Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
634c9dae
Commit
634c9dae
authored
Aug 09, 2012
by
marina.kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added performance test fot CCL
parent
0ceb9b6a
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
839 additions
and
765 deletions
+839
-765
perf_labeling.cpp
modules/gpu/perf/perf_labeling.cpp
+74
-0
warpers_inl.hpp
...titching/include/opencv2/stitching/detail/warpers_inl.hpp
+765
-765
No files found.
modules/gpu/perf/perf_labeling.cpp
0 → 100644
View file @
634c9dae
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//M*/
#include "perf_precomp.hpp"
#ifdef HAVE_CUDA
GPU_PERF_TEST
(
ConnectedComponents
,
cv
::
gpu
::
DeviceInfo
,
cv
::
Size
)
{
cv
::
gpu
::
DeviceInfo
devInfo
=
GET_PARAM
(
0
);
cv
::
gpu
::
setDevice
(
devInfo
.
deviceID
());
cv
::
Mat
image
=
readImage
(
"gpu/labeling/label.png"
,
cv
::
IMREAD_GRAYSCALE
);
cv
::
gpu
::
GpuMat
mask
;
mask
.
create
(
image
.
rows
,
image
.
cols
,
CV_8UC1
);
cv
::
gpu
::
GpuMat
components
;
components
.
create
(
image
.
rows
,
image
.
cols
,
CV_32SC1
);
cv
::
gpu
::
connectivityMask
(
cv
::
gpu
::
GpuMat
(
image
),
mask
,
cv
::
Scalar
::
all
(
0
),
cv
::
Scalar
::
all
(
2
));
ASSERT_NO_THROW
(
cv
::
gpu
::
labelComponents
(
mask
,
components
));
declare
.
time
(
1.0
);
TEST_CYCLE
()
{
cv
::
gpu
::
labelComponents
(
mask
,
components
);
}
}
INSTANTIATE_TEST_CASE_P
(
Labeling
,
ConnectedComponents
,
testing
::
Combine
(
ALL_DEVICES
,
testing
::
Values
(
cv
::
Size
(
261
,
262
))));
#endif
\ No newline at end of file
modules/stitching/include/opencv2/stitching/detail/warpers_inl.hpp
View file @
634c9dae
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_WARPERS_INL_HPP__
#define __OPENCV_STITCHING_WARPERS_INL_HPP__
#include "opencv2/core/core.hpp"
#include "warpers.hpp" // Make your IDE see declarations
namespace
cv
{
namespace
detail
{
template
<
class
P
>
Point2f
RotationWarperBase
<
P
>::
warpPoint
(
const
Point2f
&
pt
,
const
Mat
&
K
,
const
Mat
&
R
)
{
projector_
.
setCameraParams
(
K
,
R
);
Point2f
uv
;
projector_
.
mapForward
(
pt
.
x
,
pt
.
y
,
uv
.
x
,
uv
.
y
);
return
uv
;
}
template
<
class
P
>
Rect
RotationWarperBase
<
P
>::
buildMaps
(
Size
src_size
,
const
Mat
&
K
,
const
Mat
&
R
,
Mat
&
xmap
,
Mat
&
ymap
)
{
projector_
.
setCameraParams
(
K
,
R
);
Point
dst_tl
,
dst_br
;
detectResultRoi
(
src_size
,
dst_tl
,
dst_br
);
xmap
.
create
(
dst_br
.
y
-
dst_tl
.
y
+
1
,
dst_br
.
x
-
dst_tl
.
x
+
1
,
CV_32F
);
ymap
.
create
(
dst_br
.
y
-
dst_tl
.
y
+
1
,
dst_br
.
x
-
dst_tl
.
x
+
1
,
CV_32F
);
float
x
,
y
;
for
(
int
v
=
dst_tl
.
y
;
v
<=
dst_br
.
y
;
++
v
)
{
for
(
int
u
=
dst_tl
.
x
;
u
<=
dst_br
.
x
;
++
u
)
{
projector_
.
mapBackward
(
static_cast
<
float
>
(
u
),
static_cast
<
float
>
(
v
),
x
,
y
);
xmap
.
at
<
float
>
(
v
-
dst_tl
.
y
,
u
-
dst_tl
.
x
)
=
x
;
ymap
.
at
<
float
>
(
v
-
dst_tl
.
y
,
u
-
dst_tl
.
x
)
=
y
;
}
}
return
Rect
(
dst_tl
,
dst_br
);
}
template
<
class
P
>
Point
RotationWarperBase
<
P
>::
warp
(
const
Mat
&
src
,
const
Mat
&
K
,
const
Mat
&
R
,
int
interp_mode
,
int
border_mode
,
Mat
&
dst
)
{
Mat
xmap
,
ymap
;
Rect
dst_roi
=
buildMaps
(
src
.
size
(),
K
,
R
,
xmap
,
ymap
);
dst
.
create
(
dst_roi
.
height
+
1
,
dst_roi
.
width
+
1
,
src
.
type
());
remap
(
src
,
dst
,
xmap
,
ymap
,
interp_mode
,
border_mode
);
return
dst_roi
.
tl
();
}
template
<
class
P
>
void
RotationWarperBase
<
P
>::
warpBackward
(
const
Mat
&
src
,
const
Mat
&
K
,
const
Mat
&
R
,
int
interp_mode
,
int
border_mode
,
Size
dst_size
,
Mat
&
dst
)
{
projector_
.
setCameraParams
(
K
,
R
);
Point
src_tl
,
src_br
;
detectResultRoi
(
dst_size
,
src_tl
,
src_br
);
CV_Assert
(
src_br
.
x
-
src_tl
.
x
+
1
==
src
.
cols
&&
src_br
.
y
-
src_tl
.
y
+
1
==
src
.
rows
);
Mat
xmap
(
dst_size
,
CV_32F
);
Mat
ymap
(
dst_size
,
CV_32F
);
float
u
,
v
;
for
(
int
y
=
0
;
y
<
dst_size
.
height
;
++
y
)
{
for
(
int
x
=
0
;
x
<
dst_size
.
width
;
++
x
)
{
projector_
.
mapForward
(
static_cast
<
float
>
(
x
),
static_cast
<
float
>
(
y
),
u
,
v
);
xmap
.
at
<
float
>
(
y
,
x
)
=
u
-
src_tl
.
x
;
ymap
.
at
<
float
>
(
y
,
x
)
=
v
-
src_tl
.
y
;
}
}
dst
.
create
(
dst_size
,
src
.
type
());
remap
(
src
,
dst
,
xmap
,
ymap
,
interp_mode
,
border_mode
);
}
template
<
class
P
>
Rect
RotationWarperBase
<
P
>::
warpRoi
(
Size
src_size
,
const
Mat
&
K
,
const
Mat
&
R
)
{
projector_
.
setCameraParams
(
K
,
R
);
Point
dst_tl
,
dst_br
;
detectResultRoi
(
src_size
,
dst_tl
,
dst_br
);
return
Rect
(
dst_tl
,
Point
(
dst_br
.
x
+
1
,
dst_br
.
y
+
1
));
}
template
<
class
P
>
void
RotationWarperBase
<
P
>::
detectResultRoi
(
Size
src_size
,
Point
&
dst_tl
,
Point
&
dst_br
)
{
float
tl_uf
=
std
::
numeric_limits
<
float
>::
max
();
float
tl_vf
=
std
::
numeric_limits
<
float
>::
max
();
float
br_uf
=
-
std
::
numeric_limits
<
float
>::
max
();
float
br_vf
=
-
std
::
numeric_limits
<
float
>::
max
();
float
u
,
v
;
for
(
int
y
=
0
;
y
<
src_size
.
height
;
++
y
)
{
for
(
int
x
=
0
;
x
<
src_size
.
width
;
++
x
)
{
projector_
.
mapForward
(
static_cast
<
float
>
(
x
),
static_cast
<
float
>
(
y
),
u
,
v
);
tl_uf
=
std
::
min
(
tl_uf
,
u
);
tl_vf
=
std
::
min
(
tl_vf
,
v
);
br_uf
=
std
::
max
(
br_uf
,
u
);
br_vf
=
std
::
max
(
br_vf
,
v
);
}
}
dst_tl
.
x
=
static_cast
<
int
>
(
tl_uf
);
dst_tl
.
y
=
static_cast
<
int
>
(
tl_vf
);
dst_br
.
x
=
static_cast
<
int
>
(
br_uf
);
dst_br
.
y
=
static_cast
<
int
>
(
br_vf
);
}
template
<
class
P
>
void
RotationWarperBase
<
P
>::
detectResultRoiByBorder
(
Size
src_size
,
Point
&
dst_tl
,
Point
&
dst_br
)
{
float
tl_uf
=
std
::
numeric_limits
<
float
>::
max
();
float
tl_vf
=
std
::
numeric_limits
<
float
>::
max
();
float
br_uf
=
-
std
::
numeric_limits
<
float
>::
max
();
float
br_vf
=
-
std
::
numeric_limits
<
float
>::
max
();
float
u
,
v
;
for
(
float
x
=
0
;
x
<
src_size
.
width
;
++
x
)
{
projector_
.
mapForward
(
static_cast
<
float
>
(
x
),
0
,
u
,
v
);
tl_uf
=
std
::
min
(
tl_uf
,
u
);
tl_vf
=
std
::
min
(
tl_vf
,
v
);
br_uf
=
std
::
max
(
br_uf
,
u
);
br_vf
=
std
::
max
(
br_vf
,
v
);
projector_
.
mapForward
(
static_cast
<
float
>
(
x
),
static_cast
<
float
>
(
src_size
.
height
-
1
),
u
,
v
);
tl_uf
=
std
::
min
(
tl_uf
,
u
);
tl_vf
=
std
::
min
(
tl_vf
,
v
);
br_uf
=
std
::
max
(
br_uf
,
u
);
br_vf
=
std
::
max
(
br_vf
,
v
);
}
for
(
int
y
=
0
;
y
<
src_size
.
height
;
++
y
)
{
projector_
.
mapForward
(
0
,
static_cast
<
float
>
(
y
),
u
,
v
);
tl_uf
=
std
::
min
(
tl_uf
,
u
);
tl_vf
=
std
::
min
(
tl_vf
,
v
);
br_uf
=
std
::
max
(
br_uf
,
u
);
br_vf
=
std
::
max
(
br_vf
,
v
);
projector_
.
mapForward
(
static_cast
<
float
>
(
src_size
.
width
-
1
),
static_cast
<
float
>
(
y
),
u
,
v
);
tl_uf
=
std
::
min
(
tl_uf
,
u
);
tl_vf
=
std
::
min
(
tl_vf
,
v
);
br_uf
=
std
::
max
(
br_uf
,
u
);
br_vf
=
std
::
max
(
br_vf
,
v
);
}
dst_tl
.
x
=
static_cast
<
int
>
(
tl_uf
);
dst_tl
.
y
=
static_cast
<
int
>
(
tl_vf
);
dst_br
.
x
=
static_cast
<
int
>
(
br_uf
);
dst_br
.
y
=
static_cast
<
int
>
(
br_vf
);
}
inline
void
PlaneProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
x_
=
t
[
0
]
+
x_
/
z_
*
(
1
-
t
[
2
]);
y_
=
t
[
1
]
+
y_
/
z_
*
(
1
-
t
[
2
]);
u
=
scale
*
x_
;
v
=
scale
*
y_
;
}
inline
void
PlaneProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
=
u
/
scale
-
t
[
0
];
v
=
v
/
scale
-
t
[
1
];
float
z
;
x
=
k_rinv
[
0
]
*
u
+
k_rinv
[
1
]
*
v
+
k_rinv
[
2
]
*
(
1
-
t
[
2
]);
y
=
k_rinv
[
3
]
*
u
+
k_rinv
[
4
]
*
v
+
k_rinv
[
5
]
*
(
1
-
t
[
2
]);
z
=
k_rinv
[
6
]
*
u
+
k_rinv
[
7
]
*
v
+
k_rinv
[
8
]
*
(
1
-
t
[
2
]);
x
/=
z
;
y
/=
z
;
}
inline
void
SphericalProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
u
=
scale
*
atan2f
(
x_
,
z_
);
float
w
=
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
);
v
=
scale
*
(
static_cast
<
float
>
(
CV_PI
)
-
acosf
(
w
==
w
?
w
:
0
));
}
inline
void
SphericalProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
sinv
=
sinf
(
static_cast
<
float
>
(
CV_PI
)
-
v
);
float
x_
=
sinv
*
sinf
(
u
);
float
y_
=
cosf
(
static_cast
<
float
>
(
CV_PI
)
-
v
);
float
z_
=
sinv
*
cosf
(
u
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
CylindricalProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
u
=
scale
*
atan2f
(
x_
,
z_
);
v
=
scale
*
y_
/
sqrtf
(
x_
*
x_
+
z_
*
z_
);
}
inline
void
CylindricalProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
x_
=
sinf
(
u
);
float
y_
=
v
;
float
z_
=
cosf
(
u
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
FisheyeProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
(
float
)
CV_PI
-
acosf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
u
=
scale
*
v_
*
cosf
(
u_
);
v
=
scale
*
v_
*
sinf
(
u_
);
}
inline
void
FisheyeProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
u_
=
atan2f
(
v
,
u
);
float
v_
=
sqrtf
(
u
*
u
+
v
*
v
);
float
sinv
=
sinf
((
float
)
CV_PI
-
v_
);
float
x_
=
sinv
*
sinf
(
u_
);
float
y_
=
cosf
((
float
)
CV_PI
-
v_
);
float
z_
=
sinv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
StereographicProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
(
float
)
CV_PI
-
acosf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
float
r
=
sinf
(
v_
)
/
(
1
-
cosf
(
v_
));
u
=
scale
*
r
*
cos
(
u_
);
v
=
scale
*
r
*
sin
(
u_
);
}
inline
void
StereographicProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
u_
=
atan2f
(
v
,
u
);
float
r
=
sqrtf
(
u
*
u
+
v
*
v
);
float
v_
=
2
*
atanf
(
1.
f
/
r
);
float
sinv
=
sinf
((
float
)
CV_PI
-
v_
);
float
x_
=
sinv
*
sinf
(
u_
);
float
y_
=
cosf
((
float
)
CV_PI
-
v_
);
float
z_
=
sinv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
CompressedRectilinearProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
asinf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
u
=
scale
*
a
*
tanf
(
u_
/
a
);
v
=
scale
*
b
*
tanf
(
v_
)
/
cosf
(
u_
);
}
inline
void
CompressedRectilinearProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
aatg
=
a
*
atanf
(
u
/
a
);
float
u_
=
aatg
;
float
v_
=
atanf
(
v
*
cosf
(
aatg
)
/
b
);
float
cosv
=
cosf
(
v_
);
float
x_
=
cosv
*
sinf
(
u_
);
float
y_
=
sinf
(
v_
);
float
z_
=
cosv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
CompressedRectilinearPortraitProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
y_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
x_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
asinf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
u
=
-
scale
*
a
*
tanf
(
u_
/
a
);
v
=
scale
*
b
*
tanf
(
v_
)
/
cosf
(
u_
);
}
inline
void
CompressedRectilinearPortraitProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
-
scale
;
v
/=
scale
;
float
aatg
=
a
*
atanf
(
u
/
a
);
float
u_
=
aatg
;
float
v_
=
atanf
(
v
*
cosf
(
aatg
)
/
b
);
float
cosv
=
cosf
(
v_
);
float
y_
=
cosv
*
sinf
(
u_
);
float
x_
=
sinf
(
v_
);
float
z_
=
cosv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
PaniniProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
asinf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
float
tg
=
a
*
tanf
(
u_
/
a
);
u
=
scale
*
tg
;
float
sinu
=
sinf
(
u_
);
if
(
fabs
(
sinu
)
<
1E-7
)
v
=
scale
*
b
*
tanf
(
v_
);
else
v
=
scale
*
b
*
tg
*
tanf
(
v_
)
/
sinu
;
}
inline
void
PaniniProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
lamda
=
a
*
atanf
(
u
/
a
);
float
u_
=
lamda
;
float
v_
;
if
(
fabs
(
lamda
)
>
1E-7
)
v_
=
atanf
(
v
*
sinf
(
lamda
)
/
(
b
*
a
*
tanf
(
lamda
/
a
)));
else
v_
=
atanf
(
v
/
b
);
float
cosv
=
cosf
(
v_
);
float
x_
=
cosv
*
sinf
(
u_
);
float
y_
=
sinf
(
v_
);
float
z_
=
cosv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
PaniniPortraitProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
y_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
x_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
asinf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
float
tg
=
a
*
tanf
(
u_
/
a
);
u
=
-
scale
*
tg
;
float
sinu
=
sinf
(
u_
);
if
(
fabs
(
sinu
)
<
1E-7
)
v
=
scale
*
b
*
tanf
(
v_
);
else
v
=
scale
*
b
*
tg
*
tanf
(
v_
)
/
sinu
;
}
inline
void
PaniniPortraitProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
-
scale
;
v
/=
scale
;
float
lamda
=
a
*
atanf
(
u
/
a
);
float
u_
=
lamda
;
float
v_
;
if
(
fabs
(
lamda
)
>
1E-7
)
v_
=
atanf
(
v
*
sinf
(
lamda
)
/
(
b
*
a
*
tanf
(
lamda
/
a
)));
else
v_
=
atanf
(
v
/
b
);
float
cosv
=
cosf
(
v_
);
float
y_
=
cosv
*
sinf
(
u_
);
float
x_
=
sinf
(
v_
);
float
z_
=
cosv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
MercatorProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
asinf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
u
=
scale
*
u_
;
v
=
scale
*
logf
(
tanf
(
(
float
)(
CV_PI
/
4
)
+
v_
/
2
)
);
}
inline
void
MercatorProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
v_
=
atanf
(
sinhf
(
v
)
);
float
u_
=
u
;
float
cosv
=
cosf
(
v_
);
float
x_
=
cosv
*
sinf
(
u_
);
float
y_
=
sinf
(
v_
);
float
z_
=
cosv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
TransverseMercatorProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
asinf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
float
B
=
cosf
(
v_
)
*
sinf
(
u_
);
u
=
scale
/
2
*
logf
(
(
1
+
B
)
/
(
1
-
B
)
);
v
=
scale
*
atan2f
(
tanf
(
v_
),
cosf
(
u_
));
}
inline
void
TransverseMercatorProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
v_
=
asinf
(
sinf
(
v
)
/
coshf
(
u
)
);
float
u_
=
atan2f
(
sinhf
(
u
),
cos
(
v
)
);
float
cosv
=
cosf
(
v_
);
float
x_
=
cosv
*
sinf
(
u_
);
float
y_
=
sinf
(
v_
);
float
z_
=
cosv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
SphericalPortraitProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u0
,
float
&
v0
)
{
float
x0_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y0_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
x_
=
y0_
;
float
y_
=
x0_
;
float
u
,
v
;
u
=
scale
*
atan2f
(
x_
,
z_
);
v
=
scale
*
(
static_cast
<
float
>
(
CV_PI
)
-
acosf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
)));
u0
=
-
u
;
//v;
v0
=
v
;
//u;
}
inline
void
SphericalPortraitProjector
::
mapBackward
(
float
u0
,
float
v0
,
float
&
x
,
float
&
y
)
{
float
u
,
v
;
u
=
-
u0
;
//v0;
v
=
v0
;
//u0;
u
/=
scale
;
v
/=
scale
;
float
sinv
=
sinf
(
static_cast
<
float
>
(
CV_PI
)
-
v
);
float
x0_
=
sinv
*
sinf
(
u
);
float
y0_
=
cosf
(
static_cast
<
float
>
(
CV_PI
)
-
v
);
float
z_
=
sinv
*
cosf
(
u
);
float
x_
=
y0_
;
float
y_
=
x0_
;
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
CylindricalPortraitProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u0
,
float
&
v0
)
{
float
x0_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y0_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
x_
=
y0_
;
float
y_
=
x0_
;
float
u
,
v
;
u
=
scale
*
atan2f
(
x_
,
z_
);
v
=
scale
*
y_
/
sqrtf
(
x_
*
x_
+
z_
*
z_
);
u0
=
-
u
;
//v;
v0
=
v
;
//u;
}
inline
void
CylindricalPortraitProjector
::
mapBackward
(
float
u0
,
float
v0
,
float
&
x
,
float
&
y
)
{
float
u
,
v
;
u
=
-
u0
;
//v0;
v
=
v0
;
//u0;
u
/=
scale
;
v
/=
scale
;
float
x0_
=
sinf
(
u
);
float
y0_
=
v
;
float
z_
=
cosf
(
u
);
float
x_
=
y0_
;
float
y_
=
x0_
;
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
PlanePortraitProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u0
,
float
&
v0
)
{
float
x0_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y0_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
x_
=
y0_
;
float
y_
=
x0_
;
x_
=
t
[
0
]
+
x_
/
z_
*
(
1
-
t
[
2
]);
y_
=
t
[
1
]
+
y_
/
z_
*
(
1
-
t
[
2
]);
float
u
,
v
;
u
=
scale
*
x_
;
v
=
scale
*
y_
;
u0
=
-
u
;
v0
=
v
;
}
inline
void
PlanePortraitProjector
::
mapBackward
(
float
u0
,
float
v0
,
float
&
x
,
float
&
y
)
{
float
u
,
v
;
u
=
-
u0
;
v
=
v0
;
u
=
u
/
scale
-
t
[
0
];
v
=
v
/
scale
-
t
[
1
];
float
z
;
x
=
k_rinv
[
0
]
*
v
+
k_rinv
[
1
]
*
u
+
k_rinv
[
2
]
*
(
1
-
t
[
2
]);
y
=
k_rinv
[
3
]
*
v
+
k_rinv
[
4
]
*
u
+
k_rinv
[
5
]
*
(
1
-
t
[
2
]);
z
=
k_rinv
[
6
]
*
v
+
k_rinv
[
7
]
*
u
+
k_rinv
[
8
]
*
(
1
-
t
[
2
]);
x
/=
z
;
y
/=
z
;
}
}
// namespace detail
}
// namespace cv
#endif // __OPENCV_STITCHING_WARPERS_INL_HPP__
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_WARPERS_INL_HPP__
#define __OPENCV_STITCHING_WARPERS_INL_HPP__
#include "opencv2/core/core.hpp"
#include "warpers.hpp" // Make your IDE see declarations
namespace
cv
{
namespace
detail
{
template
<
class
P
>
Point2f
RotationWarperBase
<
P
>::
warpPoint
(
const
Point2f
&
pt
,
const
Mat
&
K
,
const
Mat
&
R
)
{
projector_
.
setCameraParams
(
K
,
R
);
Point2f
uv
;
projector_
.
mapForward
(
pt
.
x
,
pt
.
y
,
uv
.
x
,
uv
.
y
);
return
uv
;
}
template
<
class
P
>
Rect
RotationWarperBase
<
P
>::
buildMaps
(
Size
src_size
,
const
Mat
&
K
,
const
Mat
&
R
,
Mat
&
xmap
,
Mat
&
ymap
)
{
projector_
.
setCameraParams
(
K
,
R
);
Point
dst_tl
,
dst_br
;
detectResultRoi
(
src_size
,
dst_tl
,
dst_br
);
xmap
.
create
(
dst_br
.
y
-
dst_tl
.
y
+
1
,
dst_br
.
x
-
dst_tl
.
x
+
1
,
CV_32F
);
ymap
.
create
(
dst_br
.
y
-
dst_tl
.
y
+
1
,
dst_br
.
x
-
dst_tl
.
x
+
1
,
CV_32F
);
float
x
,
y
;
for
(
int
v
=
dst_tl
.
y
;
v
<=
dst_br
.
y
;
++
v
)
{
for
(
int
u
=
dst_tl
.
x
;
u
<=
dst_br
.
x
;
++
u
)
{
projector_
.
mapBackward
(
static_cast
<
float
>
(
u
),
static_cast
<
float
>
(
v
),
x
,
y
);
xmap
.
at
<
float
>
(
v
-
dst_tl
.
y
,
u
-
dst_tl
.
x
)
=
x
;
ymap
.
at
<
float
>
(
v
-
dst_tl
.
y
,
u
-
dst_tl
.
x
)
=
y
;
}
}
return
Rect
(
dst_tl
,
dst_br
);
}
template
<
class
P
>
Point
RotationWarperBase
<
P
>::
warp
(
const
Mat
&
src
,
const
Mat
&
K
,
const
Mat
&
R
,
int
interp_mode
,
int
border_mode
,
Mat
&
dst
)
{
Mat
xmap
,
ymap
;
Rect
dst_roi
=
buildMaps
(
src
.
size
(),
K
,
R
,
xmap
,
ymap
);
dst
.
create
(
dst_roi
.
height
+
1
,
dst_roi
.
width
+
1
,
src
.
type
());
remap
(
src
,
dst
,
xmap
,
ymap
,
interp_mode
,
border_mode
);
return
dst_roi
.
tl
();
}
template
<
class
P
>
void
RotationWarperBase
<
P
>::
warpBackward
(
const
Mat
&
src
,
const
Mat
&
K
,
const
Mat
&
R
,
int
interp_mode
,
int
border_mode
,
Size
dst_size
,
Mat
&
dst
)
{
projector_
.
setCameraParams
(
K
,
R
);
Point
src_tl
,
src_br
;
detectResultRoi
(
dst_size
,
src_tl
,
src_br
);
CV_Assert
(
src_br
.
x
-
src_tl
.
x
+
1
==
src
.
cols
&&
src_br
.
y
-
src_tl
.
y
+
1
==
src
.
rows
);
Mat
xmap
(
dst_size
,
CV_32F
);
Mat
ymap
(
dst_size
,
CV_32F
);
float
u
,
v
;
for
(
int
y
=
0
;
y
<
dst_size
.
height
;
++
y
)
{
for
(
int
x
=
0
;
x
<
dst_size
.
width
;
++
x
)
{
projector_
.
mapForward
(
static_cast
<
float
>
(
x
),
static_cast
<
float
>
(
y
),
u
,
v
);
xmap
.
at
<
float
>
(
y
,
x
)
=
u
-
src_tl
.
x
;
ymap
.
at
<
float
>
(
y
,
x
)
=
v
-
src_tl
.
y
;
}
}
dst
.
create
(
dst_size
,
src
.
type
());
remap
(
src
,
dst
,
xmap
,
ymap
,
interp_mode
,
border_mode
);
}
template
<
class
P
>
Rect
RotationWarperBase
<
P
>::
warpRoi
(
Size
src_size
,
const
Mat
&
K
,
const
Mat
&
R
)
{
projector_
.
setCameraParams
(
K
,
R
);
Point
dst_tl
,
dst_br
;
detectResultRoi
(
src_size
,
dst_tl
,
dst_br
);
return
Rect
(
dst_tl
,
Point
(
dst_br
.
x
+
1
,
dst_br
.
y
+
1
));
}
template
<
class
P
>
void
RotationWarperBase
<
P
>::
detectResultRoi
(
Size
src_size
,
Point
&
dst_tl
,
Point
&
dst_br
)
{
float
tl_uf
=
std
::
numeric_limits
<
float
>::
max
();
float
tl_vf
=
std
::
numeric_limits
<
float
>::
max
();
float
br_uf
=
-
std
::
numeric_limits
<
float
>::
max
();
float
br_vf
=
-
std
::
numeric_limits
<
float
>::
max
();
float
u
,
v
;
for
(
int
y
=
0
;
y
<
src_size
.
height
;
++
y
)
{
for
(
int
x
=
0
;
x
<
src_size
.
width
;
++
x
)
{
projector_
.
mapForward
(
static_cast
<
float
>
(
x
),
static_cast
<
float
>
(
y
),
u
,
v
);
tl_uf
=
std
::
min
(
tl_uf
,
u
);
tl_vf
=
std
::
min
(
tl_vf
,
v
);
br_uf
=
std
::
max
(
br_uf
,
u
);
br_vf
=
std
::
max
(
br_vf
,
v
);
}
}
dst_tl
.
x
=
static_cast
<
int
>
(
tl_uf
);
dst_tl
.
y
=
static_cast
<
int
>
(
tl_vf
);
dst_br
.
x
=
static_cast
<
int
>
(
br_uf
);
dst_br
.
y
=
static_cast
<
int
>
(
br_vf
);
}
template
<
class
P
>
void
RotationWarperBase
<
P
>::
detectResultRoiByBorder
(
Size
src_size
,
Point
&
dst_tl
,
Point
&
dst_br
)
{
float
tl_uf
=
std
::
numeric_limits
<
float
>::
max
();
float
tl_vf
=
std
::
numeric_limits
<
float
>::
max
();
float
br_uf
=
-
std
::
numeric_limits
<
float
>::
max
();
float
br_vf
=
-
std
::
numeric_limits
<
float
>::
max
();
float
u
,
v
;
for
(
float
x
=
0
;
x
<
src_size
.
width
;
++
x
)
{
projector_
.
mapForward
(
static_cast
<
float
>
(
x
),
0
,
u
,
v
);
tl_uf
=
std
::
min
(
tl_uf
,
u
);
tl_vf
=
std
::
min
(
tl_vf
,
v
);
br_uf
=
std
::
max
(
br_uf
,
u
);
br_vf
=
std
::
max
(
br_vf
,
v
);
projector_
.
mapForward
(
static_cast
<
float
>
(
x
),
static_cast
<
float
>
(
src_size
.
height
-
1
),
u
,
v
);
tl_uf
=
std
::
min
(
tl_uf
,
u
);
tl_vf
=
std
::
min
(
tl_vf
,
v
);
br_uf
=
std
::
max
(
br_uf
,
u
);
br_vf
=
std
::
max
(
br_vf
,
v
);
}
for
(
int
y
=
0
;
y
<
src_size
.
height
;
++
y
)
{
projector_
.
mapForward
(
0
,
static_cast
<
float
>
(
y
),
u
,
v
);
tl_uf
=
std
::
min
(
tl_uf
,
u
);
tl_vf
=
std
::
min
(
tl_vf
,
v
);
br_uf
=
std
::
max
(
br_uf
,
u
);
br_vf
=
std
::
max
(
br_vf
,
v
);
projector_
.
mapForward
(
static_cast
<
float
>
(
src_size
.
width
-
1
),
static_cast
<
float
>
(
y
),
u
,
v
);
tl_uf
=
std
::
min
(
tl_uf
,
u
);
tl_vf
=
std
::
min
(
tl_vf
,
v
);
br_uf
=
std
::
max
(
br_uf
,
u
);
br_vf
=
std
::
max
(
br_vf
,
v
);
}
dst_tl
.
x
=
static_cast
<
int
>
(
tl_uf
);
dst_tl
.
y
=
static_cast
<
int
>
(
tl_vf
);
dst_br
.
x
=
static_cast
<
int
>
(
br_uf
);
dst_br
.
y
=
static_cast
<
int
>
(
br_vf
);
}
inline
void
PlaneProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
x_
=
t
[
0
]
+
x_
/
z_
*
(
1
-
t
[
2
]);
y_
=
t
[
1
]
+
y_
/
z_
*
(
1
-
t
[
2
]);
u
=
scale
*
x_
;
v
=
scale
*
y_
;
}
inline
void
PlaneProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
=
u
/
scale
-
t
[
0
];
v
=
v
/
scale
-
t
[
1
];
float
z
;
x
=
k_rinv
[
0
]
*
u
+
k_rinv
[
1
]
*
v
+
k_rinv
[
2
]
*
(
1
-
t
[
2
]);
y
=
k_rinv
[
3
]
*
u
+
k_rinv
[
4
]
*
v
+
k_rinv
[
5
]
*
(
1
-
t
[
2
]);
z
=
k_rinv
[
6
]
*
u
+
k_rinv
[
7
]
*
v
+
k_rinv
[
8
]
*
(
1
-
t
[
2
]);
x
/=
z
;
y
/=
z
;
}
inline
void
SphericalProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
u
=
scale
*
atan2f
(
x_
,
z_
);
float
w
=
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
);
v
=
scale
*
(
static_cast
<
float
>
(
CV_PI
)
-
acosf
(
w
==
w
?
w
:
0
));
}
inline
void
SphericalProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
sinv
=
sinf
(
static_cast
<
float
>
(
CV_PI
)
-
v
);
float
x_
=
sinv
*
sinf
(
u
);
float
y_
=
cosf
(
static_cast
<
float
>
(
CV_PI
)
-
v
);
float
z_
=
sinv
*
cosf
(
u
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
CylindricalProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
u
=
scale
*
atan2f
(
x_
,
z_
);
v
=
scale
*
y_
/
sqrtf
(
x_
*
x_
+
z_
*
z_
);
}
inline
void
CylindricalProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
x_
=
sinf
(
u
);
float
y_
=
v
;
float
z_
=
cosf
(
u
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
FisheyeProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
(
float
)
CV_PI
-
acosf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
u
=
scale
*
v_
*
cosf
(
u_
);
v
=
scale
*
v_
*
sinf
(
u_
);
}
inline
void
FisheyeProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
u_
=
atan2f
(
v
,
u
);
float
v_
=
sqrtf
(
u
*
u
+
v
*
v
);
float
sinv
=
sinf
((
float
)
CV_PI
-
v_
);
float
x_
=
sinv
*
sinf
(
u_
);
float
y_
=
cosf
((
float
)
CV_PI
-
v_
);
float
z_
=
sinv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
StereographicProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
(
float
)
CV_PI
-
acosf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
float
r
=
sinf
(
v_
)
/
(
1
-
cosf
(
v_
));
u
=
scale
*
r
*
cos
(
u_
);
v
=
scale
*
r
*
sin
(
u_
);
}
inline
void
StereographicProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
u_
=
atan2f
(
v
,
u
);
float
r
=
sqrtf
(
u
*
u
+
v
*
v
);
float
v_
=
2
*
atanf
(
1.
f
/
r
);
float
sinv
=
sinf
((
float
)
CV_PI
-
v_
);
float
x_
=
sinv
*
sinf
(
u_
);
float
y_
=
cosf
((
float
)
CV_PI
-
v_
);
float
z_
=
sinv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
CompressedRectilinearProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
asinf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
u
=
scale
*
a
*
tanf
(
u_
/
a
);
v
=
scale
*
b
*
tanf
(
v_
)
/
cosf
(
u_
);
}
inline
void
CompressedRectilinearProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
aatg
=
a
*
atanf
(
u
/
a
);
float
u_
=
aatg
;
float
v_
=
atanf
(
v
*
cosf
(
aatg
)
/
b
);
float
cosv
=
cosf
(
v_
);
float
x_
=
cosv
*
sinf
(
u_
);
float
y_
=
sinf
(
v_
);
float
z_
=
cosv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
CompressedRectilinearPortraitProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
y_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
x_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
asinf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
u
=
-
scale
*
a
*
tanf
(
u_
/
a
);
v
=
scale
*
b
*
tanf
(
v_
)
/
cosf
(
u_
);
}
inline
void
CompressedRectilinearPortraitProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
-
scale
;
v
/=
scale
;
float
aatg
=
a
*
atanf
(
u
/
a
);
float
u_
=
aatg
;
float
v_
=
atanf
(
v
*
cosf
(
aatg
)
/
b
);
float
cosv
=
cosf
(
v_
);
float
y_
=
cosv
*
sinf
(
u_
);
float
x_
=
sinf
(
v_
);
float
z_
=
cosv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
PaniniProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
asinf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
float
tg
=
a
*
tanf
(
u_
/
a
);
u
=
scale
*
tg
;
float
sinu
=
sinf
(
u_
);
if
(
fabs
(
sinu
)
<
1E-7
)
v
=
scale
*
b
*
tanf
(
v_
);
else
v
=
scale
*
b
*
tg
*
tanf
(
v_
)
/
sinu
;
}
inline
void
PaniniProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
lamda
=
a
*
atanf
(
u
/
a
);
float
u_
=
lamda
;
float
v_
;
if
(
fabs
(
lamda
)
>
1E-7
)
v_
=
atanf
(
v
*
sinf
(
lamda
)
/
(
b
*
a
*
tanf
(
lamda
/
a
)));
else
v_
=
atanf
(
v
/
b
);
float
cosv
=
cosf
(
v_
);
float
x_
=
cosv
*
sinf
(
u_
);
float
y_
=
sinf
(
v_
);
float
z_
=
cosv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
PaniniPortraitProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
y_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
x_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
asinf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
float
tg
=
a
*
tanf
(
u_
/
a
);
u
=
-
scale
*
tg
;
float
sinu
=
sinf
(
u_
);
if
(
fabs
(
sinu
)
<
1E-7
)
v
=
scale
*
b
*
tanf
(
v_
);
else
v
=
scale
*
b
*
tg
*
tanf
(
v_
)
/
sinu
;
}
inline
void
PaniniPortraitProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
-
scale
;
v
/=
scale
;
float
lamda
=
a
*
atanf
(
u
/
a
);
float
u_
=
lamda
;
float
v_
;
if
(
fabs
(
lamda
)
>
1E-7
)
v_
=
atanf
(
v
*
sinf
(
lamda
)
/
(
b
*
a
*
tanf
(
lamda
/
a
)));
else
v_
=
atanf
(
v
/
b
);
float
cosv
=
cosf
(
v_
);
float
y_
=
cosv
*
sinf
(
u_
);
float
x_
=
sinf
(
v_
);
float
z_
=
cosv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
MercatorProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
asinf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
u
=
scale
*
u_
;
v
=
scale
*
logf
(
tanf
(
(
float
)(
CV_PI
/
4
)
+
v_
/
2
)
);
}
inline
void
MercatorProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
v_
=
atanf
(
sinhf
(
v
)
);
float
u_
=
u
;
float
cosv
=
cosf
(
v_
);
float
x_
=
cosv
*
sinf
(
u_
);
float
y_
=
sinf
(
v_
);
float
z_
=
cosv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
TransverseMercatorProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u
,
float
&
v
)
{
float
x_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
u_
=
atan2f
(
x_
,
z_
);
float
v_
=
asinf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
));
float
B
=
cosf
(
v_
)
*
sinf
(
u_
);
u
=
scale
/
2
*
logf
(
(
1
+
B
)
/
(
1
-
B
)
);
v
=
scale
*
atan2f
(
tanf
(
v_
),
cosf
(
u_
));
}
inline
void
TransverseMercatorProjector
::
mapBackward
(
float
u
,
float
v
,
float
&
x
,
float
&
y
)
{
u
/=
scale
;
v
/=
scale
;
float
v_
=
asinf
(
sinf
(
v
)
/
coshf
(
u
)
);
float
u_
=
atan2f
(
sinhf
(
u
),
cos
(
v
)
);
float
cosv
=
cosf
(
v_
);
float
x_
=
cosv
*
sinf
(
u_
);
float
y_
=
sinf
(
v_
);
float
z_
=
cosv
*
cosf
(
u_
);
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
SphericalPortraitProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u0
,
float
&
v0
)
{
float
x0_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y0_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
x_
=
y0_
;
float
y_
=
x0_
;
float
u
,
v
;
u
=
scale
*
atan2f
(
x_
,
z_
);
v
=
scale
*
(
static_cast
<
float
>
(
CV_PI
)
-
acosf
(
y_
/
sqrtf
(
x_
*
x_
+
y_
*
y_
+
z_
*
z_
)));
u0
=
-
u
;
//v;
v0
=
v
;
//u;
}
inline
void
SphericalPortraitProjector
::
mapBackward
(
float
u0
,
float
v0
,
float
&
x
,
float
&
y
)
{
float
u
,
v
;
u
=
-
u0
;
//v0;
v
=
v0
;
//u0;
u
/=
scale
;
v
/=
scale
;
float
sinv
=
sinf
(
static_cast
<
float
>
(
CV_PI
)
-
v
);
float
x0_
=
sinv
*
sinf
(
u
);
float
y0_
=
cosf
(
static_cast
<
float
>
(
CV_PI
)
-
v
);
float
z_
=
sinv
*
cosf
(
u
);
float
x_
=
y0_
;
float
y_
=
x0_
;
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
CylindricalPortraitProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u0
,
float
&
v0
)
{
float
x0_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y0_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
x_
=
y0_
;
float
y_
=
x0_
;
float
u
,
v
;
u
=
scale
*
atan2f
(
x_
,
z_
);
v
=
scale
*
y_
/
sqrtf
(
x_
*
x_
+
z_
*
z_
);
u0
=
-
u
;
//v;
v0
=
v
;
//u;
}
inline
void
CylindricalPortraitProjector
::
mapBackward
(
float
u0
,
float
v0
,
float
&
x
,
float
&
y
)
{
float
u
,
v
;
u
=
-
u0
;
//v0;
v
=
v0
;
//u0;
u
/=
scale
;
v
/=
scale
;
float
x0_
=
sinf
(
u
);
float
y0_
=
v
;
float
z_
=
cosf
(
u
);
float
x_
=
y0_
;
float
y_
=
x0_
;
float
z
;
x
=
k_rinv
[
0
]
*
x_
+
k_rinv
[
1
]
*
y_
+
k_rinv
[
2
]
*
z_
;
y
=
k_rinv
[
3
]
*
x_
+
k_rinv
[
4
]
*
y_
+
k_rinv
[
5
]
*
z_
;
z
=
k_rinv
[
6
]
*
x_
+
k_rinv
[
7
]
*
y_
+
k_rinv
[
8
]
*
z_
;
if
(
z
>
0
)
{
x
/=
z
;
y
/=
z
;
}
else
x
=
y
=
-
1
;
}
inline
void
PlanePortraitProjector
::
mapForward
(
float
x
,
float
y
,
float
&
u0
,
float
&
v0
)
{
float
x0_
=
r_kinv
[
0
]
*
x
+
r_kinv
[
1
]
*
y
+
r_kinv
[
2
];
float
y0_
=
r_kinv
[
3
]
*
x
+
r_kinv
[
4
]
*
y
+
r_kinv
[
5
];
float
z_
=
r_kinv
[
6
]
*
x
+
r_kinv
[
7
]
*
y
+
r_kinv
[
8
];
float
x_
=
y0_
;
float
y_
=
x0_
;
x_
=
t
[
0
]
+
x_
/
z_
*
(
1
-
t
[
2
]);
y_
=
t
[
1
]
+
y_
/
z_
*
(
1
-
t
[
2
]);
float
u
,
v
;
u
=
scale
*
x_
;
v
=
scale
*
y_
;
u0
=
-
u
;
v0
=
v
;
}
inline
void
PlanePortraitProjector
::
mapBackward
(
float
u0
,
float
v0
,
float
&
x
,
float
&
y
)
{
float
u
,
v
;
u
=
-
u0
;
v
=
v0
;
u
=
u
/
scale
-
t
[
0
];
v
=
v
/
scale
-
t
[
1
];
float
z
;
x
=
k_rinv
[
0
]
*
v
+
k_rinv
[
1
]
*
u
+
k_rinv
[
2
]
*
(
1
-
t
[
2
]);
y
=
k_rinv
[
3
]
*
v
+
k_rinv
[
4
]
*
u
+
k_rinv
[
5
]
*
(
1
-
t
[
2
]);
z
=
k_rinv
[
6
]
*
v
+
k_rinv
[
7
]
*
u
+
k_rinv
[
8
]
*
(
1
-
t
[
2
]);
x
/=
z
;
y
/=
z
;
}
}
// namespace detail
}
// namespace cv
#endif // __OPENCV_STITCHING_WARPERS_INL_HPP__
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment