat& mask = oclMat());
// Make gpu collection of trains and masks in suitable format for matchCollection function
void makeGpuCollection(oclMat& trainCollection, oclMat& maskCollection, const std::vector<oclMat>& masks = std::vector<oclMat>());
// Find one best match from train collection for each query descriptor
void matchCollection(const oclMat& query, const oclMat& trainCollection,
oclMat& trainIdx, oclMat& imgIdx, oclMat& distance,
const oclMat& masks = oclMat());
// Download trainIdx, imgIdx and distance and convert it to vector with DMatch
static void matchDownload(const oclMat& trainIdx, const oclMat& imgIdx, const oclMat& distance, std::vector<DMatch>& matches);
// Convert trainIdx, imgIdx and distance to vector with DMatch
static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches);
// Find one best match from train collection for each query descriptor.
void match(const oclMat& query, std::vector<DMatch>& matches, const std::vector<oclMat>& masks = std::vector<oclMat>());
// Find k best matches for each query descriptor (in increasing order of distances)
void knnMatchSingle(const oclMat& query, const oclMat& train,
oclMat& trainIdx, oclMat& distance, oclMat& allDist, int k,
const oclMat& mask = oclMat());
// Download trainIdx and distance and convert it to vector with DMatch
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
static void knnMatchDownload(const oclMat& trainIdx, const oclMat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Convert trainIdx and distance to vector with DMatch
static void knnMatchConvert(const Mat& trainIdx, const Mat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
void knnMatch(const oclMat& query, const oclMat& train,
std::vector< std::vector<DMatch> >& matches, int k, const oclMat& mask = oclMat(),
bool compactResult = false);
// Find k best matches from train collection for each query descriptor (in increasing order of distances)
void knnMatch2Collection(const oclMat& query, const oclMat& trainCollection,
oclMat& trainIdx, oclMat& imgIdx, oclMat& distance,
const oclMat& maskCollection = oclMat());
// Download trainIdx and distance and convert it to vector with DMatch
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
static void knnMatch2Download(const oclMat& trainIdx, const oclMat& imgIdx, const oclMat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Convert trainIdx and distance to vector with DMatch
static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
void knnMatch(const oclMat& query, std::vector< std::vector<DMatch> >& matches, int k,
const std::vector<oclMat>& masks = std::vector<oclMat>(), bool compactResult = false);
// Find best matches for each query descriptor which have distance less than maxDistance.
// nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
// carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
// because it didn't have enough memory.
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
// Matches doesn't sorted.
void radiusMatchSingle(const oclMat& query, const oclMat& train,
oclMat& trainIdx, oclMat& distance, oclMat& nMatches, float maxDistance,
const oclMat& mask = oclMat());
// Download trainIdx, nMatches and distance and convert it to vector with DMatch.
// matches will be sorted in increasing order of distances.
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
static void radiusMatchDownload(const oclMat& trainIdx, const oclMat& distance, const oclMat& nMatches,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Convert trainIdx, nMatches and distance to vector with DMatch.
static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Find best matches for each query descriptor which have distance less than maxDistance
// in increasing order of distances).
void radiusMatch(const oclMat& query, const oclMat& train,
std::vector< std::vector<DMatch> >& matches, float maxDistance,
const oclMat& mask = oclMat(), bool compactResult = false);
// Find best matches for each query descriptor which have distance less than maxDistance.
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
// Matches doesn't sorted.
void radiusMatchCollection(const oclMat& query, oclMat& trainIdx, oclMat& imgIdx, oclMat& distance, oclMat& nMatches, float maxDistance,
const std::vector<oclMat>& masks = std::vector<oclMat>());
// Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
// matches will be sorted in increasing order of distances.
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
static void radiusMatchDownload(const oclMat& trainIdx, const oclMat& imgIdx, const oclMat& distance, const oclMat& nMatches,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Convert trainIdx, nMatches and distance to vector with DMatch.
static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Find best matches from train collection for each query descriptor which have distance less than
// maxDistance (in increasing order of distances).
void radiusMatch(const oclMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance,
const std::vector<oclMat>& masks = std::vector<oclMat>(), bool compactResult = false);
DistType distType;
private:
std::vector<oclMat> trainDescCollection;
};
template <class Distance>
class CV_EXPORTS BruteForceMatcher_OCL;
template <typename T>
class CV_EXPORTS BruteForceMatcher_OCL< L1<T> > : public BruteForceMatcher_OCL_base
{
public:
explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(L1Dist) {}
explicit BruteForceMatcher_OCL(L1<T> /*d*/) : BruteForceMatcher_OCL_base(L1Dist) {}
};
template <typename T>
class CV_EXPORTS BruteForceMatcher_OCL< L2<T> > : public BruteForceMatcher_OCL_base
{
public:
explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(L2Dist) {}
explicit BruteForceMatcher_OCL(L2<T> /*d*/) : BruteForceMatcher_OCL_base(L2Dist) {}
};
template <> class CV_EXPORTS BruteForceMatcher_OCL< Hamming > : public BruteForceMatcher_OCL_base
{
public:
explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(HammingDist) {}
explicit BruteForceMatcher_OCL(Hamming /*d*/) : BruteForceMatcher_OCL_base(HammingDist) {}
};
} }
} }
#include "opencv2/ocl/matrix_operations.hpp" #include "opencv2/ocl/matrix_operations.hpp"
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Nathan, liujun@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <iterator>
#include <vector>
using namespace cv;
using namespace cv::ocl;
using namespace std;
#if !defined (HAVE_OPENCL)
cv::ocl::BruteForceMatcher_OCL_base::BruteForceMatcher_OCL_base(DistType) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::add(const vector<oclMat>&) { throw_nogpu(); }
const vector<oclMat>& cv::ocl::BruteForceMatcher_OCL_base::getTrainDescriptors() const { throw_nogpu(); return trainDescCollection; }
void cv::ocl::BruteForceMatcher_OCL_base::clear() { throw_nogpu(); }
bool cv::ocl::BruteForceMatcher_OCL_base::empty() const { throw_nogpu(); return true; }
bool cv::ocl::BruteForceMatcher_OCL_base::isMaskSupported() const { throw_nogpu(); return true; }
void cv::ocl::BruteForceMatcher_OCL_base::matchSingle(const oclMat&, const oclMat&, oclMat&, oclMat&, const oclMat&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat&, const oclMat&, vector<DMatch>&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::matchConvert(const Mat&, const Mat&, vector<DMatch>&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::match(const oclMat&, const oclMat&, vector<DMatch>&, const oclMat&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::makeGpuCollection(oclMat&, oclMat&, const vector<oclMat>&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::matchCollection(const oclMat&, const oclMat&, oclMat&, oclMat&, oclMat&, const oclMat&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat&, const oclMat&, const oclMat&, vector<DMatch>&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::matchConvert(const Mat&, const Mat&, const Mat&, vector<DMatch>&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::match(const oclMat&, vector<DMatch>&, const vector<oclMat>&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::knnMatchSingle(const oclMat&, const oclMat&, oclMat&, oclMat&, oclMat&, int, const oclMat&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::knnMatchDownload(const oclMat&, const oclMat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::knnMatchConvert(const Mat&, const Mat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat&, const oclMat&, vector< vector<DMatch> >&, int, const oclMat&, bool) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Collection(const oclMat&, const oclMat&, oclMat&, oclMat&, oclMat&, const oclMat&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Download(const oclMat&, const oclMat&, const oclMat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Convert(const Mat&, const Mat&, const Mat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat&, vector< vector<DMatch> >&, int, const vector<oclMat>&, bool) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchSingle(const oclMat&, const oclMat&, oclMat&, oclMat&, oclMat&, float, const oclMat&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchDownload(const oclMat&, const oclMat&, const oclMat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchConvert(const Mat&, const Mat&, const Mat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatch(const oclMat&, const oclMat&, vector< vector<DMatch> >&, float, const oclMat&, bool) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchCollection(const oclMat&, oclMat&, oclMat&, oclMat&, oclMat&, float, const vector<oclMat>&) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchDownload(const oclMat&, const oclMat&, const oclMat&, const oclMat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchConvert(const Mat&, const Mat&, const Mat&, const Mat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatch(const oclMat&, vector< vector<DMatch> >&, float, const vector<oclMat>&, bool) { throw_nogpu(); }
#else /* !defined (HAVE_OPENCL) */
using namespace std;
namespace cv
{
namespace ocl
{
////////////////////////////////////OpenCL kernel strings//////////////////////////
extern const char *brute_force_match;
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename T/*, typename Mask*/>
void matchUnrolledCached(const oclMat& query, const oclMat& train, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, int distType)
{
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= 2 * BLOCK_SIZE ? MAX_DESC_LEN : 2 * BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE;
int m_size = MAX_DESC_LEN;
vector< pair<size_t, const void *> > args;
if(globalSize[0] != 0)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( make_pair( smemSize, (void *)NULL));
args.push_back( make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( make_pair( sizeof(cl_int), (void *)&m_size ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
std::string kernelName = "BruteForceMatch_UnrollMatch";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename T/*, typename Mask*/>
void matchUnrolledCached(const oclMat query, const oclMat* trains, int n, const oclMat mask,
const oclMat& bestTrainIdx, const oclMat& bestImgIdx, const oclMat& bestDistance, int distType)
{
}
template <int BLOCK_SIZE, typename T/*, typename Mask*/>
void match(const oclMat& query, const oclMat& train, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, int distType)
{
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE;
vector< pair<size_t, const void *> > args;
if(globalSize[0] != 0)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( make_pair( smemSize, (void *)NULL));
args.push_back( make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
std::string kernelName = "BruteForceMatch_Match";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
}
}
template <int BLOCK_SIZE, typename T/*, typename Mask*/>
void match(const oclMat query, const oclMat* trains, int n, const oclMat mask,
const oclMat &bestTrainIdx, const oclMat& bestImgIdx, const oclMat& bestDistance, int distType)
{
}
//radius_matchUnrolledCached
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename T/*, typename Mask*/>
void matchUnrolledCached(const oclMat& query, const oclMat& train, float maxDistance, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, const oclMat& nMatches, int distType)
{
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE;
int m_size = MAX_DESC_LEN;
vector< pair<size_t, const void *> > args;
if(globalSize[0] != 0)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data ));
args.push_back( make_pair( sizeof(cl_float), (void *)&maxDistance ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&nMatches.data ));
args.push_back( make_pair( smemSize, (void *)NULL));
args.push_back( make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( make_pair( sizeof(cl_int), (void *)&m_size ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
std::string kernelName = "BruteForceMatch_RadiusUnrollMatch";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
}
}
//radius_match
template <int BLOCK_SIZE, typename T/*, typename Mask*/>
void radius_match(const oclMat& query, const oclMat& train, float maxDistance, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance,const oclMat& nMatches, int distType)
{
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE;
vector< pair<size_t, const void *> > args;
if(globalSize[0] != 0)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data ));
args.push_back( make_pair( sizeof(cl_float), (void *)&maxDistance ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&nMatches.data ));
args.push_back( make_pair( smemSize, (void *)NULL));
args.push_back( make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
std::string kernelName = "BruteForceMatch_RadiusMatch";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
//float *dis = (float *)clEnqueueMapBuffer(ctx->impl->clCmdQueue, (cl_mem)distance.data, CL_TRUE, CL_MAP_READ, 0, 8, 0, NULL, NULL, NULL);
//printf("%f, %f\n", dis[0], dis[1]);
}
}
// with mask
template < typename T/*, typename Mask*/>
void matchDispatcher(const oclMat& query, const oclMat& train, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, int distType)
{
if (query.cols <= 64)
{
matchUnrolledCached<16, 64, T>(query, train, mask, trainIdx, distance, distType);
}
else if (query.cols <= 128)
{
matchUnrolledCached<16, 128, T>(query, train, mask, trainIdx, distance, distType);
}
/*else if (query.cols <= 256)
{
matchUnrolled<16, 256, Dist>(query, train, mask, trainIdx, distance, stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, train, mask, trainIdx, distance, stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, train, mask, trainIdx, distance, stream);
}*/
else
{
match<16, T>(query, train, mask, trainIdx, distance, distType);
}
}
// without mask
template <typename T/*, typename Mask*/>
void matchDispatcher(const oclMat& query, const oclMat& train, const oclMat& trainIdx, const oclMat& distance, int distType)
{
oclMat mask;
if (query.cols <= 64)
{
matchUnrolledCached<16, 64, T>(query, train, mask, trainIdx, distance, distType);
}
else if (query.cols <= 128)
{
matchUnrolledCached<16, 128, T>(query, train, mask, trainIdx, distance, distType);
}
/*else if (query.cols <= 256)
{
matchUnrolled<16, 256, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance);
}*/
else
{
match<16, T>(query, train, mask, trainIdx, distance, distType);
}
}
template <typename T/*, typename Mask*/>
void matchDispatcher(const oclMat& query, const oclMat* trains, int n, const oclMat& mask,
const oclMat& trainIdx, const oclMat& imgIdx, const oclMat& distance, int distType)
{
if (query.cols <= 64)
{
matchUnrolledCached<16, 64, T>(query, trains, n, mask, trainIdx, imgIdx, distance, distType);
}
else if (query.cols <= 128)
{
matchUnrolledCached<16, 128, T>(query, trains, n, mask, trainIdx, imgIdx, distance, distType);
}
/*else if (query.cols <= 256)
{
matchUnrolled<16, 256, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
}*/
else
{
match<16, T>(query, trains, n, mask, trainIdx, imgIdx, distance, distType);
}
}
template <typename T/*, typename Mask*/>
void matchDispatcher(const oclMat& query, const oclMat* trains, int n, const oclMat& trainIdx,
const oclMat& imgIdx, const oclMat& distance, int distType)
{
oclMat mask;
if (query.cols <= 64)
{
matchUnrolledCached<16, 64, T>(query, trains, n, mask, trainIdx, imgIdx, distance, distType);
}
else if (query.cols <= 128)
{
matchUnrolledCached<16, 128, T>(query, trains, n, mask, trainIdx, imgIdx, distance, distType);
}
/*else if (query.cols <= 256)
{
matchUnrolled<16, 256, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
}*/
else
{
match<16, T>(query, trains, n, mask, trainIdx, imgIdx, distance, distType);
}
}
//radius matchDispatcher
// with mask
template < typename T/*, typename Mask*/>
void matchDispatcher(const oclMat& query, const oclMat& train, float maxDistance, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, const oclMat& nMatches, int distType)
{
if (query.cols <= 64)
{
matchUnrolledCached<16, 64, T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
}
else if (query.cols <= 128)
{
matchUnrolledCached<16, 128, T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
}
/*else if (query.cols <= 256)
{
matchUnrolled<16, 256, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
}*/
else
{
radius_match<16, T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
}
}
// without mask
template <typename T/*, typename Mask*/>
void matchDispatcher(const oclMat& query, const oclMat& train, float maxDistance, const oclMat& trainIdx,
const oclMat& distance, const oclMat& nMatches, int distType)
{
oclMat mask;
if (query.cols <= 64)
{
matchUnrolledCached<16, 64, T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
}
else if (query.cols <= 128)
{
matchUnrolledCached<16, 128, T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
}
/*else if (query.cols <= 256)
{
matchUnrolled<16, 256, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
}*/
else
{
radius_match<16, T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
}
}
template < typename T/*, typename Mask*/>
void matchDispatcher(const oclMat& query, const oclMat& train, int n, float maxDistance, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, const oclMat& nMatches, int distType)
{
if (query.cols <= 64)
{
matchUnrolledCached<16, 64, T>(query, train, n, maxDistance, mask, trainIdx, distance, nMatches, distType);
}
else if (query.cols <= 128)
{
matchUnrolledCached<16, 128, T>(query, train, n, maxDistance, mask, trainIdx, distance, nMatches, distType);
}
/*else if (query.cols <= 256)
{
matchUnrolled<16, 256, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
}*/
else
{
match<16, T>(query, train, n, maxDistance, mask, trainIdx, distance, nMatches, distType);
}
}
// without mask
template <typename T/*, typename Mask*/>
void matchDispatcher(const oclMat& query, const oclMat& train, int n, float maxDistance, const oclMat& trainIdx,
const oclMat& distance, const oclMat& nMatches, int distType)
{
oclMat mask;
if (query.cols <= 64)
{
matchUnrolledCached<16, 64, T>(query, train, n, maxDistance, mask, trainIdx, distance, nMatches, distType);
}
else if (query.cols <= 128)
{
matchUnrolledCached<16, 128, T>(query, train, n, maxDistance, mask, trainIdx, distance, nMatches, distType);
}
/*else if (query.cols <= 256)
{
matchUnrolled<16, 256, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
}*/
else
{
match<16, T>(query, train, n, maxDistance, mask, trainIdx, distance, nMatches, distType);
}
}
//knn match Dispatcher
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename T/*, typename Mask*/>
void knn_matchUnrolledCached(const oclMat& query, const oclMat& train, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, int distType)
{
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= BLOCK_SIZE ? MAX_DESC_LEN : BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE;
int m_size = MAX_DESC_LEN;
vector< pair<size_t, const void *> > args;
if(globalSize[0] != 0)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( make_pair( smemSize, (void *)NULL));
args.push_back( make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( make_pair( sizeof(cl_int), (void *)&m_size ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
std::string kernelName = "BruteForceMatch_knnUnrollMatch";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
}
}
template <int BLOCK_SIZE, typename T/*, typename Mask*/>
void knn_match(const oclMat& query, const oclMat& train, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, int distType)
{
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE;
vector< pair<size_t, const void *> > args;
if(globalSize[0] != 0)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( make_pair( smemSize, (void *)NULL));
args.push_back( make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
std::string kernelName = "BruteForceMatch_knnMatch";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename T/*, typename Mask*/>
void calcDistanceUnrolled(const oclMat& query, const oclMat& train, const oclMat& mask, const oclMat& allDist, int distType)
{
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE;
int m_size = MAX_DESC_LEN;
vector< pair<size_t, const void *> > args;
if(globalSize[0] != 0)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&allDist.data ));
args.push_back( make_pair( smemSize, (void *)NULL));
args.push_back( make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( make_pair( sizeof(cl_int), (void *)&m_size ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
std::string kernelName = "BruteForceMatch_calcDistanceUnrolled";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
}
}
template <int BLOCK_SIZE, typename T/*, typename Mask*/>
void calcDistance(const oclMat& query, const oclMat& train, const oclMat& mask, const oclMat& allDist, int distType)
{
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE;
vector< pair<size_t, const void *> > args;
if(globalSize[0] != 0)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&allDist.data ));
args.push_back( make_pair( smemSize, (void *)NULL));
args.push_back( make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
std::string kernelName = "BruteForceMatch_calcDistance";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
}
}
///////////////////////////////////////////////////////////////////////////////
// Calc Distance dispatcher
template <typename T/*, typename Mask*/>
void calcDistanceDispatcher(const oclMat& query, const oclMat& train, const oclMat& mask,
const oclMat& allDist, int distType)
{
if (query.cols <= 64)
{
calcDistanceUnrolled<16, 64, T>(query, train, mask, allDist, distType);
}
else if (query.cols <= 128)
{
calcDistanceUnrolled<16, 128, T>(query, train, mask, allDist, distType);
}
/*else if (query.cols <= 256)
{
calcDistanceUnrolled<16, 256, Dist>(query, train, mask, allDist, stream);
}
else if (query.cols <= 512)
{
calcDistanceUnrolled<16, 512, Dist>(query, train, mask, allDist, stream);
}
else if (query.cols <= 1024)
{
calcDistanceUnrolled<16, 1024, Dist>(query, train, mask, allDist, stream);
}*/
else
{
calcDistance<16, T>(query, train, mask, allDist, distType);
}
}
template <typename T/*, typename Mask*/>
void match2Dispatcher(const oclMat& query, const oclMat& train, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, int distType)
{
if (query.cols <= 64)
{
knn_matchUnrolledCached<16, 64, T>(query, train, mask, trainIdx, distance, distType);
}
else if (query.cols <= 128)
{
knn_matchUnrolledCached<16, 128, T>(query, train, mask, trainIdx, distance, distType);
}
/*else if (query.cols <= 256)
{
matchUnrolled<16, 256, Dist>(query, train, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, train, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, train, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}*/
else
{
knn_match<16, T>(query, train, mask, trainIdx, distance, distType);
}
}
template <int BLOCK_SIZE>
void findKnnMatch(int k, const oclMat& trainIdx, const oclMat& distance, const oclMat& allDist, int distType)
{
cv::ocl::Context *ctx = trainIdx.clCxt;
size_t globalSize[] = {trainIdx.rows * BLOCK_SIZE, 1, 1};
size_t localSize[] = {BLOCK_SIZE, 1, 1};
int block_size = BLOCK_SIZE;
std::string kernelName = "BruteForceMatch_findBestMatch";
for (int i = 0; i < k; ++i)
{
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&allDist.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&i));
args.push_back( make_pair( sizeof(cl_int), (void *)&block_size ));
//args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
//args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
//args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
}
}
void findKnnMatchDispatcher(int k, const oclMat& trainIdx, const oclMat& distance, const oclMat& allDist, int distType)
{
findKnnMatch<256>(k, trainIdx, distance, allDist, distType);
}
//with mask
template <typename T/*, typename Mask*/>
void kmatchDispatcher(const oclMat& query, const oclMat& train, int k, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, const oclMat& allDist, int distType)
{
if (k == 2)
{
match2Dispatcher<T>(query, train, mask, trainIdx, distance, distType);
}
else
{
calcDistanceDispatcher<T>(query, train, mask, allDist, distType);
findKnnMatchDispatcher(k, trainIdx, distance, allDist, distType);
}
}
//without mask
template <typename T/*, typename Mask*/>
void kmatchDispatcher(const oclMat& query, const oclMat& train, int k,
const oclMat& trainIdx, const oclMat& distance, const oclMat& allDist, int distType)
{
oclMat mask;
if (k == 2)
{
match2Dispatcher<T>(query, train, mask, trainIdx, distance, distType);
}
else
{
calcDistanceDispatcher<T>(query, train, mask, allDist, distType);
findKnnMatchDispatcher(k, trainIdx, distance, allDist, distType);
}
}
template <typename T>
void ocl_matchL1_gpu(const oclMat& query, const oclMat& train, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance)
{
int distType = 0;
if (mask.data)
{
matchDispatcher<T>(query, train, mask, trainIdx, distance, distType);
}
else
{
matchDispatcher< T >(query, train, trainIdx, distance, distType);
}
}
template <typename T>
void ocl_matchL1_gpu(const oclMat& query, const oclMat& trains, const oclMat& masks,
const oclMat& trainIdx, const oclMat &imgIdx, const oclMat& distance)
{
int distType = 0;
if (masks.data)
{
matchDispatcher<T>(query, (const oclMat *)trains.ptr(), trains.cols, masks, trainIdx, imgIdx, distance, distType);
}
else
{
matchDispatcher<T>(query, (const oclMat *)trains.ptr(), trains.cols, trainIdx, imgIdx, distance, distType);
}
}
template <typename T>
void ocl_matchL2_gpu(const oclMat& query, const oclMat& train, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance)
{
int distType = 1;
if (mask.data)
{
matchDispatcher<T>(query, train, mask, trainIdx, distance, distType);
}
else
{
matchDispatcher<T >(query, train, trainIdx, distance, distType);
}
}
template <typename T>
void ocl_matchL2_gpu(const oclMat& query, const oclMat& trains, const oclMat& masks,
const oclMat& trainIdx, const oclMat &imgIdx, const oclMat& distance)
{
int distType = 1;
if (masks.data)
{
matchDispatcher<T>(query, (const oclMat *)trains.ptr(), trains.cols, masks, trainIdx, imgIdx, distance, distType);
}
else
{
matchDispatcher<T>(query, (const oclMat *)trains.ptr(), trains.cols, trainIdx, imgIdx, distance, distType);
}
}
template <typename T>
void ocl_matchHamming_gpu(const oclMat& query, const oclMat& train, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance)
{
int distType = 2;
if (mask.data)
{
matchDispatcher<T>(query, train, mask, trainIdx, distance, distType);
}
else
{
matchDispatcher< T >(query, train, trainIdx, distance, distType);
}
}
template <typename T>
void ocl_matchHamming_gpu(const oclMat& query, const oclMat& trains, const oclMat& masks,
const oclMat& trainIdx, const oclMat& imgIdx, const oclMat& distance)
{
int distType = 2;
if (masks.data)
{
matchDispatcher<T>(query, (const oclMat *)trains.ptr(), trains.cols, masks, trainIdx, imgIdx, distance, distType);
}
else
{
matchDispatcher<T>(query, (const oclMat *)trains.ptr(), trains.cols, trainIdx, imgIdx, distance, distType);
}
}
// knn caller
template <typename T>
void ocl_matchL1_gpu(const oclMat& query, const oclMat& train, int k, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, const oclMat& allDist)
{
int distType = 0;
if (mask.data)
kmatchDispatcher<T>(query, train, k, mask, trainIdx, distance, allDist, distType);
else
kmatchDispatcher<T>(query, train, k, trainIdx, distance, allDist, distType);
}
template <typename T>
void ocl_matchL2_gpu(const oclMat& query, const oclMat& train, int k, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, const oclMat& allDist)
{
int distType = 1;
if (mask.data)
kmatchDispatcher<T>(query, train, k, mask, trainIdx, distance, allDist, distType);
else
kmatchDispatcher<T>(query, train, k, trainIdx, distance, allDist, distType);
}
template <typename T>
void ocl_matchHamming_gpu(const oclMat& query, const oclMat& train, int k, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, const oclMat& allDist)
{
int distType = 2;
if (mask.data)
kmatchDispatcher<T>(query, train, k, mask, trainIdx, distance, allDist, distType);
else
kmatchDispatcher<T>(query, train, k, trainIdx, distance, allDist, distType);
}
//radius caller
template <typename T>
void ocl_matchL1_gpu(const oclMat& query, const oclMat& train, float maxDistance, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, const oclMat& nMatches)
{
int distType = 0;
if (mask.data)
matchDispatcher<T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
else
matchDispatcher<T>(query, train, maxDistance, trainIdx, distance, nMatches, distType);
}
template <typename T>
void ocl_matchL2_gpu(const oclMat& query, const oclMat& train, float maxDistance, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, const oclMat& nMatches)
{
int distType = 1;
if (mask.data)
matchDispatcher<T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
else
matchDispatcher<T>(query, train, maxDistance, trainIdx, distance, nMatches, distType);
}
template <typename T>
void ocl_matchHamming_gpu(const oclMat& query, const oclMat& train, float maxDistance, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, const oclMat& nMatches)
{
int distType = 2;
if (mask.data)
matchDispatcher<T>(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
else
matchDispatcher<T>(query, train, maxDistance, trainIdx, distance, nMatches, distType);
}
cv::ocl::BruteForceMatcher_OCL_base::BruteForceMatcher_OCL_base(DistType distType_) : distType(distType_)
{
}
void cv::ocl::BruteForceMatcher_OCL_base::add(const vector<oclMat>& descCollection)
{
trainDescCollection.insert(trainDescCollection.end(), descCollection.begin(), descCollection.end());
}
const vector<oclMat>& cv::ocl::BruteForceMatcher_OCL_base::getTrainDescriptors() const
{
return trainDescCollection;
}
void cv::ocl::BruteForceMatcher_OCL_base::clear()
{
trainDescCollection.clear();
}
bool cv::ocl::BruteForceMatcher_OCL_base::empty() const
{
return trainDescCollection.empty();
}
bool cv::ocl::BruteForceMatcher_OCL_base::isMaskSupported() const
{
return true;
}
void cv::ocl::BruteForceMatcher_OCL_base::matchSingle(const oclMat& query, const oclMat& train,
oclMat& trainIdx, oclMat& distance, const oclMat& mask)
{
if (query.empty() || train.empty())
return;
typedef void (*caller_t)(const oclMat& query, const oclMat& train, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance);
static const caller_t callers[3][6] =
{
{
ocl_matchL1_gpu<unsigned char>, 0/*ocl_matchL1_gpu<signed char>*/,
ocl_matchL1_gpu<unsigned short>, ocl_matchL1_gpu<short>,
ocl_matchL1_gpu<int>, ocl_matchL1_gpu<float>
},
{
0/*ocl_matchL2_gpu<unsigned char>*/, 0/*ocl_matchL2_gpu<signed char>*/,
0/*ocl_matchL2_gpu<unsigned short>*/, 0/*ocl_matchL2_gpu<short>*/,
0/*ocl_matchL2_gpu<int>*/, ocl_matchL2_gpu<float>
},
{
ocl_matchHamming_gpu<unsigned char>, 0/*ocl_matchHamming_gpu<signed char>*/,
ocl_matchHamming_gpu<unsigned short>, 0/*ocl_matchHamming_gpu<short>*/,
ocl_matchHamming_gpu<int>, 0/*ocl_matchHamming_gpu<float>*/
}
};
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.cols == query.cols && train.type() == query.type());
const int nQuery = query.rows;
trainIdx.create(1, nQuery, CV_32S);
distance.create(1, nQuery, CV_32F);
caller_t func = callers[distType][query.depth()];
func(query, train, mask, trainIdx, distance);
}
void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat& trainIdx, const oclMat& distance, vector<DMatch>&matches)
{
if (trainIdx.empty() || distance.empty())
return;
Mat trainIdxCPU(trainIdx);
Mat distanceCPU(distance);
matchConvert(trainIdxCPU, distanceCPU, matches);
}
void cv::ocl::BruteForceMatcher_OCL_base::matchConvert(const Mat& trainIdx, const Mat& distance, vector<DMatch>&matches)
{
if (trainIdx.empty() || distance.empty())
return;
CV_Assert(trainIdx.type() == CV_32SC1);
CV_Assert(distance.type() == CV_32FC1 && distance.cols == trainIdx.cols);
const int nQuery = trainIdx.cols;
matches.clear();
matches.reserve(nQuery);
const int* trainIdx_ptr = trainIdx.ptr<int>();
const float* distance_ptr = distance.ptr<float>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
if (trainIdx == -1)
continue;
float distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, 0, distance);
matches.push_back(m);
}
}
void cv::ocl::BruteForceMatcher_OCL_base::match(const oclMat& query, const oclMat& train, vector<DMatch>& matches, const oclMat& mask)
{
oclMat trainIdx, distance;
matchSingle(query, train, trainIdx, distance, mask);
matchDownload(trainIdx, distance, matches);
}
void cv::ocl::BruteForceMatcher_OCL_base::makeGpuCollection(oclMat& trainCollection, oclMat& maskCollection, const vector<oclMat>& masks)
{
if (empty())
return;
if (masks.empty())
{
Mat trainCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(oclMat)));
oclMat* trainCollectionCPU_ptr = trainCollectionCPU.ptr<oclMat>();
for (size_t i = 0, size = trainDescCollection.size(); i < size; ++i, ++trainCollectionCPU_ptr)
*trainCollectionCPU_ptr = trainDescCollection[i];
trainCollection.upload(trainCollectionCPU);
maskCollection.release();
}
else
{
CV_Assert(masks.size() == trainDescCollection.size());
Mat trainCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(oclMat)));
Mat maskCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(oclMat)));
oclMat* trainCollectionCPU_ptr = trainCollectionCPU.ptr<oclMat>();
oclMat* maskCollectionCPU_ptr = maskCollectionCPU.ptr<oclMat>();
for (size_t i = 0, size = trainDescCollection.size(); i < size; ++i, ++trainCollectionCPU_ptr, ++maskCollectionCPU_ptr)
{
const oclMat& train = trainDescCollection[i];
const oclMat& mask = masks[i];
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.cols == train.rows));
*trainCollectionCPU_ptr = train;
*maskCollectionCPU_ptr = mask;
}
trainCollection.upload(trainCollectionCPU);
maskCollection.upload(maskCollectionCPU);
}
}
void cv::ocl::BruteForceMatcher_OCL_base::matchCollection(const oclMat& query, const oclMat& trainCollection, oclMat& trainIdx,
oclMat& imgIdx, oclMat& distance, const oclMat& masks)
{
if (query.empty() || trainCollection.empty())
return;
typedef void (*caller_t)(const oclMat& query, const oclMat& trains, const oclMat& masks,
const oclMat& trainIdx, const oclMat& imgIdx, const oclMat& distance);
static const caller_t callers[3][6] =
{
{
ocl_matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
ocl_matchL1_gpu<unsigned short>, ocl_matchL1_gpu<short>,
ocl_matchL1_gpu<int>, ocl_matchL1_gpu<float>
},
{
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
0/*matchL2_gpu<int>*/, ocl_matchL2_gpu<float>
},
{
ocl_matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
ocl_matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
ocl_matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
}
};
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
const int nQuery = query.rows;
trainIdx.create(1, nQuery, CV_32S);
imgIdx.create(1, nQuery, CV_32S);
distance.create(1, nQuery, CV_32F);
caller_t func = callers[distType][query.depth()];
CV_Assert(func != 0);
func(query, trainCollection, masks, trainIdx, imgIdx, distance);
}
void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat& trainIdx, const oclMat& imgIdx, const oclMat& distance, vector<DMatch>& matches)
{
if (trainIdx.empty() || imgIdx.empty() || distance.empty())
return;
Mat trainIdxCPU(trainIdx);
Mat imgIdxCPU(imgIdx);
Mat distanceCPU(distance);
matchConvert(trainIdxCPU, imgIdxCPU, distanceCPU, matches);
}
void cv::ocl::BruteForceMatcher_OCL_base::matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, vector<DMatch>& matches)
{
if (trainIdx.empty() || imgIdx.empty() || distance.empty())
return;
CV_Assert(trainIdx.type() == CV_32SC1);
CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.cols == trainIdx.cols);
CV_Assert(distance.type() == CV_32FC1 && distance.cols == trainIdx.cols);
const int nQuery = trainIdx.cols;
matches.clear();
matches.reserve(nQuery);
const int* trainIdx_ptr = trainIdx.ptr<int>();
const int* imgIdx_ptr = imgIdx.ptr<int>();
const float* distance_ptr = distance.ptr<float>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
if (trainIdx == -1)
continue;
int imgIdx = *imgIdx_ptr;
float distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, imgIdx, distance);
matches.push_back(m);
}
}
void cv::ocl::BruteForceMatcher_OCL_base::match(const oclMat& query, vector<DMatch>& matches, const vector<oclMat>& masks)
{
oclMat trainCollection;
oclMat maskCollection;
makeGpuCollection(trainCollection, maskCollection, masks);
oclMat trainIdx, imgIdx, distance;
matchCollection(query, trainCollection, trainIdx, imgIdx, distance, maskCollection);
matchDownload(trainIdx, imgIdx, distance, matches);
}
// knn match
void cv::ocl::BruteForceMatcher_OCL_base::knnMatchSingle(const oclMat& query, const oclMat& train, oclMat& trainIdx,
oclMat& distance, oclMat& allDist, int k, const oclMat& mask)
{
if (query.empty() || train.empty())
return;
typedef void (*caller_t)(const oclMat& query, const oclMat& train, int k, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, const oclMat& allDist);
static const caller_t callers[3][6] =
{
{
ocl_matchL1_gpu<unsigned char>, 0/*ocl_matchL1_gpu<signed char>*/,
ocl_matchL1_gpu<unsigned short>, ocl_matchL1_gpu<short>,
ocl_matchL1_gpu<int>, ocl_matchL1_gpu<float>
},
{
0/*ocl_matchL2_gpu<unsigned char>*/, 0/*ocl_matchL2_gpu<signed char>*/,
0/*ocl_matchL2_gpu<unsigned short>*/, 0/*ocl_matchL2_gpu<short>*/,
0/*ocl_matchL2_gpu<int>*/, ocl_matchL2_gpu<float>
},
{
ocl_matchHamming_gpu<unsigned char>, 0/*ocl_matchHamming_gpu<signed char>*/,
ocl_matchHamming_gpu<unsigned short>, 0/*ocl_matchHamming_gpu<short>*/,
ocl_matchHamming_gpu<int>, 0/*ocl_matchHamming_gpu<float>*/
}
};
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.type() == query.type() && train.cols == query.cols);
const int nQuery = query.rows;
const int nTrain = train.rows;
if (k == 2)
{
trainIdx.create(1, nQuery, CV_32SC2);
distance.create(1, nQuery, CV_32FC2);
}
else
{
trainIdx.create(nQuery, k, CV_32S);
distance.create(nQuery, k, CV_32F);
allDist.create(nQuery, nTrain, CV_32FC1);
}
trainIdx.setTo(Scalar::all(-1));
caller_t func = callers[distType][query.depth()];
CV_Assert(func != 0);
func(query, train, k, mask, trainIdx, distance, allDist);
}
void cv::ocl::BruteForceMatcher_OCL_base::knnMatchDownload(const oclMat& trainIdx, const oclMat& distance, vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || distance.empty())
return;
Mat trainIdxCPU(trainIdx);
Mat distanceCPU(distance);
knnMatchConvert(trainIdxCPU, distanceCPU, matches, compactResult);
}
void cv::ocl::BruteForceMatcher_OCL_base::knnMatchConvert(const Mat& trainIdx, const Mat& distance, vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || distance.empty())
return;
CV_Assert(trainIdx.type() == CV_32SC2 || trainIdx.type() == CV_32SC1);
CV_Assert(distance.type() == CV_32FC2 || distance.type() == CV_32FC1);
CV_Assert(distance.size() == trainIdx.size());
CV_Assert(trainIdx.isContinuous() && distance.isContinuous());
const int nQuery = trainIdx.type() == CV_32SC2 ? trainIdx.cols : trainIdx.rows;
const int k = trainIdx.type() == CV_32SC2 ? 2 :trainIdx.cols;
matches.clear();
matches.reserve(nQuery);
const int* trainIdx_ptr = trainIdx.ptr<int>();
const float* distance_ptr = distance.ptr<float>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
{
matches.push_back(vector<DMatch>());
vector<DMatch>& curMatches = matches.back();
curMatches.reserve(k);
for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
if (trainIdx != -1)
{
float distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, 0, distance);
curMatches.push_back(m);
}
}
if (compactResult && curMatches.empty())
matches.pop_back();
}
}
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat& query, const oclMat& train, vector< vector<DMatch> >& matches
, int k, const oclMat& mask, bool compactResult)
{
oclMat trainIdx, distance, allDist;
knnMatchSingle(query, train, trainIdx, distance, allDist, k, mask);
knnMatchDownload(trainIdx, distance, matches, compactResult);
}
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Collection(const oclMat& query, const oclMat& trainCollection,
oclMat& trainIdx, oclMat& imgIdx, oclMat& distance, const oclMat& maskCollection)
{
if (query.empty() || trainCollection.empty())
return;
typedef void (*caller_t)(const oclMat& query, const oclMat& trains, const oclMat& masks,
const oclMat& trainIdx, const oclMat& imgIdx, const oclMat& distance);
#if 0
static const caller_t callers[3][6] =
{
{
ocl_match2L1_gpu<unsigned char>, 0/*match2L1_gpu<signed char>*/,
ocl_match2L1_gpu<unsigned short>, ocl_match2L1_gpu<short>,
ocl_match2L1_gpu<int>, ocl_match2L1_gpu<float>
},
{
0/*match2L2_gpu<unsigned char>*/, 0/*match2L2_gpu<signed char>*/,
0/*match2L2_gpu<unsigned short>*/, 0/*match2L2_gpu<short>*/,
0/*match2L2_gpu<int>*/, ocl_match2L2_gpu<float>
},
{
ocl_match2Hamming_gpu<unsigned char>, 0/*match2Hamming_gpu<signed char>*/,
ocl_match2Hamming_gpu<unsigned short>, 0/*match2Hamming_gpu<short>*/,
ocl_match2Hamming_gpu<int>, 0/*match2Hamming_gpu<float>*/
}
};
#endif
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
const int nQuery = query.rows;
trainIdx.create(1, nQuery, CV_32SC2);
imgIdx.create(1, nQuery, CV_32SC2);
distance.create(1, nQuery, CV_32SC2);
trainIdx.setTo(Scalar::all(-1));
//caller_t func = callers[distType][query.depth()];
//CV_Assert(func != 0);
//func(query, trainCollection, maskCollection, trainIdx, imgIdx, distance, cc, StreamAccessor::getStream(stream));
}
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Download(const oclMat& trainIdx, const oclMat& imgIdx,
const oclMat& distance, vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || imgIdx.empty() || distance.empty())
return;
Mat trainIdxCPU(trainIdx);
Mat imgIdxCPU(imgIdx);
Mat distanceCPU(distance);
knnMatch2Convert(trainIdxCPU, imgIdxCPU, distanceCPU, matches, compactResult);
}
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || imgIdx.empty() || distance.empty())
return;
CV_Assert(trainIdx.type() == CV_32SC2);
CV_Assert(imgIdx.type() == CV_32SC2 && imgIdx.cols == trainIdx.cols);
CV_Assert(distance.type() == CV_32FC2 && distance.cols == trainIdx.cols);
const int nQuery = trainIdx.cols;
matches.clear();
matches.reserve(nQuery);
const int* trainIdx_ptr = trainIdx.ptr<int>();
const int* imgIdx_ptr = imgIdx.ptr<int>();
const float* distance_ptr = distance.ptr<float>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
{
matches.push_back(vector<DMatch>());
vector<DMatch>& curMatches = matches.back();
curMatches.reserve(2);
for (int i = 0; i < 2; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
if (trainIdx != -1)
{
int imgIdx = *imgIdx_ptr;
float distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, imgIdx, distance);
curMatches.push_back(m);
}
}
if (compactResult && curMatches.empty())
matches.pop_back();
}
}
namespace
{
struct ImgIdxSetter
{
explicit inline ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {}
inline void operator()(DMatch& m) const {m.imgIdx = imgIdx;}
int imgIdx;
};
}
void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat& query, vector< vector<DMatch> >& matches, int k,
const vector<oclMat>& masks, bool compactResult)
{
if (k == 2)
{
oclMat trainCollection;
oclMat maskCollection;
makeGpuCollection(trainCollection, maskCollection, masks);
oclMat trainIdx, imgIdx, distance;
knnMatch2Collection(query, trainCollection, trainIdx, imgIdx, distance, maskCollection);
knnMatch2Download(trainIdx, imgIdx, distance, matches);
}
else
{
if (query.empty() || empty())
return;
vector< vector<DMatch> > curMatches;
vector<DMatch> temp;
temp.reserve(2 * k);
matches.resize(query.rows);
for_each(matches.begin(), matches.end(), bind2nd(mem_fun_ref(&vector<DMatch>::reserve), k));
for (size_t imgIdx = 0, size = trainDescCollection.size(); imgIdx < size; ++imgIdx)
{
knnMatch(query, trainDescCollection[imgIdx], curMatches, k, masks.empty() ? oclMat() : masks[imgIdx]);
for (int queryIdx = 0; queryIdx < query.rows; ++queryIdx)
{
vector<DMatch>& localMatch = curMatches[queryIdx];
vector<DMatch>& globalMatch = matches[queryIdx];
for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(static_cast<int>(imgIdx)));
temp.clear();
merge(globalMatch.begin(), globalMatch.end(), localMatch.begin(), localMatch.end(), back_inserter(temp));
globalMatch.clear();
const size_t count = std::min((size_t)k, temp.size());
copy(temp.begin(), temp.begin() + count, back_inserter(globalMatch));
}
}
if (compactResult)
{
vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(), mem_fun_ref(&vector<DMatch>::empty));
matches.erase(new_end, matches.end());
}
}
}
// radiusMatchSingle
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchSingle(const oclMat& query, const oclMat& train,
oclMat& trainIdx, oclMat& distance, oclMat& nMatches, float maxDistance, const oclMat& mask)
{
if (query.empty() || train.empty())
return;
typedef void (*caller_t)(const oclMat& query, const oclMat& train, float maxDistance, const oclMat& mask,
const oclMat& trainIdx, const oclMat& distance, const oclMat& nMatches);
//#if 0
static const caller_t callers[3][6] =
{
{
ocl_matchL1_gpu<unsigned char>, 0/*ocl_matchL1_gpu<signed char>*/,
ocl_matchL1_gpu<unsigned short>, ocl_matchL1_gpu<short>,
ocl_matchL1_gpu<int>, ocl_matchL1_gpu<float>
},
{
0/*ocl_matchL2_gpu<unsigned char>*/, 0/*ocl_matchL2_gpu<signed char>*/,
0/*ocl_matchL2_gpu<unsigned short>*/, 0/*ocl_matchL2_gpu<short>*/,
0/*ocl_matchL2_gpu<int>*/, ocl_matchL2_gpu<float>
},
{
ocl_matchHamming_gpu<unsigned char>, 0/*ocl_matchHamming_gpu<signed char>*/,
ocl_matchHamming_gpu<unsigned short>, 0/*ocl_matchHamming_gpu<short>*/,
ocl_matchHamming_gpu<int>, 0/*ocl_matchHamming_gpu<float>*/
}
};
//#endif
const int nQuery = query.rows;
const int nTrain = train.rows;
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.type() == query.type() && train.cols == query.cols);
CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size()));
nMatches.create(1, nQuery, CV_32SC1);
if (trainIdx.empty())
{
trainIdx.create(nQuery, std::max((nTrain / 100), 10), CV_32SC1);
distance.create(nQuery, std::max((nTrain / 100), 10), CV_32FC1);
}
nMatches.setTo(Scalar::all(0));
caller_t func = callers[distType][query.depth()];
//CV_Assert(func != 0);
//func(query, train, maxDistance, mask, trainIdx, distance, nMatches, cc, StreamAccessor::getStream(stream));
func(query, train, maxDistance, mask, trainIdx, distance, nMatches);
}
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchDownload(const oclMat& trainIdx, const oclMat& distance, const oclMat& nMatches,
vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || distance.empty() || nMatches.empty())
return;
Mat trainIdxCPU(trainIdx);
Mat distanceCPU(distance);
Mat nMatchesCPU(nMatches);
radiusMatchConvert(trainIdxCPU, distanceCPU, nMatchesCPU, matches, compactResult);
}
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches,
vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || distance.empty() || nMatches.empty())
return;
CV_Assert(trainIdx.type() == CV_32SC1);
CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size());
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.cols == trainIdx.rows);
const int nQuery = trainIdx.rows;
matches.clear();
matches.reserve(nQuery);
const int* nMatches_ptr = nMatches.ptr<int>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
{
const int* trainIdx_ptr = trainIdx.ptr<int>(queryIdx);
const float* distance_ptr = distance.ptr<float>(queryIdx);
const int nMatches = std::min(nMatches_ptr[queryIdx], trainIdx.cols);
if (nMatches == 0)
{
if (!compactResult)
matches.push_back(vector<DMatch>());
continue;
}
matches.push_back(vector<DMatch>(nMatches));
vector<DMatch>& curMatches = matches.back();
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
float distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, 0, distance);
curMatches[i] = m;
}
sort(curMatches.begin(), curMatches.end());
}
}
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatch(const oclMat& query, const oclMat& train, vector< vector<DMatch> >& matches,
float maxDistance, const oclMat& mask, bool compactResult)
{
oclMat trainIdx, distance, nMatches;
radiusMatchSingle(query, train, trainIdx, distance, nMatches, maxDistance, mask);
radiusMatchDownload(trainIdx, distance, nMatches, matches, compactResult);
}
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchCollection(const oclMat& query, oclMat& trainIdx, oclMat& imgIdx, oclMat& distance,
oclMat& nMatches, float maxDistance, const vector<oclMat>& masks)
{
if (query.empty() || empty())
return;
typedef void (*caller_t)(const oclMat& query, const oclMat* trains, int n, float maxDistance, const oclMat* masks,
const oclMat& trainIdx, const oclMat& imgIdx, const oclMat& distance, const oclMat& nMatches);
#if 0
static const caller_t callers[3][6] =
{
{
ocl_matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
ocl_matchL1_gpu<unsigned short>, matchL1_gpu<short>,
ocl_matchL1_gpu<int>, matchL1_gpu<float>
},
{
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
0/*matchL2_gpu<int>*/, ocl_matchL2_gpu<float>
},
{
ocl_matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
ocl_matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
ocl_matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
}
};
#endif
const int nQuery = query.rows;
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size() && trainIdx.size() == imgIdx.size()));
nMatches.create(1, nQuery, CV_32SC1);
if (trainIdx.empty())
{
trainIdx.create(nQuery, std::max((nQuery / 100), 10), CV_32SC1);
imgIdx.create(nQuery, std::max((nQuery / 100), 10), CV_32SC1);
distance.create(nQuery, std::max((nQuery / 100), 10), CV_32FC1);
}
nMatches.setTo(Scalar::all(0));
//caller_t func = callers[distType][query.depth()];
//CV_Assert(func != 0);
vector<oclMat> trains_(trainDescCollection.begin(), trainDescCollection.end());
vector<oclMat> masks_(masks.begin(), masks.end());
/* func(query, &trains_[0], static_cast<int>(trains_.size()), maxDistance, masks_.size() == 0 ? 0 : &masks_[0],
trainIdx, imgIdx, distance, nMatches));*/
}
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchDownload(const oclMat& trainIdx, const oclMat& imgIdx, const oclMat& distance,
const oclMat& nMatches, vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || imgIdx.empty() || distance.empty() || nMatches.empty())
return;
Mat trainIdxCPU(trainIdx);
Mat imgIdxCPU(imgIdx);
Mat distanceCPU(distance);
Mat nMatchesCPU(nMatches);
radiusMatchConvert(trainIdxCPU, imgIdxCPU, distanceCPU, nMatchesCPU, matches, compactResult);
}
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches,
vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || imgIdx.empty() || distance.empty() || nMatches.empty())
return;
CV_Assert(trainIdx.type() == CV_32SC1);
CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.size() == trainIdx.size());
CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size());
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.cols == trainIdx.rows);
const int nQuery = trainIdx.rows;
matches.clear();
matches.reserve(nQuery);
const int* nMatches_ptr = nMatches.ptr<int>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
{
const int* trainIdx_ptr = trainIdx.ptr<int>(queryIdx);
const int* imgIdx_ptr = imgIdx.ptr<int>(queryIdx);
const float* distance_ptr = distance.ptr<float>(queryIdx);
const int nMatches = std::min(nMatches_ptr[queryIdx], trainIdx.cols);
if (nMatches == 0)
{
if (!compactResult)
matches.push_back(vector<DMatch>());
continue;
}
matches.push_back(vector<DMatch>());
vector<DMatch>& curMatches = matches.back();
curMatches.reserve(nMatches);
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
int imgIdx = *imgIdx_ptr;
float distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, imgIdx, distance);
curMatches.push_back(m);
}
sort(curMatches.begin(), curMatches.end());
}
}
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatch(const oclMat& query, vector< vector<DMatch> >& matches, float maxDistance,
const vector<oclMat>& masks, bool compactResult)
{
oclMat trainIdx, imgIdx, distance, nMatches;
radiusMatchCollection(query, trainIdx, imgIdx, distance, nMatches, maxDistance, masks);
radiusMatchDownload(trainIdx, imgIdx, distance, nMatches, matches, compactResult);
}
#endif
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics:enable
#define MAX_FLOAT 1e7f
int bit1Count(float x)
{
int c = 0;
int ix = (int)x;
for (int i = 0 ; i < 32 ; i++)
{
c += ix & 0x1;
ix >>= 1;
}
return (float)c;
}
/* 2dim launch, global size: dim0 is (query rows + block_size - 1) / block_size * block_size, dim1 is block_size
local size: dim0 is block_size, dim1 is block_size.
*/
__kernel void BruteForceMatch_UnrollMatch(
__global float *query,
__global float *train,
__global float *mask,
__global int *bestTrainIdx,
__global float *bestDistance,
__local float *sharebuffer,
int block_size,
int max_desc_len,
int query_rows,
int query_cols,
int train_rows,
int train_cols,
int step,
int distType
)
{
const int lidx = get_local_id(0);
const int lidy = get_local_id(1);
const int groupidx = get_group_id(0);
__local float *s_query = sharebuffer;
__local float *s_train = sharebuffer + block_size * max_desc_len;
int queryIdx = groupidx * block_size + lidy;
// load the query into local memory.
for (int i = 0 ; i < max_desc_len / block_size; i ++)
{
int loadx = lidx + i * block_size;
s_query[lidy * max_desc_len + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
}
float myBestDistance = MAX_FLOAT;
int myBestTrainIdx = -1;
// loopUnrolledCached to find the best trainIdx and best distance.
volatile int imgIdx = 0;
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
{
float result = 0;
for (int i = 0 ; i < max_desc_len / block_size ; i++)
{
//load a block_size * block_size block into local train.
const int loadx = lidx + i * block_size;
s_train[lidx * block_size + lidy] = loadx < train_cols ? train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
//synchronize to make sure each elem for reduceIteration in share memory is written already.
barrier(CLK_LOCAL_MEM_FENCE);
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
switch(distType)
{
case 0:
for (int j = 0 ; j < block_size ; j++)
{
result += fabs(s_query[lidy * max_desc_len + i * block_size + j] - s_train[j * block_size + lidx]);
}
break;
case 1:
for (int j = 0 ; j < block_size ; j++)
{
float qr = s_query[lidy * max_desc_len + i * block_size + j] - s_train[j * block_size + lidx];
result += qr * qr;
}
break;
case 2:
for (int j = 0 ; j < block_size ; j++)
{
//result += popcount((uint)s_query[lidy * max_desc_len + i * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
result += bit1Count((uint)s_query[lidy * max_desc_len + i * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
}
break;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
int trainIdx = t * block_size + lidx;
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance/* && mask(queryIdx, trainIdx)*/)
{
//bestImgIdx = imgIdx;
myBestDistance = result;
myBestTrainIdx = trainIdx;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
__local float *s_distance = (__local float*)(sharebuffer);
__local int* s_trainIdx = (__local int *)(sharebuffer + block_size * block_size);
//find BestMatch
s_distance += lidy * block_size;
s_trainIdx += lidy * block_size;
s_distance[lidx] = myBestDistance;
s_trainIdx[lidx] = myBestTrainIdx;
barrier(CLK_LOCAL_MEM_FENCE);
//reduce -- now all reduce implement in each threads.
for (int k = 0 ; k < block_size; k++)
{
if (myBestDistance > s_distance[k])
{
myBestDistance = s_distance[k];
myBestTrainIdx = s_trainIdx[k];
}
}
if (queryIdx < query_rows && lidx == 0)
{
bestTrainIdx[queryIdx] = myBestTrainIdx;
bestDistance[queryIdx] = myBestDistance;
}
}
__kernel void BruteForceMatch_Match(
__global float *query,
__global float *train,
__global float *mask,
__global int *bestTrainIdx,
__global float *bestDistance,
__local float *sharebuffer,
int block_size,
int query_rows,
int query_cols,
int train_rows,
int train_cols,
int step,
int distType
)
{
const int lidx = get_local_id(0);
const int lidy = get_local_id(1);
const int groupidx = get_group_id(0);
const int queryIdx = groupidx * block_size + lidy;
float myBestDistance = MAX_FLOAT;
int myBestTrainIdx = -1;
__local float *s_query = sharebuffer;
__local float *s_train = sharebuffer + block_size * block_size;
// loop
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
{
//Dist dist;
float result = 0;
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; i++)
{
const int loadx = lidx + i * block_size;
//load query and train into local memory
s_query[lidy * block_size + lidx] = 0;
s_train[lidx * block_size + lidy] = 0;
if (loadx < query_cols)
{
s_query[lidy * block_size + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
s_train[lidx * block_size + lidy] = train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
}
barrier(CLK_LOCAL_MEM_FENCE);
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
switch(distType)
{
case 0:
for (int j = 0 ; j < block_size ; j++)
{
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
}
break;
case 1:
for (int j = 0 ; j < block_size ; j++)
{
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
result += qr * qr;
}
break;
case 2:
for (int j = 0 ; j < block_size ; j++)
{
//result += popcount((uint)s_query[lidy * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
result += bit1Count((uint)s_query[lidy * block_size + j] ^ (uint)s_train[(uint)j * block_size + lidx]);
}
break;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
const int trainIdx = t * block_size + lidx;
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance /*&& mask(queryIdx, trainIdx)*/)
{
//myBestImgidx = imgIdx;
myBestDistance = result;
myBestTrainIdx = trainIdx;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
__local float *s_distance = (__local float *)sharebuffer;
__local int *s_trainIdx = (__local int *)(sharebuffer + block_size * block_size);
//findBestMatch
s_distance += lidy * block_size;
s_trainIdx += lidy * block_size;
s_distance[lidx] = myBestDistance;
s_trainIdx[lidx] = myBestTrainIdx;
barrier(CLK_LOCAL_MEM_FENCE);
//reduce -- now all reduce implement in each threads.
for (int k = 0 ; k < block_size; k++)
{
if (myBestDistance > s_distance[k])
{
myBestDistance = s_distance[k];
myBestTrainIdx = s_trainIdx[k];
}
}
if (queryIdx < query_rows && lidx == 0)
{
bestTrainIdx[queryIdx] = myBestTrainIdx;
bestDistance[queryIdx] = myBestDistance;
}
}
//radius_unrollmatch
__kernel void BruteForceMatch_RadiusUnrollMatch(
__global float *query,
__global float *train,
float maxDistance,
__global float *mask,
__global int *bestTrainIdx,
__global float *bestDistance,
__global int *nMatches,
__local float *sharebuffer,
int block_size,
int max_desc_len,
int query_rows,
int query_cols,
int train_rows,
int train_cols,
int bestTrainIdx_cols,
int step,
int ostep,
int distType
)
{
const int lidx = get_local_id(0);
const int lidy = get_local_id(1);
const int groupidx = get_group_id(0);
const int groupidy = get_group_id(1);
const int queryIdx = groupidy * block_size + lidy;
const int trainIdx = groupidx * block_size + lidx;
__local float *s_query = sharebuffer;
__local float *s_train = sharebuffer + block_size * block_size;
float result = 0;
for (int i = 0 ; i < max_desc_len / block_size ; ++i)
{
//load a block_size * block_size block into local train.
const int loadx = lidx + i * block_size;
s_query[lidy * block_size + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
s_train[lidx * block_size + lidy] = loadx < query_cols ? train[min(groupidx * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
//synchronize to make sure each elem for reduceIteration in share memory is written already.
barrier(CLK_LOCAL_MEM_FENCE);
/* there are three types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
switch(distType)
{
case 0:
for (int j = 0 ; j < block_size ; ++j)
{
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
}
break;
case 1:
for (int j = 0 ; j < block_size ; ++j)
{
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
result += qr * qr;
}
break;
case 2:
for (int j = 0 ; j < block_size ; ++j)
{
result += bit1Count((uint)s_query[lidy * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
}
break;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (queryIdx < query_rows && trainIdx < train_rows && result < maxDistance/* && mask(queryIdx, trainIdx)*/)
{
unsigned int ind = atom_inc(nMatches + queryIdx/*, (unsigned int) -1*/);
if(ind < bestTrainIdx_cols)
{
//bestImgIdx = imgIdx;
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
bestDistance[queryIdx * (ostep / sizeof(float)) + ind] = result;
}
}
}
//radius_match
__kernel void BruteForceMatch_RadiusMatch(
__global float *query,
__global float *train,
float maxDistance,
__global float *mask,
__global int *bestTrainIdx,
__global float *bestDistance,
__global int *nMatches,
__local float *sharebuffer,
int block_size,
int query_rows,
int query_cols,
int train_rows,
int train_cols,
int bestTrainIdx_cols,
int step,
int ostep,
int distType
)
{
const int lidx = get_local_id(0);
const int lidy = get_local_id(1);
const int groupidx = get_group_id(0);
const int groupidy = get_group_id(1);
const int queryIdx = groupidy * block_size + lidy;
const int trainIdx = groupidx * block_size + lidx;
__local float *s_query = sharebuffer;
__local float *s_train = sharebuffer + block_size * block_size;
float result = 0;
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; ++i)
{
//load a block_size * block_size block into local train.
const int loadx = lidx + i * block_size;
s_query[lidy * block_size + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
s_train[lidx * block_size + lidy] = loadx < query_cols ? train[min(groupidx * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
//synchronize to make sure each elem for reduceIteration in share memory is written already.
barrier(CLK_LOCAL_MEM_FENCE);
/* there are three types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
switch(distType)
{
case 0:
for (int j = 0 ; j < block_size ; ++j)
{
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
}
break;
case 1:
for (int j = 0 ; j < block_size ; ++j)
{
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
result += qr * qr;
}
break;
case 2:
for (int j = 0 ; j < block_size ; ++j)
{
result += bit1Count((uint)s_query[lidy * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
}
break;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (queryIdx < query_rows && trainIdx < train_rows && result < maxDistance/* && mask(queryIdx, trainIdx)*/)
{
unsigned int ind = atom_inc(nMatches + queryIdx/*, (unsigned int) -1*/);
if(ind < bestTrainIdx_cols)
{
//bestImgIdx = imgIdx;
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
bestDistance[queryIdx * (ostep / sizeof(float)) + ind] = result;
}
}
}
__kernel void BruteForceMatch_knnUnrollMatch(
__global float *query,
__global float *train,
__global float *mask,
__global int2 *bestTrainIdx,
__global float2 *bestDistance,
__local float *sharebuffer,
int block_size,
int max_desc_len,
int query_rows,
int query_cols,
int train_rows,
int train_cols,
int step,
int distType
)
{
const int lidx = get_local_id(0);
const int lidy = get_local_id(1);
const int groupidx = get_group_id(0);
const int queryIdx = groupidx * block_size + lidy;
local float *s_query = sharebuffer;
local float *s_train = sharebuffer + block_size * max_desc_len;
// load the query into local memory.
for (int i = 0 ; i < max_desc_len / block_size; i ++)
{
int loadx = lidx + i * block_size;
s_query[lidy * max_desc_len + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
}
float myBestDistance1 = MAX_FLOAT;
float myBestDistance2 = MAX_FLOAT;
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
//loopUnrolledCached
volatile int imgIdx = 0;
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
{
float result = 0;
for (int i = 0 ; i < max_desc_len / block_size ; i++)
{
const int loadX = lidx + i * block_size;
//load a block_size * block_size block into local train.
const int loadx = lidx + i * block_size;
s_train[lidx * block_size + lidy] = loadx < train_cols ? train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
//synchronize to make sure each elem for reduceIteration in share memory is written already.
barrier(CLK_LOCAL_MEM_FENCE);
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
switch(distType)
{
case 0:
for (int j = 0 ; j < block_size ; j++)
{
result += fabs(s_query[lidy * max_desc_len + i * block_size + j] - s_train[j * block_size + lidx]);
}
break;
case 1:
for (int j = 0 ; j < block_size ; j++)
{
float qr = s_query[lidy * max_desc_len + i * block_size + j] - s_train[j * block_size + lidx];
result += qr * qr;
}
break;
case 2:
for (int j = 0 ; j < block_size ; j++)
{
//result += popcount((uint)s_query[lidy * max_desc_len + i * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
result += bit1Count((uint)s_query[lidy * max_desc_len + i * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
}
break;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
const int trainIdx = t * block_size + lidx;
if (queryIdx < query_rows && trainIdx < train_rows)
{
if (result < myBestDistance1)
{
myBestDistance2 = myBestDistance1;
myBestTrainIdx2 = myBestTrainIdx1;
myBestDistance1 = result;
myBestTrainIdx1 = trainIdx;
}
else if (result < myBestDistance2)
{
myBestDistance2 = result;
myBestTrainIdx2 = trainIdx;
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
local float *s_distance = (local float *)sharebuffer;
local int *s_trainIdx = (local int *)(sharebuffer + block_size * block_size);
// find BestMatch
s_distance += lidy * block_size;
s_trainIdx += lidy * block_size;
s_distance[lidx] = myBestDistance1;
s_trainIdx[lidx] = myBestTrainIdx1;
float bestDistance1 = MAX_FLOAT;
float bestDistance2 = MAX_FLOAT;
int bestTrainIdx1 = -1;
int bestTrainIdx2 = -1;
barrier(CLK_LOCAL_MEM_FENCE);
if (lidx == 0)
{
for (int i = 0 ; i < block_size ; i++)
{
float val = s_distance[i];
if (val < bestDistance1)
{
bestDistance2 = bestDistance1;
bestTrainIdx2 = bestTrainIdx1;
bestDistance1 = val;
bestTrainIdx1 = s_trainIdx[i];
}
else if (val < bestDistance2)
{
bestDistance2 = val;
bestTrainIdx2 = s_trainIdx[i];
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
s_distance[lidx] = myBestDistance2;
s_trainIdx[lidx] = myBestTrainIdx2;
barrier(CLK_LOCAL_MEM_FENCE);
if (lidx == 0)
{
for (int i = 0 ; i < block_size ; i++)
{
float val = s_distance[i];
if (val < bestDistance2)
{
bestDistance2 = val;
bestTrainIdx2 = s_trainIdx[i];
}
}
}
myBestDistance1 = bestDistance1;
myBestDistance2 = bestDistance2;
myBestTrainIdx1 = bestTrainIdx1;
myBestTrainIdx2 = bestTrainIdx2;
if (queryIdx < query_rows && lidx == 0)
{
bestTrainIdx[queryIdx] = (int2)(myBestTrainIdx1, myBestTrainIdx2);
bestDistance[queryIdx] = (float2)(myBestDistance1, myBestDistance2);
}
}
__kernel void BruteForceMatch_knnMatch(
__global float *query,
__global float *train,
__global float *mask,
__global int2 *bestTrainIdx,
__global float2 *bestDistance,
__local float *sharebuffer,
int block_size,
int query_rows,
int query_cols,
int train_rows,
int train_cols,
int step,
int distType
)
{
const int lidx = get_local_id(0);
const int lidy = get_local_id(1);
const int groupidx = get_group_id(0);
const int queryIdx = groupidx * block_size + lidy;
local float *s_query = sharebuffer;
local float *s_train = sharebuffer + block_size * block_size;
float myBestDistance1 = MAX_FLOAT;
float myBestDistance2 = MAX_FLOAT;
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
//loop
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
{
float result = 0.0f;
for (int i = 0 ; i < (query_cols + block_size -1) / block_size ; i++)
{
const int loadx = lidx + i * block_size;
//load query and train into local memory
s_query[lidy * block_size + lidx] = 0;
s_train[lidx * block_size + lidy] = 0;
if (loadx < query_cols)
{
s_query[lidy * block_size + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
s_train[lidx * block_size + lidy] = train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
}
barrier(CLK_LOCAL_MEM_FENCE);
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
switch(distType)
{
case 0:
for (int j = 0 ; j < block_size ; j++)
{
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
}
break;
case 1:
for (int j = 0 ; j < block_size ; j++)
{
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
result += qr * qr;
}
break;
case 2:
for (int j = 0 ; j < block_size ; j++)
{
//result += popcount((uint)s_query[lidy * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
result += bit1Count((uint)s_query[lidy * block_size + j] ^ (uint)s_train[(uint)j * block_size + lidx]);
}
break;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
const int trainIdx = t * block_size + lidx;
if (queryIdx < query_rows && trainIdx < train_rows /*&& mask(queryIdx, trainIdx)*/)
{
if (result < myBestDistance1)
{
myBestDistance2 = myBestDistance1;
myBestTrainIdx2 = myBestTrainIdx1;
myBestDistance1 = result;
myBestTrainIdx1 = trainIdx;
}
else if (result < myBestDistance2)
{
myBestDistance2 = result;
myBestTrainIdx2 = trainIdx;
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
__local float *s_distance = (__local float *)sharebuffer;
__local int *s_trainIdx = (__local int *)(sharebuffer + block_size * block_size);
//findBestMatch
s_distance += lidy * block_size;
s_trainIdx += lidy * block_size;
s_distance[lidx] = myBestDistance1;
s_trainIdx[lidx] = myBestTrainIdx1;
float bestDistance1 = MAX_FLOAT;
float bestDistance2 = MAX_FLOAT;
int bestTrainIdx1 = -1;
int bestTrainIdx2 = -1;
barrier(CLK_LOCAL_MEM_FENCE);
if (lidx == 0)
{
for (int i = 0 ; i < block_size ; i++)
{
float val = s_distance[i];
if (val < bestDistance1)
{
bestDistance2 = bestDistance1;
bestTrainIdx2 = bestTrainIdx1;
bestDistance1 = val;
bestTrainIdx1 = s_trainIdx[i];
}
else if (val < bestDistance2)
{
bestDistance2 = val;
bestTrainIdx2 = s_trainIdx[i];
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
s_distance[lidx] = myBestDistance2;
s_trainIdx[lidx] = myBestTrainIdx2;
barrier(CLK_LOCAL_MEM_FENCE);
if (lidx == 0)
{
for (int i = 0 ; i < block_size ; i++)
{
float val = s_distance[i];
if (val < bestDistance2)
{
bestDistance2 = val;
bestTrainIdx2 = s_trainIdx[i];
}
}
}
myBestDistance1 = bestDistance1;
myBestDistance2 = bestDistance2;
myBestTrainIdx1 = bestTrainIdx1;
myBestTrainIdx2 = bestTrainIdx2;
if (queryIdx < query_rows && lidx == 0)
{
bestTrainIdx[queryIdx] = (int2)(myBestTrainIdx1, myBestTrainIdx2);
bestDistance[queryIdx] = (float2)(myBestDistance1, myBestDistance2);
}
}
kernel void BruteForceMatch_calcDistanceUnrolled(
__global float *query,
__global float *train,
__global float *mask,
__global float *allDist,
__local float *sharebuffer,
int block_size,
int max_desc_len,
int query_rows,
int query_cols,
int train_rows,
int train_cols,
int step,
int distType)
{
/* Todo */
}
kernel void BruteForceMatch_calcDistance(
__global float *query,
__global float *train,
__global float *mask,
__global float *allDist,
__local float *sharebuffer,
int block_size,
int query_rows,
int query_cols,
int train_rows,
int train_cols,
int step,
int distType)
{
/* Todo */
}
kernel void BruteForceMatch_findBestMatch(
__global float *allDist,
__global int *bestTrainIdx,
__global float *bestDistance,
int k,
int block_size
)
{
/* Todo */
}
\ No newline at end of file
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace {
/////////////////////////////////////////////////////////////////////////////////////////////////
// BruteForceMatcher
CV_ENUM(DistType, cv::ocl::BruteForceMatcher_OCL_base::L1Dist, cv::ocl::BruteForceMatcher_OCL_base::L2Dist, cv::ocl::BruteForceMatcher_OCL_base::HammingDist)
IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
PARAM_TEST_CASE(BruteForceMatcher/*, NormCode*/, DistType, DescriptorSize)
{
//std::vector<cv::ocl::Info> oclinfo;
cv::ocl::BruteForceMatcher_OCL_base::DistType distType;
int normCode;
int dim;
int queryDescCount;
int countFactor;
cv::Mat query, train;
virtual void SetUp()
{
//normCode = GET_PARAM(0);
distType = (cv::ocl::BruteForceMatcher_OCL_base::DistType)(int)GET_PARAM(0);
dim = GET_PARAM(1);
//int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
//CV_Assert(devnums > 0);
queryDescCount = 300; // must be even number because we split train data in some cases in two
countFactor = 4; // do not change it
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
cv::Mat queryBuf, trainBuf;
// Generate query descriptors randomly.
// Descriptor vector elements are integer values.
queryBuf.create(queryDescCount, dim, CV_32SC1);
rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3));
queryBuf.convertTo(queryBuf, CV_32FC1);
// Generate train decriptors as follows:
// copy each query descriptor to train set countFactor times
// and perturb some one element of the copied descriptors in
// in ascending order. General boundaries of the perturbation
// are (0.f, 1.f).
trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1);
float step = 1.f / countFactor;
for (int qIdx = 0; qIdx < queryDescCount; qIdx++)
{
cv::Mat queryDescriptor = queryBuf.row(qIdx);
for (int c = 0; c < countFactor; c++)
{
int tIdx = qIdx * countFactor + c;
cv::Mat trainDescriptor = trainBuf.row(tIdx);
queryDescriptor.copyTo(trainDescriptor);
int elem = rng(dim);
float diff = rng.uniform(step * c, step * (c + 1));
trainDescriptor.at<float>(0, elem) += diff;
}
}
queryBuf.convertTo(query, CV_32F);
trainBuf.convertTo(train, CV_32F);
}
};
TEST_P(BruteForceMatcher, Match_Single)
{
cv::ocl::BruteForceMatcher_OCL_base matcher(distType);
std::vector<cv::DMatch> matches;
matcher.match(cv::ocl::oclMat(query), cv::ocl::oclMat(train), matches);
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
for (size_t i = 0; i < matches.size(); i++)
{
cv::DMatch match = matches[i];
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
badCount++;
}
ASSERT_EQ(0, badCount);
}
TEST_P(BruteForceMatcher, KnnMatch_2_Single)
{
const int knn = 2;
cv::ocl::BruteForceMatcher_OCL_base matcher(distType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.knnMatch(cv::ocl::oclMat(query), cv::ocl::oclMat(train), matches, knn);
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
for (size_t i = 0; i < matches.size(); i++)
{
if ((int)matches[i].size() != knn)
badCount++;
else
{
int localBadCount = 0;
for (int k = 0; k < knn; k++)
{
cv::DMatch match = matches[i][k];
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
localBadCount++;
}
badCount += localBadCount > 0 ? 1 : 0;
}
}
ASSERT_EQ(0, badCount);
}
TEST_P(BruteForceMatcher, RadiusMatch_Single)
{
float radius;
if(distType == cv::ocl::BruteForceMatcher_OCL_base::L2Dist)
radius = 1.f / countFactor /countFactor;
else
radius = 1.f / countFactor;
cv::ocl::BruteForceMatcher_OCL_base matcher(distType);
// assume support atomic.
//if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS))
//{
// try
// {
// std::vector< std::vector<cv::DMatch> > matches;
// matcher.radiusMatch(loadMat(query), loadMat(train), matches, radius);
// }
// catch (const cv::Exception& e)
// {
// ASSERT_EQ(CV_StsNotImplemented, e.code);
// }
//}
//else
{
std::vector< std::vector<cv::DMatch> > matches;
matcher.radiusMatch(cv::ocl::oclMat(query), cv::ocl::oclMat(train), matches, radius);
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
for (size_t i = 0; i < matches.size(); i++)
{
if ((int)matches[i].size() != 1)
{
badCount++;
}
else
{
cv::DMatch match = matches[i][0];
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0))
badCount++;
}
}
ASSERT_EQ(0, badCount);
}
}
INSTANTIATE_TEST_CASE_P(GPU_Features2D, BruteForceMatcher, testing::Combine(
//ALL_DEVICES,
testing::Values(DistType(cv::ocl::BruteForceMatcher_OCL_base::L1Dist), DistType(cv::ocl::BruteForceMatcher_OCL_base::L2Dist)),
testing::Values(DescriptorSize(57), DescriptorSize(64), DescriptorSize(83), DescriptorSize(128), DescriptorSize(179), DescriptorSize(256), DescriptorSize(304))));
} // namespace
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment