Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
64a6b121
Commit
64a6b121
authored
Apr 19, 2018
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #11340 from dkurt:dnn_inf_engine_switch_target
parents
4e310157
3b4a292c
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
148 additions
and
88 deletions
+148
-88
op_inf_engine.cpp
modules/dnn/src/op_inf_engine.cpp
+0
-1
test_backends.cpp
modules/dnn/test/test_backends.cpp
+1
-1
test_caffe_importer.cpp
modules/dnn/test/test_caffe_importer.cpp
+18
-27
test_common.hpp
modules/dnn/test/test_common.hpp
+90
-0
test_darknet_importer.cpp
modules/dnn/test/test_darknet_importer.cpp
+25
-36
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+14
-23
No files found.
modules/dnn/src/op_inf_engine.cpp
View file @
64a6b121
...
...
@@ -139,7 +139,6 @@ InfEngineBackendNet::InfEngineBackendNet(InferenceEngine::CNNNetwork& net)
inputs
=
net
.
getInputsInfo
();
outputs
=
net
.
getOutputsInfo
();
layers
.
resize
(
net
.
layerCount
());
// A hack to execute InfEngineBackendNet::layerCount correctly.
initPlugin
(
net
);
}
void
InfEngineBackendNet
::
Release
()
noexcept
...
...
modules/dnn/test/test_backends.cpp
View file @
64a6b121
...
...
@@ -71,7 +71,7 @@ public:
Mat
out
=
net
.
forward
(
outputLayer
).
clone
();
if
(
outputLayer
==
"detection_out"
)
checkDetections
(
outDefault
,
out
,
"First run"
,
l1
,
lInf
);
normAssertDetections
(
outDefault
,
out
,
"First run"
,
0.2
);
else
normAssert
(
outDefault
,
out
,
"First run"
,
l1
,
lInf
);
...
...
modules/dnn/test/test_caffe_importer.cpp
View file @
64a6b121
...
...
@@ -167,7 +167,7 @@ TEST(Reproducibility_SSD, Accuracy)
Mat
out
=
net
.
forward
(
"detection_out"
);
Mat
ref
=
blobFromNPY
(
_tf
(
"ssd_out.npy"
));
normAssert
(
ref
,
out
);
normAssert
Detections
(
ref
,
out
);
}
typedef
testing
::
TestWithParam
<
DNNTarget
>
Reproducibility_MobileNet_SSD
;
...
...
@@ -186,7 +186,7 @@ TEST_P(Reproducibility_MobileNet_SSD, Accuracy)
Mat
out
=
net
.
forward
();
Mat
ref
=
blobFromNPY
(
_tf
(
"mobilenet_ssd_caffe_out.npy"
));
normAssert
(
ref
,
out
);
normAssert
Detections
(
ref
,
out
);
// Check that detections aren't preserved.
inp
.
setTo
(
0.0
f
);
...
...
@@ -403,14 +403,13 @@ TEST_P(opencv_face_detector, Accuracy)
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat
out
=
net
.
forward
();
Mat
ref
=
(
Mat_
<
float
>
(
6
,
5
)
<<
0.99520785
,
0.80997437
,
0.16379407
,
0.87996572
,
0.26685631
,
0.9934696
,
0.2831718
,
0.50738752
,
0.345781
,
0.5985168
,
0.99096733
,
0.13629119
,
0.24892329
,
0.19756334
,
0.3310290
,
0.98977017
,
0.23901358
,
0.09084064
,
0.29902688
,
0.1769477
,
0.97203469
,
0.67965847
,
0.06876482
,
0.73999709
,
0.1513494
,
0.95097077
,
0.51901293
,
0.45863652
,
0.5777427
,
0.5347801
);
normAssert
(
out
.
reshape
(
1
,
out
.
total
()
/
7
).
rowRange
(
0
,
6
).
colRange
(
2
,
7
),
ref
);
Mat
ref
=
(
Mat_
<
float
>
(
6
,
7
)
<<
0
,
1
,
0.99520785
,
0.80997437
,
0.16379407
,
0.87996572
,
0.26685631
,
0
,
1
,
0.9934696
,
0.2831718
,
0.50738752
,
0.345781
,
0.5985168
,
0
,
1
,
0.99096733
,
0.13629119
,
0.24892329
,
0.19756334
,
0.3310290
,
0
,
1
,
0.98977017
,
0.23901358
,
0.09084064
,
0.29902688
,
0.1769477
,
0
,
1
,
0.97203469
,
0.67965847
,
0.06876482
,
0.73999709
,
0.1513494
,
0
,
1
,
0.95097077
,
0.51901293
,
0.45863652
,
0.5777427
,
0.5347801
);
normAssertDetections
(
ref
,
out
,
""
,
0.5
,
1e-5
,
2e-4
);
}
INSTANTIATE_TEST_CASE_P
(
Test_Caffe
,
opencv_face_detector
,
Combine
(
...
...
@@ -426,14 +425,14 @@ TEST(Test_Caffe, FasterRCNN_and_RFCN)
"resnet50_rfcn_final.caffemodel"
};
std
::
string
protos
[]
=
{
"faster_rcnn_vgg16.prototxt"
,
"faster_rcnn_zf.prototxt"
,
"rfcn_pascal_voc_resnet50.prototxt"
};
Mat
refs
[]
=
{(
Mat_
<
float
>
(
3
,
6
)
<<
2
,
0.949398
,
99.2454
,
210.141
,
601.205
,
462.849
,
7
,
0.997022
,
481.841
,
92.3218
,
722.685
,
175.953
,
12
,
0.993028
,
133.221
,
189.377
,
350.994
,
563.166
),
(
Mat_
<
float
>
(
3
,
6
)
<<
2
,
0.90121
,
120.407
,
115.83
,
570.586
,
528.395
,
7
,
0.988779
,
469.849
,
75.1756
,
718.64
,
186.762
,
12
,
0.967198
,
138.588
,
206.843
,
329.766
,
553.176
),
(
Mat_
<
float
>
(
2
,
6
)
<<
7
,
0.991359
,
491.822
,
81.1668
,
702.573
,
178.234
,
12
,
0.94786
,
132.093
,
223.903
,
338.077
,
566.16
)};
Mat
refs
[]
=
{(
Mat_
<
float
>
(
3
,
7
)
<<
0
,
2
,
0.949398
,
99.2454
,
210.141
,
601.205
,
462.849
,
0
,
7
,
0.997022
,
481.841
,
92.3218
,
722.685
,
175.953
,
0
,
12
,
0.993028
,
133.221
,
189.377
,
350.994
,
563.166
),
(
Mat_
<
float
>
(
3
,
7
)
<<
0
,
2
,
0.90121
,
120.407
,
115.83
,
570.586
,
528.395
,
0
,
7
,
0.988779
,
469.849
,
75.1756
,
718.64
,
186.762
,
0
,
12
,
0.967198
,
138.588
,
206.843
,
329.766
,
553.176
),
(
Mat_
<
float
>
(
2
,
7
)
<<
0
,
7
,
0.991359
,
491.822
,
81.1668
,
702.573
,
178.234
,
0
,
12
,
0.94786
,
132.093
,
223.903
,
338.077
,
566.16
)};
for
(
int
i
=
0
;
i
<
3
;
++
i
)
{
std
::
string
proto
=
findDataFile
(
"dnn/"
+
protos
[
i
],
false
);
...
...
@@ -450,15 +449,7 @@ TEST(Test_Caffe, FasterRCNN_and_RFCN)
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat
out
=
net
.
forward
();
out
=
out
.
reshape
(
1
,
out
.
total
()
/
7
);
Mat
detections
;
for
(
int
j
=
0
;
j
<
out
.
rows
;
++
j
)
{
if
(
out
.
at
<
float
>
(
j
,
2
)
>
0.8
)
detections
.
push_back
(
out
.
row
(
j
).
colRange
(
1
,
7
));
}
normAssert
(
detections
,
refs
[
i
],
(
"model name: "
+
models
[
i
]).
c_str
(),
1e-3
,
1e-3
);
normAssertDetections
(
refs
[
i
],
out
,
(
"model name: "
+
models
[
i
]).
c_str
(),
0.8
);
}
}
...
...
modules/dnn/test/test_common.hpp
View file @
64a6b121
...
...
@@ -57,6 +57,96 @@ inline void normAssert(cv::InputArray ref, cv::InputArray test, const char *comm
EXPECT_LE
(
normInf
,
lInf
)
<<
comment
;
}
static
std
::
vector
<
cv
::
Rect2d
>
matToBoxes
(
const
cv
::
Mat
&
m
)
{
EXPECT_EQ
(
m
.
type
(),
CV_32FC1
);
EXPECT_EQ
(
m
.
dims
,
2
);
EXPECT_EQ
(
m
.
cols
,
4
);
std
::
vector
<
cv
::
Rect2d
>
boxes
(
m
.
rows
);
for
(
int
i
=
0
;
i
<
m
.
rows
;
++
i
)
{
CV_Assert
(
m
.
row
(
i
).
isContinuous
());
const
float
*
data
=
m
.
ptr
<
float
>
(
i
);
double
l
=
data
[
0
],
t
=
data
[
1
],
r
=
data
[
2
],
b
=
data
[
3
];
boxes
[
i
]
=
cv
::
Rect2d
(
l
,
t
,
r
-
l
,
b
-
t
);
}
return
boxes
;
}
inline
void
normAssertDetections
(
const
std
::
vector
<
int
>&
refClassIds
,
const
std
::
vector
<
float
>&
refScores
,
const
std
::
vector
<
cv
::
Rect2d
>&
refBoxes
,
const
std
::
vector
<
int
>&
testClassIds
,
const
std
::
vector
<
float
>&
testScores
,
const
std
::
vector
<
cv
::
Rect2d
>&
testBoxes
,
const
char
*
comment
=
""
,
double
confThreshold
=
0.0
,
double
scores_diff
=
1e-5
,
double
boxes_iou_diff
=
1e-4
)
{
std
::
vector
<
bool
>
matchedRefBoxes
(
refBoxes
.
size
(),
false
);
for
(
int
i
=
0
;
i
<
testBoxes
.
size
();
++
i
)
{
double
testScore
=
testScores
[
i
];
if
(
testScore
<
confThreshold
)
continue
;
int
testClassId
=
testClassIds
[
i
];
const
cv
::
Rect2d
&
testBox
=
testBoxes
[
i
];
bool
matched
=
false
;
for
(
int
j
=
0
;
j
<
refBoxes
.
size
()
&&
!
matched
;
++
j
)
{
if
(
!
matchedRefBoxes
[
j
]
&&
testClassId
==
refClassIds
[
j
]
&&
std
::
abs
(
testScore
-
refScores
[
j
])
<
scores_diff
)
{
double
interArea
=
(
testBox
&
refBoxes
[
j
]).
area
();
double
iou
=
interArea
/
(
testBox
.
area
()
+
refBoxes
[
j
].
area
()
-
interArea
);
if
(
std
::
abs
(
iou
-
1.0
)
<
boxes_iou_diff
)
{
matched
=
true
;
matchedRefBoxes
[
j
]
=
true
;
}
}
}
if
(
!
matched
)
std
::
cout
<<
cv
::
format
(
"Unmatched prediction: class %d score %f box "
,
testClassId
,
testScore
)
<<
testBox
<<
std
::
endl
;
EXPECT_TRUE
(
matched
)
<<
comment
;
}
// Check unmatched reference detections.
for
(
int
i
=
0
;
i
<
refBoxes
.
size
();
++
i
)
{
if
(
!
matchedRefBoxes
[
i
]
&&
refScores
[
i
]
>
confThreshold
)
{
std
::
cout
<<
cv
::
format
(
"Unmatched reference: class %d score %f box "
,
refClassIds
[
i
],
refScores
[
i
])
<<
refBoxes
[
i
]
<<
std
::
endl
;
EXPECT_LE
(
refScores
[
i
],
confThreshold
)
<<
comment
;
}
}
}
// For SSD-based object detection networks which produce output of shape 1x1xNx7
// where N is a number of detections and an every detection is represented by
// a vector [batchId, classId, confidence, left, top, right, bottom].
inline
void
normAssertDetections
(
cv
::
Mat
ref
,
cv
::
Mat
out
,
const
char
*
comment
=
""
,
double
confThreshold
=
0.0
,
double
scores_diff
=
1e-5
,
double
boxes_iou_diff
=
1e-4
)
{
CV_Assert
(
ref
.
total
()
%
7
==
0
);
CV_Assert
(
out
.
total
()
%
7
==
0
);
ref
=
ref
.
reshape
(
1
,
ref
.
total
()
/
7
);
out
=
out
.
reshape
(
1
,
out
.
total
()
/
7
);
cv
::
Mat
refClassIds
,
testClassIds
;
ref
.
col
(
1
).
convertTo
(
refClassIds
,
CV_32SC1
);
out
.
col
(
1
).
convertTo
(
testClassIds
,
CV_32SC1
);
std
::
vector
<
float
>
refScores
(
ref
.
col
(
2
)),
testScores
(
out
.
col
(
2
));
std
::
vector
<
cv
::
Rect2d
>
refBoxes
=
matToBoxes
(
ref
.
colRange
(
3
,
7
));
std
::
vector
<
cv
::
Rect2d
>
testBoxes
=
matToBoxes
(
out
.
colRange
(
3
,
7
));
normAssertDetections
(
refClassIds
,
refScores
,
refBoxes
,
testClassIds
,
testScores
,
testBoxes
,
comment
,
confThreshold
,
scores_diff
,
boxes_iou_diff
);
}
inline
bool
readFileInMemory
(
const
std
::
string
&
filename
,
std
::
string
&
content
)
{
std
::
ios
::
openmode
mode
=
std
::
ios
::
in
|
std
::
ios
::
binary
;
...
...
modules/dnn/test/test_darknet_importer.cpp
View file @
64a6b121
...
...
@@ -70,7 +70,7 @@ static void testDarknetModel(const std::string& cfg, const std::string& weights,
const
std
::
vector
<
cv
::
String
>&
outNames
,
const
std
::
vector
<
int
>&
refClassIds
,
const
std
::
vector
<
float
>&
refConfidences
,
const
std
::
vector
<
Rect2
f
>&
refBoxes
,
const
std
::
vector
<
Rect2
d
>&
refBoxes
,
int
targetId
,
float
confThreshold
=
0.24
)
{
Mat
sample
=
imread
(
_tf
(
"dog416.png"
));
...
...
@@ -85,7 +85,7 @@ static void testDarknetModel(const std::string& cfg, const std::string& weights,
std
::
vector
<
int
>
classIds
;
std
::
vector
<
float
>
confidences
;
std
::
vector
<
Rect2
f
>
boxes
;
std
::
vector
<
Rect2
d
>
boxes
;
for
(
int
i
=
0
;
i
<
outs
.
size
();
++
i
)
{
Mat
&
out
=
outs
[
i
];
...
...
@@ -95,31 +95,20 @@ static void testDarknetModel(const std::string& cfg, const std::string& weights,
double
confidence
;
Point
maxLoc
;
minMaxLoc
(
scores
,
0
,
&
confidence
,
0
,
&
maxLoc
);
if
(
confidence
>
confThreshold
)
{
float
*
detection
=
out
.
ptr
<
float
>
(
j
);
float
centerX
=
detection
[
0
];
float
centerY
=
detection
[
1
];
float
width
=
detection
[
2
];
float
height
=
detection
[
3
];
boxes
.
push_back
(
Rect2f
(
centerX
-
0.5
*
width
,
centerY
-
0.5
*
height
,
width
,
height
));
confidences
.
push_back
(
confidence
);
classIds
.
push_back
(
maxLoc
.
x
);
}
}
}
ASSERT_EQ
(
classIds
.
size
(),
refClassIds
.
size
());
ASSERT_EQ
(
confidences
.
size
(),
refConfidences
.
size
());
ASSERT_EQ
(
boxes
.
size
(),
refBoxes
.
size
());
for
(
int
i
=
0
;
i
<
boxes
.
size
();
++
i
)
{
ASSERT_EQ
(
classIds
[
i
],
refClassIds
[
i
]);
ASSERT_LE
(
std
::
abs
(
confidences
[
i
]
-
refConfidences
[
i
]),
1e-4
);
float
iou
=
(
boxes
[
i
]
&
refBoxes
[
i
]).
area
()
/
(
boxes
[
i
]
|
refBoxes
[
i
]).
area
();
ASSERT_LE
(
std
::
abs
(
iou
-
1.0
f
),
1e-4
);
float
*
detection
=
out
.
ptr
<
float
>
(
j
);
double
centerX
=
detection
[
0
];
double
centerY
=
detection
[
1
];
double
width
=
detection
[
2
];
double
height
=
detection
[
3
];
boxes
.
push_back
(
Rect2d
(
centerX
-
0.5
*
width
,
centerY
-
0.5
*
height
,
width
,
height
));
confidences
.
push_back
(
confidence
);
classIds
.
push_back
(
maxLoc
.
x
);
}
}
normAssertDetections
(
refClassIds
,
refConfidences
,
refBoxes
,
classIds
,
confidences
,
boxes
,
""
,
confThreshold
,
8e-5
,
3e-5
);
}
typedef
testing
::
TestWithParam
<
DNNTarget
>
Test_Darknet_nets
;
...
...
@@ -131,10 +120,10 @@ TEST_P(Test_Darknet_nets, YoloVoc)
std
::
vector
<
int
>
classIds
(
3
);
std
::
vector
<
float
>
confidences
(
3
);
std
::
vector
<
Rect2
f
>
boxes
(
3
);
classIds
[
0
]
=
6
;
confidences
[
0
]
=
0.750469
f
;
boxes
[
0
]
=
Rect2
f
(
0.577374
,
0.127391
,
0.325575
,
0.173418
);
// a car
classIds
[
1
]
=
1
;
confidences
[
1
]
=
0.780879
f
;
boxes
[
1
]
=
Rect2
f
(
0.270762
,
0.264102
,
0.461713
,
0.48131
);
// a bycicle
classIds
[
2
]
=
11
;
confidences
[
2
]
=
0.901615
f
;
boxes
[
2
]
=
Rect2
f
(
0.1386
,
0.338509
,
0.282737
,
0.60028
);
// a dog
std
::
vector
<
Rect2
d
>
boxes
(
3
);
classIds
[
0
]
=
6
;
confidences
[
0
]
=
0.750469
f
;
boxes
[
0
]
=
Rect2
d
(
0.577374
,
0.127391
,
0.325575
,
0.173418
);
// a car
classIds
[
1
]
=
1
;
confidences
[
1
]
=
0.780879
f
;
boxes
[
1
]
=
Rect2
d
(
0.270762
,
0.264102
,
0.461713
,
0.48131
);
// a bycicle
classIds
[
2
]
=
11
;
confidences
[
2
]
=
0.901615
f
;
boxes
[
2
]
=
Rect2
d
(
0.1386
,
0.338509
,
0.282737
,
0.60028
);
// a dog
testDarknetModel
(
"yolo-voc.cfg"
,
"yolo-voc.weights"
,
outNames
,
classIds
,
confidences
,
boxes
,
targetId
);
}
...
...
@@ -145,9 +134,9 @@ TEST_P(Test_Darknet_nets, TinyYoloVoc)
std
::
vector
<
cv
::
String
>
outNames
(
1
,
"detection_out"
);
std
::
vector
<
int
>
classIds
(
2
);
std
::
vector
<
float
>
confidences
(
2
);
std
::
vector
<
Rect2
f
>
boxes
(
2
);
classIds
[
0
]
=
6
;
confidences
[
0
]
=
0.761967
f
;
boxes
[
0
]
=
Rect2
f
(
0.579042
,
0.159161
,
0.31544
,
0.160779
);
// a car
classIds
[
1
]
=
11
;
confidences
[
1
]
=
0.780595
f
;
boxes
[
1
]
=
Rect2
f
(
0.129696
,
0.386467
,
0.315579
,
0.534527
);
// a dog
std
::
vector
<
Rect2
d
>
boxes
(
2
);
classIds
[
0
]
=
6
;
confidences
[
0
]
=
0.761967
f
;
boxes
[
0
]
=
Rect2
d
(
0.579042
,
0.159161
,
0.31544
,
0.160779
);
// a car
classIds
[
1
]
=
11
;
confidences
[
1
]
=
0.780595
f
;
boxes
[
1
]
=
Rect2
d
(
0.129696
,
0.386467
,
0.315579
,
0.534527
);
// a dog
testDarknetModel
(
"tiny-yolo-voc.cfg"
,
"tiny-yolo-voc.weights"
,
outNames
,
classIds
,
confidences
,
boxes
,
targetId
);
}
...
...
@@ -162,10 +151,10 @@ TEST_P(Test_Darknet_nets, YOLOv3)
std
::
vector
<
int
>
classIds
(
3
);
std
::
vector
<
float
>
confidences
(
3
);
std
::
vector
<
Rect2
f
>
boxes
(
3
);
classIds
[
0
]
=
7
;
confidences
[
0
]
=
0.952983
f
;
boxes
[
0
]
=
Rect2
f
(
0.614622
,
0.150257
,
0.286747
,
0.138994
);
// a truck
classIds
[
1
]
=
1
;
confidences
[
1
]
=
0.987908
f
;
boxes
[
1
]
=
Rect2
f
(
0.150913
,
0.221933
,
0.591342
,
0.524327
);
// a bycicle
classIds
[
2
]
=
16
;
confidences
[
2
]
=
0.998836
f
;
boxes
[
2
]
=
Rect2
f
(
0.160024
,
0.389964
,
0.257861
,
0.553752
);
// a dog (COCO)
std
::
vector
<
Rect2
d
>
boxes
(
3
);
classIds
[
0
]
=
7
;
confidences
[
0
]
=
0.952983
f
;
boxes
[
0
]
=
Rect2
d
(
0.614622
,
0.150257
,
0.286747
,
0.138994
);
// a truck
classIds
[
1
]
=
1
;
confidences
[
1
]
=
0.987908
f
;
boxes
[
1
]
=
Rect2
d
(
0.150913
,
0.221933
,
0.591342
,
0.524327
);
// a bycicle
classIds
[
2
]
=
16
;
confidences
[
2
]
=
0.998836
f
;
boxes
[
2
]
=
Rect2
d
(
0.160024
,
0.389964
,
0.257861
,
0.553752
);
// a dog (COCO)
testDarknetModel
(
"yolov3.cfg"
,
"yolov3.weights"
,
outNames
,
classIds
,
confidences
,
boxes
,
targetId
);
}
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
64a6b121
...
...
@@ -237,7 +237,7 @@ TEST_P(Test_TensorFlow_nets, MobileNet_SSD)
normAssert
(
target
[
0
].
reshape
(
1
,
1
),
output
[
0
].
reshape
(
1
,
1
),
""
,
1e-5
,
1.5e-4
);
normAssert
(
target
[
1
].
reshape
(
1
,
1
),
output
[
1
].
reshape
(
1
,
1
),
""
,
1e-5
,
3e-4
);
normAssert
(
target
[
2
].
reshape
(
1
,
1
),
output
[
2
].
reshape
(
1
,
1
),
""
,
4e-5
,
1e-
2
);
normAssert
Detections
(
target
[
2
],
output
[
2
],
""
,
0.
2
);
}
TEST_P
(
Test_TensorFlow_nets
,
Inception_v2_SSD
)
...
...
@@ -255,21 +255,12 @@ TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat
out
=
net
.
forward
();
out
=
out
.
reshape
(
1
,
out
.
total
()
/
7
);
Mat
detections
;
for
(
int
i
=
0
;
i
<
out
.
rows
;
++
i
)
{
if
(
out
.
at
<
float
>
(
i
,
2
)
>
0.5
)
detections
.
push_back
(
out
.
row
(
i
).
colRange
(
1
,
7
));
}
Mat
ref
=
(
Mat_
<
float
>
(
5
,
6
)
<<
1
,
0.90176028
,
0.19872092
,
0.36311883
,
0.26461923
,
0.63498729
,
3
,
0.93569964
,
0.64865261
,
0.45906419
,
0.80675775
,
0.65708131
,
3
,
0.75838411
,
0.44668293
,
0.45907149
,
0.49459291
,
0.52197015
,
10
,
0.95932811
,
0.38349164
,
0.32528657
,
0.40387636
,
0.39165527
,
10
,
0.93973452
,
0.66561931
,
0.37841269
,
0.68074018
,
0.42907384
);
normAssert
(
detections
,
ref
);
Mat
ref
=
(
Mat_
<
float
>
(
5
,
7
)
<<
0
,
1
,
0.90176028
,
0.19872092
,
0.36311883
,
0.26461923
,
0.63498729
,
0
,
3
,
0.93569964
,
0.64865261
,
0.45906419
,
0.80675775
,
0.65708131
,
0
,
3
,
0.75838411
,
0.44668293
,
0.45907149
,
0.49459291
,
0.52197015
,
0
,
10
,
0.95932811
,
0.38349164
,
0.32528657
,
0.40387636
,
0.39165527
,
0
,
10
,
0.93973452
,
0.66561931
,
0.37841269
,
0.68074018
,
0.42907384
);
normAssertDetections
(
ref
,
out
,
""
,
0.5
);
}
TEST_P
(
Test_TensorFlow_nets
,
opencv_face_detector_uint8
)
...
...
@@ -289,13 +280,13 @@ TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
Mat
out
=
net
.
forward
();
// References are from test for Caffe model.
Mat
ref
=
(
Mat_
<
float
>
(
6
,
5
)
<<
0.99520785
,
0.80997437
,
0.16379407
,
0.87996572
,
0.26685631
,
0.9934696
,
0.2831718
,
0.50738752
,
0.345781
,
0.5985168
,
0.99096733
,
0.13629119
,
0.24892329
,
0.19756334
,
0.3310290
,
0.98977017
,
0.23901358
,
0.09084064
,
0.29902688
,
0.1769477
,
0.97203469
,
0.67965847
,
0.06876482
,
0.73999709
,
0.1513494
,
0.95097077
,
0.51901293
,
0.45863652
,
0.5777427
,
0.5347801
);
normAssert
(
out
.
reshape
(
1
,
out
.
total
()
/
7
).
rowRange
(
0
,
6
).
colRange
(
2
,
7
),
ref
,
""
,
2.8e-4
,
3.4e-3
);
Mat
ref
=
(
Mat_
<
float
>
(
6
,
7
)
<<
0
,
1
,
0.99520785
,
0.80997437
,
0.16379407
,
0.87996572
,
0.26685631
,
0
,
1
,
0
.9934696
,
0.2831718
,
0.50738752
,
0.345781
,
0.5985168
,
0
,
1
,
0
.99096733
,
0.13629119
,
0.24892329
,
0.19756334
,
0.3310290
,
0
,
1
,
0
.98977017
,
0.23901358
,
0.09084064
,
0.29902688
,
0.1769477
,
0
,
1
,
0
.97203469
,
0.67965847
,
0.06876482
,
0.73999709
,
0.1513494
,
0
,
1
,
0
.95097077
,
0.51901293
,
0.45863652
,
0.5777427
,
0.5347801
);
normAssert
Detections
(
ref
,
out
,
""
,
0.9
,
3.4e-3
,
1e-2
);
}
INSTANTIATE_TEST_CASE_P
(
/**/
,
Test_TensorFlow_nets
,
availableDnnTargets
());
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment