Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
62edeeed
Commit
62edeeed
authored
May 07, 2013
by
Vladislav Vinogradov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
refactored FGD algorithm
parent
69779309
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
420 additions
and
493 deletions
+420
-493
gpubgsegm.hpp
modules/gpubgsegm/include/opencv2/gpubgsegm.hpp
+40
-68
perf_bgsegm.cpp
modules/gpubgsegm/perf/perf_bgsegm.cpp
+7
-6
fgd.cu
modules/gpubgsegm/src/cuda/fgd.cu
+1
-1
fgd.hpp
modules/gpubgsegm/src/cuda/fgd.hpp
+1
-1
fgd.cpp
modules/gpubgsegm/src/fgd.cpp
+346
-376
test_bgsegm.cpp
modules/gpubgsegm/test/test_bgsegm.cpp
+13
-30
bgfg_segm.cpp
samples/gpu/bgfg_segm.cpp
+4
-5
tests.cpp
samples/gpu/performance/tests.cpp
+8
-6
No files found.
modules/gpubgsegm/include/opencv2/gpubgsegm.hpp
View file @
62edeeed
...
...
@@ -50,9 +50,6 @@
#include "opencv2/core/gpu.hpp"
#include "opencv2/video/background_segm.hpp"
#include <memory>
#include "opencv2/gpufilters.hpp"
namespace
cv
{
namespace
gpu
{
////////////////////////////////////////////////////
...
...
@@ -105,76 +102,51 @@ public:
CV_EXPORTS
Ptr
<
gpu
::
BackgroundSubtractorGMG
>
createBackgroundSubtractorGMG
(
int
initializationFrames
=
120
,
double
decisionThreshold
=
0.8
);
// Foreground Object Detection from Videos Containing Complex Background.
// Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
// ACM MM2003 9p
class
CV_EXPORTS
FGDStatModel
////////////////////////////////////////////////////
// FGD
/**
* Foreground Object Detection from Videos Containing Complex Background.
* Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
* ACM MM2003 9p
*/
class
CV_EXPORTS
BackgroundSubtractorFGD
:
public
cv
::
BackgroundSubtractor
{
public
:
struct
CV_EXPORTS
Params
{
int
Lc
;
// Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
int
N1c
;
// Number of color vectors used to model normal background color variation at a given pixel.
int
N2c
;
// Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c.
// Used to allow the first N1c vectors to adapt over time to changing background.
int
Lcc
;
// Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64.
int
N1cc
;
// Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
int
N2cc
;
// Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc.
// Used to allow the first N1cc vectors to adapt over time to changing background.
bool
is_obj_without_holes
;
// If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
int
perform_morphing
;
// Number of erode-dilate-erode foreground-blob cleanup iterations.
// These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.
float
alpha1
;
// How quickly we forget old background pixel values seen. Typically set to 0.1.
float
alpha2
;
// "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
float
alpha3
;
// Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.
float
delta
;
// Affects color and color co-occurrence quantization, typically set to 2.
float
T
;
// A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
float
minArea
;
// Discard foreground blobs whose bounding box is smaller than this threshold.
// default Params
Params
();
};
// out_cn - channels count in output result (can be 3 or 4)
// 4-channels require more memory, but a bit faster
explicit
FGDStatModel
(
int
out_cn
=
3
);
explicit
FGDStatModel
(
const
cv
::
gpu
::
GpuMat
&
firstFrame
,
const
Params
&
params
=
Params
(),
int
out_cn
=
3
);
~
FGDStatModel
();
void
create
(
const
cv
::
gpu
::
GpuMat
&
firstFrame
,
const
Params
&
params
=
Params
());
void
release
();
int
update
(
const
cv
::
gpu
::
GpuMat
&
curFrame
);
//8UC3 or 8UC4 reference background image
cv
::
gpu
::
GpuMat
background
;
//8UC1 foreground image
cv
::
gpu
::
GpuMat
foreground
;
std
::
vector
<
std
::
vector
<
cv
::
Point
>
>
foreground_regions
;
private
:
FGDStatModel
(
const
FGDStatModel
&
);
FGDStatModel
&
operator
=
(
const
FGDStatModel
&
);
virtual
void
getForegroundRegions
(
OutputArrayOfArrays
foreground_regions
)
=
0
;
};
class
Impl
;
std
::
auto_ptr
<
Impl
>
impl_
;
struct
CV_EXPORTS
FGDParams
{
int
Lc
;
// Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
int
N1c
;
// Number of color vectors used to model normal background color variation at a given pixel.
int
N2c
;
// Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c.
// Used to allow the first N1c vectors to adapt over time to changing background.
int
Lcc
;
// Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64.
int
N1cc
;
// Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
int
N2cc
;
// Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc.
// Used to allow the first N1cc vectors to adapt over time to changing background.
bool
is_obj_without_holes
;
// If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
int
perform_morphing
;
// Number of erode-dilate-erode foreground-blob cleanup iterations.
// These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.
float
alpha1
;
// How quickly we forget old background pixel values seen. Typically set to 0.1.
float
alpha2
;
// "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
float
alpha3
;
// Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.
float
delta
;
// Affects color and color co-occurrence quantization, typically set to 2.
float
T
;
// A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
float
minArea
;
// Discard foreground blobs whose bounding box is smaller than this threshold.
// default Params
FGDParams
();
};
CV_EXPORTS
Ptr
<
gpu
::
BackgroundSubtractorFGD
>
createBackgroundSubtractorFGD
(
const
FGDParams
&
params
=
FGDParams
());
}}
// namespace cv { namespace gpu {
#endif
/* __OPENCV_GPUBGSEGM_HPP__ */
modules/gpubgsegm/perf/perf_bgsegm.cpp
View file @
62edeeed
...
...
@@ -42,6 +42,7 @@
#include "perf_precomp.hpp"
#include "opencv2/legacy.hpp"
#include "opencv2/gpuimgproc.hpp"
using
namespace
std
;
using
namespace
testing
;
...
...
@@ -90,10 +91,10 @@ PERF_TEST_P(Video, FGDStatModel,
if
(
PERF_RUN_GPU
())
{
cv
::
gpu
::
GpuMat
d_frame
(
frame
);
cv
::
gpu
::
GpuMat
d_frame
(
frame
)
,
foreground
,
background3
,
background
;
cv
::
gpu
::
FGDStatModel
d_model
(
4
);
d_
model
.
create
(
d_frame
);
cv
::
Ptr
<
cv
::
gpu
::
BackgroundSubtractorFGD
>
d_fgd
=
cv
::
gpu
::
createBackgroundSubtractorFGD
(
);
d_
fgd
->
apply
(
d_frame
,
foreground
);
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
...
...
@@ -103,12 +104,12 @@ PERF_TEST_P(Video, FGDStatModel,
d_frame
.
upload
(
frame
);
startTimer
();
next
();
d_
model
.
update
(
d_frame
);
d_
fgd
->
apply
(
d_frame
,
foreground
);
stopTimer
();
}
const
cv
::
gpu
::
GpuMat
background
=
d_model
.
background
;
c
onst
cv
::
gpu
::
GpuMat
foreground
=
d_model
.
foreground
;
d_fgd
->
getBackgroundImage
(
background3
)
;
c
v
::
gpu
::
cvtColor
(
background3
,
background
,
cv
::
COLOR_BGR2BGRA
)
;
GPU_SANITY_CHECK
(
background
,
1e-2
,
ERROR_RELATIVE
);
GPU_SANITY_CHECK
(
foreground
,
1e-2
,
ERROR_RELATIVE
);
...
...
modules/gpubgsegm/src/cuda/fgd.cu
View file @
62edeeed
...
...
@@ -53,7 +53,7 @@
using namespace cv::gpu;
using namespace cv::gpu::cudev;
namespace
bgfg
namespace
fgd
{
////////////////////////////////////////////////////////////////////////////
// calcDiffHistogram
...
...
modules/gpubgsegm/src/cuda/fgd.hpp
View file @
62edeeed
...
...
@@ -45,7 +45,7 @@
#include "opencv2/core/gpu_types.hpp"
namespace
bgfg
namespace
fgd
{
struct
BGPixelStat
{
...
...
modules/gpubgsegm/src/fgd.cpp
View file @
62edeeed
...
...
@@ -42,329 +42,150 @@
#include "precomp.hpp"
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
using
namespace
cv
;
using
namespace
cv
::
gpu
;
class
cv
::
gpu
::
FGDStatModel
::
Impl
{
};
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
cv
::
gpu
::
FGD
StatModel
::
Params
::
Params
()
{
throw_no_cuda
();
}
cv
::
gpu
::
FGD
Params
::
FGD
Params
()
{
throw_no_cuda
();
}
cv
::
gpu
::
FGDStatModel
::
FGDStatModel
(
int
)
{
throw_no_cuda
();
}
cv
::
gpu
::
FGDStatModel
::
FGDStatModel
(
const
cv
::
gpu
::
GpuMat
&
,
const
Params
&
,
int
)
{
throw_no_cuda
();
}
cv
::
gpu
::
FGDStatModel
::~
FGDStatModel
()
{}
void
cv
::
gpu
::
FGDStatModel
::
create
(
const
cv
::
gpu
::
GpuMat
&
,
const
Params
&
)
{
throw_no_cuda
();
}
void
cv
::
gpu
::
FGDStatModel
::
release
()
{}
int
cv
::
gpu
::
FGDStatModel
::
update
(
const
cv
::
gpu
::
GpuMat
&
)
{
throw_no_cuda
();
return
0
;
}
Ptr
<
gpu
::
BackgroundSubtractorFGD
>
cv
::
gpu
::
createBackgroundSubtractorFGD
(
const
FGDParams
&
)
{
throw_no_cuda
();
return
Ptr
<
gpu
::
BackgroundSubtractorFGD
>
();
}
#else
#include "cuda/fgd.hpp"
#include "opencv2/imgproc/imgproc_c.h"
/////////////////////////////////////////////////////////////////////////
// FGDParams
namespace
{
class
BGPixelStat
{
public
:
void
create
(
cv
::
Size
size
,
const
cv
::
gpu
::
FGDStatModel
::
Params
&
params
,
int
out_cn
);
void
release
();
void
setTrained
();
operator
bgfg
::
BGPixelStat
();
private
:
cv
::
gpu
::
GpuMat
Pbc_
;
cv
::
gpu
::
GpuMat
Pbcc_
;
cv
::
gpu
::
GpuMat
is_trained_st_model_
;
cv
::
gpu
::
GpuMat
is_trained_dyn_model_
;
cv
::
gpu
::
GpuMat
ctable_Pv_
;
cv
::
gpu
::
GpuMat
ctable_Pvb_
;
cv
::
gpu
::
GpuMat
ctable_v_
;
cv
::
gpu
::
GpuMat
cctable_Pv_
;
cv
::
gpu
::
GpuMat
cctable_Pvb_
;
cv
::
gpu
::
GpuMat
cctable_v1_
;
cv
::
gpu
::
GpuMat
cctable_v2_
;
};
void
BGPixelStat
::
create
(
cv
::
Size
size
,
const
cv
::
gpu
::
FGDStatModel
::
Params
&
params
,
int
out_cn
)
{
cv
::
gpu
::
ensureSizeIsEnough
(
size
,
CV_32FC1
,
Pbc_
);
Pbc_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
cv
::
gpu
::
ensureSizeIsEnough
(
size
,
CV_32FC1
,
Pbcc_
);
Pbcc_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
cv
::
gpu
::
ensureSizeIsEnough
(
size
,
CV_8UC1
,
is_trained_st_model_
);
is_trained_st_model_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
cv
::
gpu
::
ensureSizeIsEnough
(
size
,
CV_8UC1
,
is_trained_dyn_model_
);
is_trained_dyn_model_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
cv
::
gpu
::
ensureSizeIsEnough
(
params
.
N2c
*
size
.
height
,
size
.
width
,
CV_32FC1
,
ctable_Pv_
);
ctable_Pv_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
cv
::
gpu
::
ensureSizeIsEnough
(
params
.
N2c
*
size
.
height
,
size
.
width
,
CV_32FC1
,
ctable_Pvb_
);
ctable_Pvb_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
cv
::
gpu
::
ensureSizeIsEnough
(
params
.
N2c
*
size
.
height
,
size
.
width
,
CV_8UC
(
out_cn
),
ctable_v_
);
ctable_v_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
cv
::
gpu
::
ensureSizeIsEnough
(
params
.
N2cc
*
size
.
height
,
size
.
width
,
CV_32FC1
,
cctable_Pv_
);
cctable_Pv_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
cv
::
gpu
::
ensureSizeIsEnough
(
params
.
N2cc
*
size
.
height
,
size
.
width
,
CV_32FC1
,
cctable_Pvb_
);
cctable_Pvb_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
cv
::
gpu
::
ensureSizeIsEnough
(
params
.
N2cc
*
size
.
height
,
size
.
width
,
CV_8UC
(
out_cn
),
cctable_v1_
);
cctable_v1_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
cv
::
gpu
::
ensureSizeIsEnough
(
params
.
N2cc
*
size
.
height
,
size
.
width
,
CV_8UC
(
out_cn
),
cctable_v2_
);
cctable_v2_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
}
void
BGPixelStat
::
release
()
{
Pbc_
.
release
();
Pbcc_
.
release
();
is_trained_st_model_
.
release
();
is_trained_dyn_model_
.
release
();
ctable_Pv_
.
release
();
ctable_Pvb_
.
release
();
ctable_v_
.
release
();
cctable_Pv_
.
release
();
cctable_Pvb_
.
release
();
cctable_v1_
.
release
();
cctable_v2_
.
release
();
}
void
BGPixelStat
::
setTrained
()
{
is_trained_st_model_
.
setTo
(
cv
::
Scalar
::
all
(
1
));
is_trained_dyn_model_
.
setTo
(
cv
::
Scalar
::
all
(
1
));
}
BGPixelStat
::
operator
bgfg
::
BGPixelStat
()
{
bgfg
::
BGPixelStat
stat
;
stat
.
rows_
=
Pbc_
.
rows
;
stat
.
Pbc_data_
=
Pbc_
.
data
;
stat
.
Pbc_step_
=
Pbc_
.
step
;
stat
.
Pbcc_data_
=
Pbcc_
.
data
;
stat
.
Pbcc_step_
=
Pbcc_
.
step
;
stat
.
is_trained_st_model_data_
=
is_trained_st_model_
.
data
;
stat
.
is_trained_st_model_step_
=
is_trained_st_model_
.
step
;
stat
.
is_trained_dyn_model_data_
=
is_trained_dyn_model_
.
data
;
stat
.
is_trained_dyn_model_step_
=
is_trained_dyn_model_
.
step
;
stat
.
ctable_Pv_data_
=
ctable_Pv_
.
data
;
stat
.
ctable_Pv_step_
=
ctable_Pv_
.
step
;
// Default parameters of foreground detection algorithm:
const
int
BGFG_FGD_LC
=
128
;
const
int
BGFG_FGD_N1C
=
15
;
const
int
BGFG_FGD_N2C
=
25
;
stat
.
ctable_Pvb_data_
=
ctable_Pvb_
.
data
;
stat
.
ctable_Pvb_step_
=
ctable_Pvb_
.
step
;
const
int
BGFG_FGD_LCC
=
64
;
const
int
BGFG_FGD_N1CC
=
25
;
const
int
BGFG_FGD_N2CC
=
40
;
stat
.
ctable_v_data_
=
ctable_v_
.
data
;
stat
.
ctable_v_step_
=
ctable_v_
.
step
;
// Background reference image update parameter:
const
float
BGFG_FGD_ALPHA_1
=
0.1
f
;
stat
.
cctable_Pv_data_
=
cctable_Pv_
.
data
;
stat
.
cctable_Pv_step_
=
cctable_Pv_
.
step
;
// stat model update parameter
// 0.002f ~ 1K frame(~45sec), 0.005 ~ 18sec (if 25fps and absolutely static BG)
const
float
BGFG_FGD_ALPHA_2
=
0.005
f
;
stat
.
cctable_Pvb_data_
=
cctable_Pvb_
.
data
;
stat
.
cctable_Pvb_step_
=
cctable_Pvb_
.
step
;
// start value for alpha parameter (to fast initiate statistic model)
const
float
BGFG_FGD_ALPHA_3
=
0.1
f
;
stat
.
cctable_v1_data_
=
cctable_v1_
.
data
;
stat
.
cctable_v1_step_
=
cctable_v1_
.
step
;
const
float
BGFG_FGD_DELTA
=
2.0
f
;
stat
.
cctable_v2_data_
=
cctable_v2_
.
data
;
stat
.
cctable_v2_step_
=
cctable_v2_
.
step
;
const
float
BGFG_FGD_T
=
0.9
f
;
return
stat
;
}
const
float
BGFG_FGD_MINAREA
=
15.0
f
;
}
c
lass
cv
::
gpu
::
FGDStatModel
::
Impl
c
v
::
gpu
::
FGDParams
::
FGDParams
()
{
public
:
Impl
(
cv
::
gpu
::
GpuMat
&
background
,
cv
::
gpu
::
GpuMat
&
foreground
,
std
::
vector
<
std
::
vector
<
cv
::
Point
>
>&
foreground_regions
,
int
out_cn
);
~
Impl
();
void
create
(
const
cv
::
gpu
::
GpuMat
&
firstFrame
,
const
cv
::
gpu
::
FGDStatModel
::
Params
&
params
);
void
release
();
int
update
(
const
cv
::
gpu
::
GpuMat
&
curFrame
);
private
:
Impl
(
const
Impl
&
);
Impl
&
operator
=
(
const
Impl
&
);
int
out_cn_
;
cv
::
gpu
::
FGDStatModel
::
Params
params_
;
cv
::
gpu
::
GpuMat
&
background_
;
cv
::
gpu
::
GpuMat
&
foreground_
;
std
::
vector
<
std
::
vector
<
cv
::
Point
>
>&
foreground_regions_
;
cv
::
Mat
h_foreground_
;
cv
::
gpu
::
GpuMat
prevFrame_
;
cv
::
gpu
::
GpuMat
Ftd_
;
cv
::
gpu
::
GpuMat
Fbd_
;
BGPixelStat
stat_
;
cv
::
gpu
::
GpuMat
hist_
;
cv
::
gpu
::
GpuMat
histBuf_
;
cv
::
gpu
::
GpuMat
countBuf_
;
Lc
=
BGFG_FGD_LC
;
N1c
=
BGFG_FGD_N1C
;
N2c
=
BGFG_FGD_N2C
;
cv
::
gpu
::
GpuMat
buf_
;
cv
::
gpu
::
GpuMat
filterBrd_
;
Lcc
=
BGFG_FGD_LCC
;
N1cc
=
BGFG_FGD_N1CC
;
N2cc
=
BGFG_FGD_N2CC
;
cv
::
Ptr
<
cv
::
gpu
::
Filter
>
dilateFilter_
;
cv
::
Ptr
<
cv
::
gpu
::
Filter
>
erodeFilter_
;
delta
=
BGFG_FGD_DELTA
;
CvMemStorage
*
storage_
;
};
alpha1
=
BGFG_FGD_ALPHA_1
;
alpha2
=
BGFG_FGD_ALPHA_2
;
alpha3
=
BGFG_FGD_ALPHA_3
;
cv
::
gpu
::
FGDStatModel
::
Impl
::
Impl
(
cv
::
gpu
::
GpuMat
&
background
,
cv
::
gpu
::
GpuMat
&
foreground
,
std
::
vector
<
std
::
vector
<
cv
::
Point
>
>&
foreground_regions
,
int
out_cn
)
:
out_cn_
(
out_cn
),
background_
(
background
),
foreground_
(
foreground
),
foreground_regions_
(
foreground_regions
)
{
CV_Assert
(
out_cn_
==
3
||
out_cn_
==
4
);
T
=
BGFG_FGD_T
;
minArea
=
BGFG_FGD_MINAREA
;
storage_
=
cvCreateMemStorage
()
;
CV_Assert
(
storage_
!=
0
)
;
is_obj_without_holes
=
true
;
perform_morphing
=
1
;
}
cv
::
gpu
::
FGDStatModel
::
Impl
::~
Impl
()
{
cvReleaseMemStorage
(
&
storage_
);
}
/////////////////////////////////////////////////////////////////////////
// copyChannels
namespace
{
void
copyChannels
(
const
cv
::
gpu
::
GpuMat
&
src
,
cv
::
gpu
::
GpuMat
&
dst
,
int
dst_cn
=
-
1
)
void
copyChannels
(
const
GpuMat
&
src
,
GpuMat
&
dst
,
int
dst_cn
=
-
1
)
{
const
int
src_cn
=
src
.
channels
();
if
(
dst_cn
<
0
)
dst_cn
=
src_cn
;
cv
::
gpu
::
ensureSizeIsEnough
(
src
.
size
(),
CV_MAKE_TYPE
(
src
.
depth
(),
dst_cn
),
dst
);
gpu
::
ensureSizeIsEnough
(
src
.
size
(),
CV_MAKE_TYPE
(
src
.
depth
(),
dst_cn
),
dst
);
if
(
src_cn
==
dst_cn
)
{
src
.
copyTo
(
dst
);
}
else
{
static
const
int
cvt_codes
[
4
][
4
]
=
{
{
-
1
,
-
1
,
cv
::
COLOR_GRAY2BGR
,
cv
::
COLOR_GRAY2BGRA
},
{
-
1
,
-
1
,
COLOR_GRAY2BGR
,
COLOR_GRAY2BGRA
},
{
-
1
,
-
1
,
-
1
,
-
1
},
{
cv
::
COLOR_BGR2GRAY
,
-
1
,
-
1
,
cv
::
COLOR_BGR2BGRA
},
{
cv
::
COLOR_BGRA2GRAY
,
-
1
,
cv
::
COLOR_BGRA2BGR
,
-
1
}
{
COLOR_BGR2GRAY
,
-
1
,
-
1
,
COLOR_BGR2BGRA
},
{
COLOR_BGRA2GRAY
,
-
1
,
COLOR_BGRA2BGR
,
-
1
}
};
const
int
cvt_code
=
cvt_codes
[
src_cn
-
1
][
dst_cn
-
1
];
CV_DbgAssert
(
cvt_code
>=
0
);
cv
::
gpu
::
cvtColor
(
src
,
dst
,
cvt_code
,
dst_cn
);
gpu
::
cvtColor
(
src
,
dst
,
cvt_code
,
dst_cn
);
}
}
}
void
cv
::
gpu
::
FGDStatModel
::
Impl
::
create
(
const
cv
::
gpu
::
GpuMat
&
firstFrame
,
const
cv
::
gpu
::
FGDStatModel
::
Params
&
params
)
{
CV_Assert
(
firstFrame
.
type
()
==
CV_8UC3
||
firstFrame
.
type
()
==
CV_8UC4
);
params_
=
params
;
cv
::
gpu
::
ensureSizeIsEnough
(
firstFrame
.
size
(),
CV_8UC1
,
foreground_
);
copyChannels
(
firstFrame
,
background_
,
out_cn_
);
copyChannels
(
firstFrame
,
prevFrame_
);
cv
::
gpu
::
ensureSizeIsEnough
(
firstFrame
.
size
(),
CV_8UC1
,
Ftd_
);
cv
::
gpu
::
ensureSizeIsEnough
(
firstFrame
.
size
(),
CV_8UC1
,
Fbd_
);
stat_
.
create
(
firstFrame
.
size
(),
params_
,
out_cn_
);
bgfg
::
setBGPixelStat
(
stat_
);
if
(
params_
.
perform_morphing
>
0
)
{
cv
::
Mat
kernel
=
cv
::
getStructuringElement
(
cv
::
MORPH_RECT
,
cv
::
Size
(
1
+
params_
.
perform_morphing
*
2
,
1
+
params_
.
perform_morphing
*
2
));
cv
::
Point
anchor
(
params_
.
perform_morphing
,
params_
.
perform_morphing
);
dilateFilter_
=
cv
::
gpu
::
createMorphologyFilter
(
cv
::
MORPH_DILATE
,
CV_8UC1
,
kernel
,
anchor
);
erodeFilter_
=
cv
::
gpu
::
createMorphologyFilter
(
cv
::
MORPH_ERODE
,
CV_8UC1
,
kernel
,
anchor
);
}
}
void
cv
::
gpu
::
FGDStatModel
::
Impl
::
release
()
{
background_
.
release
();
foreground_
.
release
();
prevFrame_
.
release
();
Ftd_
.
release
();
Fbd_
.
release
();
stat_
.
release
();
hist_
.
release
();
histBuf_
.
release
();
countBuf_
.
release
();
buf_
.
release
();
filterBrd_
.
release
();
}
/////////////////////////////////////////////////////////////////////////
// changeDetection
namespace
{
void
calcDiffHistogram
(
const
cv
::
gpu
::
GpuMat
&
prevFrame
,
const
cv
::
gpu
::
GpuMat
&
curFrame
,
cv
::
gpu
::
GpuMat
&
hist
,
cv
::
gpu
::
GpuMat
&
histBuf
)
void
calcDiffHistogram
(
const
GpuMat
&
prevFrame
,
const
GpuMat
&
curFrame
,
GpuMat
&
hist
,
GpuMat
&
histBuf
)
{
typedef
void
(
*
func_t
)(
cv
::
gpu
::
PtrStepSzb
prevFrame
,
cv
::
gpu
::
PtrStepSzb
curFrame
,
unsigned
int
*
hist0
,
unsigned
int
*
hist1
,
unsigned
int
*
hist2
,
unsigned
int
*
partialBuf0
,
unsigned
int
*
partialBuf1
,
unsigned
int
*
partialBuf2
,
bool
cc20
,
cudaStream_t
stream
);
typedef
void
(
*
func_t
)(
PtrStepSzb
prevFrame
,
PtrStepSzb
curFrame
,
unsigned
int
*
hist0
,
unsigned
int
*
hist1
,
unsigned
int
*
hist2
,
unsigned
int
*
partialBuf0
,
unsigned
int
*
partialBuf1
,
unsigned
int
*
partialBuf2
,
bool
cc20
,
cudaStream_t
stream
);
static
const
func_t
funcs
[
4
][
4
]
=
{
{
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
},
{
0
,
0
,
bgfg
::
calcDiffHistogram_gpu
<
uchar3
,
uchar3
>
,
bgfg
::
calcDiffHistogram_gpu
<
uchar3
,
uchar4
>
},
{
0
,
0
,
bgfg
::
calcDiffHistogram_gpu
<
uchar4
,
uchar3
>
,
bgfg
::
calcDiffHistogram_gpu
<
uchar4
,
uchar4
>
}
{
0
,
0
,
fgd
::
calcDiffHistogram_gpu
<
uchar3
,
uchar3
>
,
fgd
::
calcDiffHistogram_gpu
<
uchar3
,
uchar4
>
},
{
0
,
0
,
fgd
::
calcDiffHistogram_gpu
<
uchar4
,
uchar3
>
,
fgd
::
calcDiffHistogram_gpu
<
uchar4
,
uchar4
>
}
};
hist
.
create
(
3
,
256
,
CV_32SC1
);
histBuf
.
create
(
3
,
bgfg
::
PARTIAL_HISTOGRAM_COUNT
*
bgfg
::
HISTOGRAM_BIN_COUNT
,
CV_32SC1
);
histBuf
.
create
(
3
,
fgd
::
PARTIAL_HISTOGRAM_COUNT
*
fgd
::
HISTOGRAM_BIN_COUNT
,
CV_32SC1
);
funcs
[
prevFrame
.
channels
()
-
1
][
curFrame
.
channels
()
-
1
](
prevFrame
,
curFrame
,
hist
.
ptr
<
unsigned
int
>
(
0
),
hist
.
ptr
<
unsigned
int
>
(
1
),
hist
.
ptr
<
unsigned
int
>
(
2
),
histBuf
.
ptr
<
unsigned
int
>
(
0
),
histBuf
.
ptr
<
unsigned
int
>
(
1
),
histBuf
.
ptr
<
unsigned
int
>
(
2
),
cv
::
gpu
::
deviceSupports
(
cv
::
gpu
::
FEATURE_SET_COMPUTE_20
),
0
);
deviceSupports
(
FEATURE_SET_COMPUTE_20
),
0
);
}
void
calcRelativeVariance
(
unsigned
int
hist
[
3
*
256
],
double
relativeVariance
[
3
][
bgfg
::
HISTOGRAM_BIN_COUNT
])
void
calcRelativeVariance
(
unsigned
int
hist
[
3
*
256
],
double
relativeVariance
[
3
][
fgd
::
HISTOGRAM_BIN_COUNT
])
{
std
::
memset
(
relativeVariance
,
0
,
3
*
bgfg
::
HISTOGRAM_BIN_COUNT
*
sizeof
(
double
));
std
::
memset
(
relativeVariance
,
0
,
3
*
fgd
::
HISTOGRAM_BIN_COUNT
*
sizeof
(
double
));
for
(
int
thres
=
bgfg
::
HISTOGRAM_BIN_COUNT
-
2
;
thres
>=
0
;
--
thres
)
for
(
int
thres
=
fgd
::
HISTOGRAM_BIN_COUNT
-
2
;
thres
>=
0
;
--
thres
)
{
cv
::
Vec3d
sum
(
0.0
,
0.0
,
0.0
);
cv
::
Vec3d
sqsum
(
0.0
,
0.0
,
0.0
);
cv
::
Vec3i
count
(
0
,
0
,
0
);
Vec3d
sum
(
0.0
,
0.0
,
0.0
);
Vec3d
sqsum
(
0.0
,
0.0
,
0.0
);
Vec3i
count
(
0
,
0
,
0
);
for
(
int
j
=
thres
;
j
<
bgfg
::
HISTOGRAM_BIN_COUNT
;
++
j
)
for
(
int
j
=
thres
;
j
<
fgd
::
HISTOGRAM_BIN_COUNT
;
++
j
)
{
sum
[
0
]
+=
static_cast
<
double
>
(
j
)
*
hist
[
j
];
sqsum
[
0
]
+=
static_cast
<
double
>
(
j
*
j
)
*
hist
[
j
];
...
...
@@ -383,7 +204,7 @@ namespace
count
[
1
]
=
std
::
max
(
count
[
1
],
1
);
count
[
2
]
=
std
::
max
(
count
[
2
],
1
);
cv
::
Vec3d
my
(
Vec3d
my
(
sum
[
0
]
/
count
[
0
],
sum
[
1
]
/
count
[
1
],
sum
[
2
]
/
count
[
2
]
...
...
@@ -395,37 +216,39 @@ namespace
}
}
void
calcDiffThreshMask
(
const
cv
::
gpu
::
GpuMat
&
prevFrame
,
const
cv
::
gpu
::
GpuMat
&
curFrame
,
cv
::
Vec3d
bestThres
,
cv
::
gpu
::
GpuMat
&
changeMask
)
void
calcDiffThreshMask
(
const
GpuMat
&
prevFrame
,
const
GpuMat
&
curFrame
,
Vec3d
bestThres
,
GpuMat
&
changeMask
)
{
typedef
void
(
*
func_t
)(
cv
::
gpu
::
PtrStepSzb
prevFrame
,
cv
::
gpu
::
PtrStepSzb
curFrame
,
uchar3
bestThres
,
cv
::
gpu
::
PtrStepSzb
changeMask
,
cudaStream_t
stream
);
typedef
void
(
*
func_t
)(
PtrStepSzb
prevFrame
,
PtrStepSzb
curFrame
,
uchar3
bestThres
,
PtrStepSzb
changeMask
,
cudaStream_t
stream
);
static
const
func_t
funcs
[
4
][
4
]
=
{
{
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
},
{
0
,
0
,
bgfg
::
calcDiffThreshMask_gpu
<
uchar3
,
uchar3
>
,
bgfg
::
calcDiffThreshMask_gpu
<
uchar3
,
uchar4
>
},
{
0
,
0
,
bgfg
::
calcDiffThreshMask_gpu
<
uchar4
,
uchar3
>
,
bgfg
::
calcDiffThreshMask_gpu
<
uchar4
,
uchar4
>
}
{
0
,
0
,
fgd
::
calcDiffThreshMask_gpu
<
uchar3
,
uchar3
>
,
fgd
::
calcDiffThreshMask_gpu
<
uchar3
,
uchar4
>
},
{
0
,
0
,
fgd
::
calcDiffThreshMask_gpu
<
uchar4
,
uchar3
>
,
fgd
::
calcDiffThreshMask_gpu
<
uchar4
,
uchar4
>
}
};
changeMask
.
setTo
(
cv
::
Scalar
::
all
(
0
));
changeMask
.
setTo
(
Scalar
::
all
(
0
));
funcs
[
prevFrame
.
channels
()
-
1
][
curFrame
.
channels
()
-
1
](
prevFrame
,
curFrame
,
make_uchar3
((
uchar
)
bestThres
[
0
],
(
uchar
)
bestThres
[
1
],
(
uchar
)
bestThres
[
2
]),
changeMask
,
0
);
funcs
[
prevFrame
.
channels
()
-
1
][
curFrame
.
channels
()
-
1
](
prevFrame
,
curFrame
,
make_uchar3
((
uchar
)
bestThres
[
0
],
(
uchar
)
bestThres
[
1
],
(
uchar
)
bestThres
[
2
]),
changeMask
,
0
);
}
// performs change detection for Foreground detection algorithm
void
changeDetection
(
const
cv
::
gpu
::
GpuMat
&
prevFrame
,
const
cv
::
gpu
::
GpuMat
&
curFrame
,
cv
::
gpu
::
GpuMat
&
changeMask
,
cv
::
gpu
::
GpuMat
&
hist
,
cv
::
gpu
::
GpuMat
&
histBuf
)
void
changeDetection
(
const
GpuMat
&
prevFrame
,
const
GpuMat
&
curFrame
,
GpuMat
&
changeMask
,
GpuMat
&
hist
,
GpuMat
&
histBuf
)
{
calcDiffHistogram
(
prevFrame
,
curFrame
,
hist
,
histBuf
);
unsigned
int
histData
[
3
*
256
];
cv
::
Mat
h_hist
(
3
,
256
,
CV_32SC1
,
histData
);
Mat
h_hist
(
3
,
256
,
CV_32SC1
,
histData
);
hist
.
download
(
h_hist
);
double
relativeVariance
[
3
][
bgfg
::
HISTOGRAM_BIN_COUNT
];
double
relativeVariance
[
3
][
fgd
::
HISTOGRAM_BIN_COUNT
];
calcRelativeVariance
(
histData
,
relativeVariance
);
// Find maximum:
cv
::
Vec3d
bestThres
(
10.0
,
10.0
,
10.0
);
for
(
int
i
=
0
;
i
<
bgfg
::
HISTOGRAM_BIN_COUNT
;
++
i
)
Vec3d
bestThres
(
10.0
,
10.0
,
10.0
);
for
(
int
i
=
0
;
i
<
fgd
::
HISTOGRAM_BIN_COUNT
;
++
i
)
{
bestThres
[
0
]
=
std
::
max
(
bestThres
[
0
],
relativeVariance
[
0
][
i
]);
bestThres
[
1
]
=
std
::
max
(
bestThres
[
1
],
relativeVariance
[
1
][
i
]);
...
...
@@ -441,12 +264,12 @@ namespace
namespace
{
int
bgfgClassification
(
const
cv
::
gpu
::
GpuMat
&
prevFrame
,
const
cv
::
gpu
::
GpuMat
&
curFrame
,
const
cv
::
gpu
::
GpuMat
&
Ftd
,
const
cv
::
gpu
::
GpuMat
&
Fbd
,
cv
::
gpu
::
GpuMat
&
foreground
,
cv
::
gpu
::
GpuMat
&
countBuf
,
const
cv
::
gpu
::
FGDStatModel
::
Params
&
params
,
int
out_cn
)
int
bgfgClassification
(
const
GpuMat
&
prevFrame
,
const
GpuMat
&
curFrame
,
const
GpuMat
&
Ftd
,
const
GpuMat
&
Fbd
,
GpuMat
&
foreground
,
GpuMat
&
countBuf
,
const
FGD
Params
&
params
,
int
out_cn
)
{
typedef
void
(
*
func_t
)(
cv
::
gpu
::
PtrStepSzb
prevFrame
,
cv
::
gpu
::
PtrStepSzb
curFrame
,
cv
::
gpu
::
PtrStepSzb
Ftd
,
cv
::
gpu
::
PtrStepSzb
Fbd
,
cv
::
gpu
::
PtrStepSzb
foreground
,
typedef
void
(
*
func_t
)(
PtrStepSzb
prevFrame
,
PtrStepSzb
curFrame
,
PtrStepSzb
Ftd
,
PtrStepSzb
Fbd
,
PtrStepSzb
foreground
,
int
deltaC
,
int
deltaCC
,
float
alpha2
,
int
N1c
,
int
N1cc
,
cudaStream_t
stream
);
static
const
func_t
funcs
[
4
][
4
][
4
]
=
{
...
...
@@ -458,24 +281,26 @@ namespace
},
{
{
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
},
{
0
,
0
,
bgfg
::
bgfgClassification_gpu
<
uchar3
,
uchar3
,
uchar3
>
,
bgfg
::
bgfgClassification_gpu
<
uchar3
,
uchar3
,
uchar4
>
},
{
0
,
0
,
bgfg
::
bgfgClassification_gpu
<
uchar3
,
uchar4
,
uchar3
>
,
bgfg
::
bgfgClassification_gpu
<
uchar3
,
uchar4
,
uchar4
>
}
{
0
,
0
,
fgd
::
bgfgClassification_gpu
<
uchar3
,
uchar3
,
uchar3
>
,
fgd
::
bgfgClassification_gpu
<
uchar3
,
uchar3
,
uchar4
>
},
{
0
,
0
,
fgd
::
bgfgClassification_gpu
<
uchar3
,
uchar4
,
uchar3
>
,
fgd
::
bgfgClassification_gpu
<
uchar3
,
uchar4
,
uchar4
>
}
},
{
{
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
},
{
0
,
0
,
bgfg
::
bgfgClassification_gpu
<
uchar4
,
uchar3
,
uchar3
>
,
bgfg
::
bgfgClassification_gpu
<
uchar4
,
uchar3
,
uchar4
>
},
{
0
,
0
,
bgfg
::
bgfgClassification_gpu
<
uchar4
,
uchar4
,
uchar3
>
,
bgfg
::
bgfgClassification_gpu
<
uchar4
,
uchar4
,
uchar4
>
}
{
0
,
0
,
fgd
::
bgfgClassification_gpu
<
uchar4
,
uchar3
,
uchar3
>
,
fgd
::
bgfgClassification_gpu
<
uchar4
,
uchar3
,
uchar4
>
},
{
0
,
0
,
fgd
::
bgfgClassification_gpu
<
uchar4
,
uchar4
,
uchar3
>
,
fgd
::
bgfgClassification_gpu
<
uchar4
,
uchar4
,
uchar4
>
}
}
};
const
int
deltaC
=
cvRound
(
params
.
delta
*
256
/
params
.
Lc
);
const
int
deltaCC
=
cvRound
(
params
.
delta
*
256
/
params
.
Lcc
);
funcs
[
prevFrame
.
channels
()
-
1
][
curFrame
.
channels
()
-
1
][
out_cn
-
1
](
prevFrame
,
curFrame
,
Ftd
,
Fbd
,
foreground
,
deltaC
,
deltaCC
,
params
.
alpha2
,
params
.
N1c
,
params
.
N1cc
,
0
);
funcs
[
prevFrame
.
channels
()
-
1
][
curFrame
.
channels
()
-
1
][
out_cn
-
1
](
prevFrame
,
curFrame
,
Ftd
,
Fbd
,
foreground
,
deltaC
,
deltaCC
,
params
.
alpha2
,
params
.
N1c
,
params
.
N1cc
,
0
);
int
count
=
cv
::
gpu
::
countNonZero
(
foreground
,
countBuf
);
int
count
=
gpu
::
countNonZero
(
foreground
,
countBuf
);
cv
::
gpu
::
multiply
(
foreground
,
cv
::
Scalar
::
all
(
255
),
foreground
);
gpu
::
multiply
(
foreground
,
Scalar
::
all
(
255
),
foreground
);
return
count
;
}
...
...
@@ -486,20 +311,20 @@ namespace
namespace
{
void
morphology
(
const
cv
::
gpu
::
GpuMat
&
src
,
cv
::
gpu
::
GpuMat
&
dst
,
cv
::
gpu
::
GpuMat
&
filterBrd
,
int
brd
,
cv
::
Ptr
<
cv
::
gpu
::
Filter
>&
filter
,
cv
::
Scalar
brdVal
)
void
morphology
(
const
GpuMat
&
src
,
GpuMat
&
dst
,
GpuMat
&
filterBrd
,
int
brd
,
Ptr
<
gpu
::
Filter
>&
filter
,
Scalar
brdVal
)
{
cv
::
gpu
::
copyMakeBorder
(
src
,
filterBrd
,
brd
,
brd
,
brd
,
brd
,
cv
::
BORDER_CONSTANT
,
brdVal
);
filter
->
apply
(
filterBrd
(
cv
::
Rect
(
brd
,
brd
,
src
.
cols
,
src
.
rows
)),
dst
);
gpu
::
copyMakeBorder
(
src
,
filterBrd
,
brd
,
brd
,
brd
,
brd
,
BORDER_CONSTANT
,
brdVal
);
filter
->
apply
(
filterBrd
(
Rect
(
brd
,
brd
,
src
.
cols
,
src
.
rows
)),
dst
);
}
void
smoothForeground
(
cv
::
gpu
::
GpuMat
&
foreground
,
cv
::
gpu
::
GpuMat
&
filterBrd
,
cv
::
gpu
::
GpuMat
&
buf
,
cv
::
Ptr
<
cv
::
gpu
::
Filter
>&
erodeFilter
,
cv
::
Ptr
<
cv
::
gpu
::
Filter
>&
dilateFilter
,
const
cv
::
gpu
::
FGDStatModel
::
Params
&
params
)
void
smoothForeground
(
GpuMat
&
foreground
,
GpuMat
&
filterBrd
,
GpuMat
&
buf
,
Ptr
<
gpu
::
Filter
>&
erodeFilter
,
Ptr
<
gpu
::
Filter
>&
dilateFilter
,
const
FGD
Params
&
params
)
{
const
int
brd
=
params
.
perform_morphing
;
const
cv
::
Scalar
erodeBrdVal
=
cv
::
Scalar
::
all
(
UCHAR_MAX
);
const
cv
::
Scalar
dilateBrdVal
=
cv
::
Scalar
::
all
(
0
);
const
Scalar
erodeBrdVal
=
Scalar
::
all
(
UCHAR_MAX
);
const
Scalar
dilateBrdVal
=
Scalar
::
all
(
0
);
// MORPH_OPEN
morphology
(
foreground
,
buf
,
filterBrd
,
brd
,
erodeFilter
,
erodeBrdVal
);
...
...
@@ -516,28 +341,28 @@ namespace
namespace
{
void
seqToContours
(
CvSeq
*
_ccontours
,
CvMemStorage
*
storage
,
cv
::
OutputArrayOfArrays
_contours
)
void
seqToContours
(
CvSeq
*
_ccontours
,
CvMemStorage
*
storage
,
OutputArrayOfArrays
_contours
)
{
cv
::
Seq
<
CvSeq
*>
all_contours
(
cvTreeToNodeSeq
(
_ccontours
,
sizeof
(
CvSeq
),
storage
));
Seq
<
CvSeq
*>
all_contours
(
cvTreeToNodeSeq
(
_ccontours
,
sizeof
(
CvSeq
),
storage
));
size_t
total
=
all_contours
.
size
();
_contours
.
create
((
int
)
total
,
1
,
0
,
-
1
,
true
);
cv
::
SeqIterator
<
CvSeq
*>
it
=
all_contours
.
begin
();
SeqIterator
<
CvSeq
*>
it
=
all_contours
.
begin
();
for
(
size_t
i
=
0
;
i
<
total
;
++
i
,
++
it
)
{
CvSeq
*
c
=
*
it
;
((
CvContour
*
)
c
)
->
color
=
(
int
)
i
;
_contours
.
create
((
int
)
c
->
total
,
1
,
CV_32SC2
,
(
int
)
i
,
true
);
cv
::
Mat
ci
=
_contours
.
getMat
((
int
)
i
);
Mat
ci
=
_contours
.
getMat
((
int
)
i
);
CV_Assert
(
ci
.
isContinuous
()
);
cvCvtSeqToArray
(
c
,
ci
.
data
);
}
}
int
findForegroundRegions
(
cv
::
gpu
::
GpuMat
&
d_foreground
,
cv
::
Mat
&
h_foreground
,
std
::
vector
<
std
::
vector
<
cv
::
Point
>
>&
foreground_regions
,
CvMemStorage
*
storage
,
const
cv
::
gpu
::
FGDStatModel
::
Params
&
params
)
int
findForegroundRegions
(
GpuMat
&
d_foreground
,
Mat
&
h_foreground
,
std
::
vector
<
std
::
vector
<
Point
>
>&
foreground_regions
,
CvMemStorage
*
storage
,
const
FGD
Params
&
params
)
{
int
region_count
=
0
;
...
...
@@ -581,7 +406,7 @@ namespace
seqToContours
(
first_seq
,
storage
,
foreground_regions
);
h_foreground
.
setTo
(
0
);
cv
::
drawContours
(
h_foreground
,
foreground_regions
,
-
1
,
cv
::
Scalar
::
all
(
255
),
-
1
);
drawContours
(
h_foreground
,
foreground_regions
,
-
1
,
Scalar
::
all
(
255
),
-
1
);
d_foreground
.
upload
(
h_foreground
);
...
...
@@ -594,12 +419,12 @@ namespace
namespace
{
void
updateBackgroundModel
(
const
cv
::
gpu
::
GpuMat
&
prevFrame
,
const
cv
::
gpu
::
GpuMat
&
curFrame
,
const
cv
::
gpu
::
GpuMat
&
Ftd
,
const
cv
::
gpu
::
GpuMat
&
Fbd
,
const
cv
::
gpu
::
GpuMat
&
foreground
,
cv
::
gpu
::
GpuMat
&
background
,
const
cv
::
gpu
::
FGDStatModel
::
Params
&
params
)
void
updateBackgroundModel
(
const
GpuMat
&
prevFrame
,
const
GpuMat
&
curFrame
,
const
GpuMat
&
Ftd
,
const
GpuMat
&
Fbd
,
const
GpuMat
&
foreground
,
GpuMat
&
background
,
const
FGD
Params
&
params
)
{
typedef
void
(
*
func_t
)(
cv
::
gpu
::
PtrStepSzb
prevFrame
,
cv
::
gpu
::
PtrStepSzb
curFrame
,
cv
::
gpu
::
PtrStepSzb
Ftd
,
cv
::
gpu
::
PtrStepSzb
Fbd
,
cv
::
gpu
::
PtrStepSzb
foreground
,
cv
::
gpu
::
PtrStepSzb
background
,
typedef
void
(
*
func_t
)(
PtrStepSzb
prevFrame
,
PtrStepSzb
curFrame
,
PtrStepSzb
Ftd
,
PtrStepSzb
Fbd
,
PtrStepSzb
foreground
,
PtrStepSzb
background
,
int
deltaC
,
int
deltaCC
,
float
alpha1
,
float
alpha2
,
float
alpha3
,
int
N1c
,
int
N1cc
,
int
N2c
,
int
N2cc
,
float
T
,
cudaStream_t
stream
);
static
const
func_t
funcs
[
4
][
4
][
4
]
=
{
...
...
@@ -611,13 +436,13 @@ namespace
},
{
{
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
},
{
0
,
0
,
bgfg
::
updateBackgroundModel_gpu
<
uchar3
,
uchar3
,
uchar3
>
,
bgfg
::
updateBackgroundModel_gpu
<
uchar3
,
uchar3
,
uchar4
>
},
{
0
,
0
,
bgfg
::
updateBackgroundModel_gpu
<
uchar3
,
uchar4
,
uchar3
>
,
bgfg
::
updateBackgroundModel_gpu
<
uchar3
,
uchar4
,
uchar4
>
}
{
0
,
0
,
fgd
::
updateBackgroundModel_gpu
<
uchar3
,
uchar3
,
uchar3
>
,
fgd
::
updateBackgroundModel_gpu
<
uchar3
,
uchar3
,
uchar4
>
},
{
0
,
0
,
fgd
::
updateBackgroundModel_gpu
<
uchar3
,
uchar4
,
uchar3
>
,
fgd
::
updateBackgroundModel_gpu
<
uchar3
,
uchar4
,
uchar4
>
}
},
{
{
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
},
{
0
,
0
,
bgfg
::
updateBackgroundModel_gpu
<
uchar4
,
uchar3
,
uchar3
>
,
bgfg
::
updateBackgroundModel_gpu
<
uchar4
,
uchar3
,
uchar4
>
},
{
0
,
0
,
bgfg
::
updateBackgroundModel_gpu
<
uchar4
,
uchar4
,
uchar3
>
,
bgfg
::
updateBackgroundModel_gpu
<
uchar4
,
uchar4
,
uchar4
>
}
{
0
,
0
,
fgd
::
updateBackgroundModel_gpu
<
uchar4
,
uchar3
,
uchar3
>
,
fgd
::
updateBackgroundModel_gpu
<
uchar4
,
uchar3
,
uchar4
>
},
{
0
,
0
,
fgd
::
updateBackgroundModel_gpu
<
uchar4
,
uchar4
,
uchar3
>
,
fgd
::
updateBackgroundModel_gpu
<
uchar4
,
uchar4
,
uchar4
>
}
}
};
...
...
@@ -626,126 +451,271 @@ namespace
funcs
[
prevFrame
.
channels
()
-
1
][
curFrame
.
channels
()
-
1
][
background
.
channels
()
-
1
](
prevFrame
,
curFrame
,
Ftd
,
Fbd
,
foreground
,
background
,
deltaC
,
deltaCC
,
params
.
alpha1
,
params
.
alpha2
,
params
.
alpha3
,
params
.
N1c
,
params
.
N1cc
,
params
.
N2c
,
params
.
N2cc
,
params
.
T
,
deltaC
,
deltaCC
,
params
.
alpha1
,
params
.
alpha2
,
params
.
alpha3
,
params
.
N1c
,
params
.
N1cc
,
params
.
N2c
,
params
.
N2cc
,
params
.
T
,
0
);
}
}
/////////////////////////////////////////////////////////////////////////
// Impl::update
int
cv
::
gpu
::
FGDStatModel
::
Impl
::
update
(
const
cv
::
gpu
::
GpuMat
&
curFrame
)
namespace
{
CV_Assert
(
curFrame
.
type
()
==
CV_8UC3
||
curFrame
.
type
()
==
CV_8UC4
);
CV_Assert
(
curFrame
.
size
()
==
prevFrame_
.
size
());
class
BGPixelStat
{
public
:
void
create
(
Size
size
,
const
FGDParams
&
params
);
void
setTrained
();
operator
fgd
::
BGPixelStat
();
cvClearMemStorage
(
storage_
);
foreground_regions_
.
clear
();
foreground_
.
setTo
(
cv
::
Scalar
::
all
(
0
));
private
:
GpuMat
Pbc_
;
GpuMat
Pbcc_
;
GpuMat
is_trained_st_model_
;
GpuMat
is_trained_dyn_model_
;
GpuMat
ctable_Pv_
;
GpuMat
ctable_Pvb_
;
GpuMat
ctable_v_
;
GpuMat
cctable_Pv_
;
GpuMat
cctable_Pvb_
;
GpuMat
cctable_v1_
;
GpuMat
cctable_v2_
;
};
changeDetection
(
prevFrame_
,
curFrame
,
Ftd_
,
hist_
,
histBuf_
);
changeDetection
(
background_
,
curFrame
,
Fbd_
,
hist_
,
histBuf_
);
void
BGPixelStat
::
create
(
Size
size
,
const
FGDParams
&
params
)
{
gpu
::
ensureSizeIsEnough
(
size
,
CV_32FC1
,
Pbc_
);
Pbc_
.
setTo
(
Scalar
::
all
(
0
));
int
FG_pixels_count
=
bgfgClassification
(
prevFrame_
,
curFrame
,
Ftd_
,
Fbd_
,
foreground_
,
countBuf_
,
params_
,
out_cn_
);
gpu
::
ensureSizeIsEnough
(
size
,
CV_32FC1
,
Pbcc_
);
Pbcc_
.
setTo
(
Scalar
::
all
(
0
));
if
(
params_
.
perform_morphing
>
0
)
smoothForeground
(
foreground_
,
filterBrd_
,
buf_
,
erodeFilter_
,
dilateFilter_
,
params_
);
gpu
::
ensureSizeIsEnough
(
size
,
CV_8UC1
,
is_trained_st_model_
);
is_trained_st_model_
.
setTo
(
Scalar
::
all
(
0
)
);
int
region_count
=
0
;
if
(
params_
.
minArea
>
0
||
params_
.
is_obj_without_holes
)
region_count
=
findForegroundRegions
(
foreground_
,
h_foreground_
,
foreground_regions_
,
storage_
,
params_
);
gpu
::
ensureSizeIsEnough
(
size
,
CV_8UC1
,
is_trained_dyn_model_
);
is_trained_dyn_model_
.
setTo
(
Scalar
::
all
(
0
));
// Check ALL BG update condition:
const
double
BGFG_FGD_BG_UPDATE_TRESH
=
0.5
;
if
(
static_cast
<
double
>
(
FG_pixels_count
)
/
Ftd_
.
size
().
area
()
>
BGFG_FGD_BG_UPDATE_TRESH
)
stat_
.
setTrained
();
gpu
::
ensureSizeIsEnough
(
params
.
N2c
*
size
.
height
,
size
.
width
,
CV_32FC1
,
ctable_Pv_
);
ctable_Pv_
.
setTo
(
Scalar
::
all
(
0
));
updateBackgroundModel
(
prevFrame_
,
curFrame
,
Ftd_
,
Fbd_
,
foreground_
,
background_
,
params_
);
gpu
::
ensureSizeIsEnough
(
params
.
N2c
*
size
.
height
,
size
.
width
,
CV_32FC1
,
ctable_Pvb_
);
ctable_Pvb_
.
setTo
(
Scalar
::
all
(
0
));
copyChannels
(
curFrame
,
prevFrame_
);
gpu
::
ensureSizeIsEnough
(
params
.
N2c
*
size
.
height
,
size
.
width
,
CV_8UC4
,
ctable_v_
);
ctable_v_
.
setTo
(
Scalar
::
all
(
0
));
return
region_count
;
}
gpu
::
ensureSizeIsEnough
(
params
.
N2cc
*
size
.
height
,
size
.
width
,
CV_32FC1
,
cctable_Pv_
)
;
cctable_Pv_
.
setTo
(
Scalar
::
all
(
0
));
namespace
{
// Default parameters of foreground detection algorithm:
const
int
BGFG_FGD_LC
=
128
;
const
int
BGFG_FGD_N1C
=
15
;
const
int
BGFG_FGD_N2C
=
25
;
gpu
::
ensureSizeIsEnough
(
params
.
N2cc
*
size
.
height
,
size
.
width
,
CV_32FC1
,
cctable_Pvb_
);
cctable_Pvb_
.
setTo
(
Scalar
::
all
(
0
));
const
int
BGFG_FGD_LCC
=
64
;
const
int
BGFG_FGD_N1CC
=
25
;
const
int
BGFG_FGD_N2CC
=
40
;
gpu
::
ensureSizeIsEnough
(
params
.
N2cc
*
size
.
height
,
size
.
width
,
CV_8UC4
,
cctable_v1_
);
cctable_v1_
.
setTo
(
Scalar
::
all
(
0
));
// Background reference image update parameter:
const
float
BGFG_FGD_ALPHA_1
=
0.1
f
;
gpu
::
ensureSizeIsEnough
(
params
.
N2cc
*
size
.
height
,
size
.
width
,
CV_8UC4
,
cctable_v2_
);
cctable_v2_
.
setTo
(
Scalar
::
all
(
0
));
}
// stat model update parameter
// 0.002f ~ 1K frame(~45sec), 0.005 ~ 18sec (if 25fps and absolutely static BG)
const
float
BGFG_FGD_ALPHA_2
=
0.005
f
;
void
BGPixelStat
::
setTrained
()
{
is_trained_st_model_
.
setTo
(
Scalar
::
all
(
1
));
is_trained_dyn_model_
.
setTo
(
Scalar
::
all
(
1
));
}
// start value for alpha parameter (to fast initiate statistic model)
const
float
BGFG_FGD_ALPHA_3
=
0.1
f
;
BGPixelStat
::
operator
fgd
::
BGPixelStat
()
{
fgd
::
BGPixelStat
stat
;
const
float
BGFG_FGD_DELTA
=
2.0
f
;
stat
.
rows_
=
Pbc_
.
rows
;
const
float
BGFG_FGD_T
=
0.9
f
;
stat
.
Pbc_data_
=
Pbc_
.
data
;
stat
.
Pbc_step_
=
Pbc_
.
step
;
const
float
BGFG_FGD_MINAREA
=
15.0
f
;
}
stat
.
Pbcc_data_
=
Pbcc_
.
data
;
stat
.
Pbcc_step_
=
Pbcc_
.
step
;
cv
::
gpu
::
FGDStatModel
::
Params
::
Params
()
{
Lc
=
BGFG_FGD_LC
;
N1c
=
BGFG_FGD_N1C
;
N2c
=
BGFG_FGD_N2C
;
stat
.
is_trained_st_model_data_
=
is_trained_st_model_
.
data
;
stat
.
is_trained_st_model_step_
=
is_trained_st_model_
.
step
;
Lcc
=
BGFG_FGD_LCC
;
N1cc
=
BGFG_FGD_N1CC
;
N2cc
=
BGFG_FGD_N2CC
;
stat
.
is_trained_dyn_model_data_
=
is_trained_dyn_model_
.
data
;
stat
.
is_trained_dyn_model_step_
=
is_trained_dyn_model_
.
step
;
delta
=
BGFG_FGD_DELTA
;
stat
.
ctable_Pv_data_
=
ctable_Pv_
.
data
;
stat
.
ctable_Pv_step_
=
ctable_Pv_
.
step
;
alpha1
=
BGFG_FGD_ALPHA_1
;
alpha2
=
BGFG_FGD_ALPHA_2
;
alpha3
=
BGFG_FGD_ALPHA_3
;
stat
.
ctable_Pvb_data_
=
ctable_Pvb_
.
data
;
stat
.
ctable_Pvb_step_
=
ctable_Pvb_
.
step
;
T
=
BGFG_FGD_T
;
minArea
=
BGFG_FGD_MINAREA
;
stat
.
ctable_v_data_
=
ctable_v_
.
data
;
stat
.
ctable_v_step_
=
ctable_v_
.
step
;
is_obj_without_holes
=
true
;
perform_morphing
=
1
;
}
stat
.
cctable_Pv_data_
=
cctable_Pv_
.
data
;
stat
.
cctable_Pv_step_
=
cctable_Pv_
.
step
;
cv
::
gpu
::
FGDStatModel
::
FGDStatModel
(
int
out_cn
)
{
impl_
.
reset
(
new
Impl
(
background
,
foreground
,
foreground_regions
,
out_cn
));
}
stat
.
cctable_Pvb_data_
=
cctable_Pvb_
.
data
;
stat
.
cctable_Pvb_step_
=
cctable_Pvb_
.
step
;
cv
::
gpu
::
FGDStatModel
::
FGDStatModel
(
const
cv
::
gpu
::
GpuMat
&
firstFrame
,
const
Params
&
params
,
int
out_cn
)
{
impl_
.
reset
(
new
Impl
(
background
,
foreground
,
foreground_regions
,
out_cn
));
create
(
firstFrame
,
params
);
}
stat
.
cctable_v1_data_
=
cctable_v1_
.
data
;
stat
.
cctable_v1_step_
=
cctable_v1_
.
step
;
cv
::
gpu
::
FGDStatModel
::~
FGDStatModel
()
{
}
stat
.
cctable_v2_data_
=
cctable_v2_
.
data
;
stat
.
cctable_v2_step_
=
cctable_v2_
.
step
;
void
cv
::
gpu
::
FGDStatModel
::
create
(
const
cv
::
gpu
::
GpuMat
&
firstFrame
,
const
Params
&
params
)
{
impl_
->
create
(
firstFrame
,
params
);
}
return
stat
;
}
void
cv
::
gpu
::
FGDStatModel
::
release
()
{
impl_
->
release
();
class
FGDImpl
:
public
gpu
::
BackgroundSubtractorFGD
{
public
:
explicit
FGDImpl
(
const
FGDParams
&
params
);
~
FGDImpl
();
void
apply
(
InputArray
image
,
OutputArray
fgmask
,
double
learningRate
=-
1
);
void
getBackgroundImage
(
OutputArray
backgroundImage
)
const
;
void
getForegroundRegions
(
OutputArrayOfArrays
foreground_regions
);
private
:
void
initialize
(
const
GpuMat
&
firstFrame
);
FGDParams
params_
;
Size
frameSize_
;
GpuMat
background_
;
GpuMat
foreground_
;
std
::
vector
<
std
::
vector
<
Point
>
>
foreground_regions_
;
Mat
h_foreground_
;
GpuMat
prevFrame_
;
GpuMat
Ftd_
;
GpuMat
Fbd_
;
BGPixelStat
stat_
;
GpuMat
hist_
;
GpuMat
histBuf_
;
GpuMat
countBuf_
;
GpuMat
buf_
;
GpuMat
filterBrd_
;
Ptr
<
gpu
::
Filter
>
dilateFilter_
;
Ptr
<
gpu
::
Filter
>
erodeFilter_
;
CvMemStorage
*
storage_
;
};
FGDImpl
::
FGDImpl
(
const
FGDParams
&
params
)
:
params_
(
params
),
frameSize_
(
0
,
0
)
{
storage_
=
cvCreateMemStorage
();
CV_Assert
(
storage_
!=
0
);
}
FGDImpl
::~
FGDImpl
()
{
cvReleaseMemStorage
(
&
storage_
);
}
void
FGDImpl
::
apply
(
InputArray
_frame
,
OutputArray
fgmask
,
double
)
{
GpuMat
curFrame
=
_frame
.
getGpuMat
();
if
(
curFrame
.
size
()
!=
frameSize_
)
{
initialize
(
curFrame
);
return
;
}
CV_Assert
(
curFrame
.
type
()
==
CV_8UC3
||
curFrame
.
type
()
==
CV_8UC4
);
CV_Assert
(
curFrame
.
size
()
==
prevFrame_
.
size
()
);
cvClearMemStorage
(
storage_
);
foreground_regions_
.
clear
();
foreground_
.
setTo
(
Scalar
::
all
(
0
));
changeDetection
(
prevFrame_
,
curFrame
,
Ftd_
,
hist_
,
histBuf_
);
changeDetection
(
background_
,
curFrame
,
Fbd_
,
hist_
,
histBuf_
);
int
FG_pixels_count
=
bgfgClassification
(
prevFrame_
,
curFrame
,
Ftd_
,
Fbd_
,
foreground_
,
countBuf_
,
params_
,
4
);
if
(
params_
.
perform_morphing
>
0
)
smoothForeground
(
foreground_
,
filterBrd_
,
buf_
,
erodeFilter_
,
dilateFilter_
,
params_
);
if
(
params_
.
minArea
>
0
||
params_
.
is_obj_without_holes
)
findForegroundRegions
(
foreground_
,
h_foreground_
,
foreground_regions_
,
storage_
,
params_
);
// Check ALL BG update condition:
const
double
BGFG_FGD_BG_UPDATE_TRESH
=
0.5
;
if
(
static_cast
<
double
>
(
FG_pixels_count
)
/
Ftd_
.
size
().
area
()
>
BGFG_FGD_BG_UPDATE_TRESH
)
stat_
.
setTrained
();
updateBackgroundModel
(
prevFrame_
,
curFrame
,
Ftd_
,
Fbd_
,
foreground_
,
background_
,
params_
);
copyChannels
(
curFrame
,
prevFrame_
,
4
);
foreground_
.
copyTo
(
fgmask
);
}
void
FGDImpl
::
getBackgroundImage
(
OutputArray
backgroundImage
)
const
{
gpu
::
cvtColor
(
background_
,
backgroundImage
,
COLOR_BGRA2BGR
);
}
void
FGDImpl
::
getForegroundRegions
(
OutputArrayOfArrays
dst
)
{
size_t
total
=
foreground_regions_
.
size
();
dst
.
create
((
int
)
total
,
1
,
0
,
-
1
,
true
);
for
(
size_t
i
=
0
;
i
<
total
;
++
i
)
{
std
::
vector
<
Point
>&
c
=
foreground_regions_
[
i
];
dst
.
create
((
int
)
c
.
size
(),
1
,
CV_32SC2
,
(
int
)
i
,
true
);
Mat
ci
=
dst
.
getMat
((
int
)
i
);
Mat
(
ci
.
size
(),
ci
.
type
(),
&
c
[
0
]).
copyTo
(
ci
);
}
}
void
FGDImpl
::
initialize
(
const
GpuMat
&
firstFrame
)
{
CV_Assert
(
firstFrame
.
type
()
==
CV_8UC3
||
firstFrame
.
type
()
==
CV_8UC4
);
frameSize_
=
firstFrame
.
size
();
gpu
::
ensureSizeIsEnough
(
firstFrame
.
size
(),
CV_8UC1
,
foreground_
);
copyChannels
(
firstFrame
,
background_
,
4
);
copyChannels
(
firstFrame
,
prevFrame_
,
4
);
gpu
::
ensureSizeIsEnough
(
firstFrame
.
size
(),
CV_8UC1
,
Ftd_
);
gpu
::
ensureSizeIsEnough
(
firstFrame
.
size
(),
CV_8UC1
,
Fbd_
);
stat_
.
create
(
firstFrame
.
size
(),
params_
);
fgd
::
setBGPixelStat
(
stat_
);
if
(
params_
.
perform_morphing
>
0
)
{
Mat
kernel
=
getStructuringElement
(
MORPH_RECT
,
Size
(
1
+
params_
.
perform_morphing
*
2
,
1
+
params_
.
perform_morphing
*
2
));
Point
anchor
(
params_
.
perform_morphing
,
params_
.
perform_morphing
);
dilateFilter_
=
gpu
::
createMorphologyFilter
(
MORPH_DILATE
,
CV_8UC1
,
kernel
,
anchor
);
erodeFilter_
=
gpu
::
createMorphologyFilter
(
MORPH_ERODE
,
CV_8UC1
,
kernel
,
anchor
);
}
}
}
int
cv
::
gpu
::
FGDStatModel
::
update
(
const
cv
::
gpu
::
GpuMat
&
curFrame
)
Ptr
<
gpu
::
BackgroundSubtractorFGD
>
cv
::
gpu
::
createBackgroundSubtractorFGD
(
const
FGDParams
&
params
)
{
return
impl_
->
update
(
curFrame
);
return
new
FGDImpl
(
params
);
}
#endif // HAVE_CUDA
modules/gpubgsegm/test/test_bgsegm.cpp
View file @
62edeeed
...
...
@@ -72,11 +72,10 @@ namespace cv
}
}
PARAM_TEST_CASE
(
FGDStatModel
,
cv
::
gpu
::
DeviceInfo
,
std
::
string
,
Channels
)
PARAM_TEST_CASE
(
FGDStatModel
,
cv
::
gpu
::
DeviceInfo
,
std
::
string
)
{
cv
::
gpu
::
DeviceInfo
devInfo
;
std
::
string
inputFile
;
int
out_cn
;
virtual
void
SetUp
()
{
...
...
@@ -84,8 +83,6 @@ PARAM_TEST_CASE(FGDStatModel, cv::gpu::DeviceInfo, std::string, Channels)
cv
::
gpu
::
setDevice
(
devInfo
.
deviceID
());
inputFile
=
std
::
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
())
+
"video/"
+
GET_PARAM
(
1
);
out_cn
=
GET_PARAM
(
2
);
}
};
...
...
@@ -102,15 +99,10 @@ GPU_TEST_P(FGDStatModel, Update)
cv
::
Ptr
<
CvBGStatModel
>
model
(
cvCreateFGDStatModel
(
&
ipl_frame
));
cv
::
gpu
::
GpuMat
d_frame
(
frame
);
cv
::
gpu
::
FGDStatModel
d_model
(
out_cn
);
d_model
.
create
(
d_frame
);
cv
::
Mat
h_background
;
cv
::
Mat
h_foreground
;
cv
::
Mat
h_background3
;
cv
::
Mat
backgroundDiff
;
cv
::
Mat
foregroundDiff
;
cv
::
Ptr
<
cv
::
gpu
::
BackgroundSubtractorFGD
>
d_fgd
=
cv
::
gpu
::
createBackgroundSubtractorFGD
();
cv
::
gpu
::
GpuMat
d_foreground
,
d_background
;
std
::
vector
<
std
::
vector
<
cv
::
Point
>
>
foreground_regions
;
d_fgd
->
apply
(
d_frame
,
d_foreground
);
for
(
int
i
=
0
;
i
<
5
;
++
i
)
{
...
...
@@ -121,32 +113,23 @@ GPU_TEST_P(FGDStatModel, Update)
int
gold_count
=
cvUpdateBGStatModel
(
&
ipl_frame
,
model
);
d_frame
.
upload
(
frame
);
int
count
=
d_model
.
update
(
d_frame
);
ASSERT_EQ
(
gold_count
,
count
);
d_fgd
->
apply
(
d_frame
,
d_foreground
);
d_fgd
->
getBackgroundImage
(
d_background
);
d_fgd
->
getForegroundRegions
(
foreground_regions
);
int
count
=
(
int
)
foreground_regions
.
size
(
);
cv
::
Mat
gold_background
=
cv
::
cvarrToMat
(
model
->
background
);
cv
::
Mat
gold_foreground
=
cv
::
cvarrToMat
(
model
->
foreground
);
if
(
out_cn
==
3
)
d_model
.
background
.
download
(
h_background3
);
else
{
d_model
.
background
.
download
(
h_background
);
cv
::
cvtColor
(
h_background
,
h_background3
,
cv
::
COLOR_BGRA2BGR
);
}
d_model
.
foreground
.
download
(
h_foreground
);
ASSERT_MAT_NEAR
(
gold_background
,
h_background3
,
1.0
);
ASSERT_MAT_NEAR
(
gold_foreground
,
h_foreground
,
0.0
);
ASSERT_MAT_NEAR
(
gold_background
,
d_background
,
1.0
);
ASSERT_MAT_NEAR
(
gold_foreground
,
d_foreground
,
0.0
);
ASSERT_EQ
(
gold_count
,
count
);
}
}
INSTANTIATE_TEST_CASE_P
(
GPU_BgSegm
,
FGDStatModel
,
testing
::
Combine
(
ALL_DEVICES
,
testing
::
Values
(
std
::
string
(
"768x576.avi"
)),
testing
::
Values
(
Channels
(
3
),
Channels
(
4
))));
testing
::
Values
(
std
::
string
(
"768x576.avi"
))));
#endif
...
...
samples/gpu/bgfg_segm.cpp
View file @
62edeeed
...
...
@@ -78,7 +78,7 @@ int main(int argc, const char** argv)
Ptr
<
BackgroundSubtractor
>
mog
=
gpu
::
createBackgroundSubtractorMOG
();
Ptr
<
BackgroundSubtractor
>
mog2
=
gpu
::
createBackgroundSubtractorMOG2
();
Ptr
<
BackgroundSubtractor
>
gmg
=
gpu
::
createBackgroundSubtractorGMG
(
40
);
FGDStatModel
fgd_stat
;
Ptr
<
BackgroundSubtractor
>
fgd
=
gpu
::
createBackgroundSubtractorFGD
()
;
GpuMat
d_fgmask
;
GpuMat
d_fgimg
;
...
...
@@ -103,7 +103,7 @@ int main(int argc, const char** argv)
break
;
case
FGD_STAT
:
fgd
_stat
.
create
(
d_frame
);
fgd
->
apply
(
d_frame
,
d_fgmask
);
break
;
}
...
...
@@ -142,9 +142,8 @@ int main(int argc, const char** argv)
break
;
case
FGD_STAT
:
fgd_stat
.
update
(
d_frame
);
d_fgmask
=
fgd_stat
.
foreground
;
d_bgimg
=
fgd_stat
.
background
;
fgd
->
apply
(
d_frame
,
d_fgmask
);
fgd
->
getBackgroundImage
(
d_bgimg
);
break
;
}
...
...
samples/gpu/performance/tests.cpp
View file @
62edeeed
...
...
@@ -1271,14 +1271,14 @@ TEST(FGDStatModel)
{
const
std
::
string
inputFile
=
abspath
(
"768x576.avi"
);
cv
::
VideoCapture
cap
(
inputFile
);
VideoCapture
cap
(
inputFile
);
if
(
!
cap
.
isOpened
())
throw
runtime_error
(
"can't open 768x576.avi"
);
cv
::
Mat
frame
;
Mat
frame
;
cap
>>
frame
;
IplImage
ipl_frame
=
frame
;
cv
::
Ptr
<
CvBGStatModel
>
model
(
cvCreateFGDStatModel
(
&
ipl_frame
));
Ptr
<
CvBGStatModel
>
model
(
cvCreateFGDStatModel
(
&
ipl_frame
));
while
(
!
TestSystem
::
instance
().
stop
())
{
...
...
@@ -1297,8 +1297,10 @@ TEST(FGDStatModel)
cap
>>
frame
;
cv
::
gpu
::
GpuMat
d_frame
(
frame
);
cv
::
gpu
::
FGDStatModel
d_model
(
d_frame
);
gpu
::
GpuMat
d_frame
(
frame
),
d_fgmask
;
Ptr
<
BackgroundSubtractor
>
d_fgd
=
gpu
::
createBackgroundSubtractorFGD
();
d_fgd
->
apply
(
d_frame
,
d_fgmask
);
while
(
!
TestSystem
::
instance
().
stop
())
{
...
...
@@ -1307,7 +1309,7 @@ TEST(FGDStatModel)
TestSystem
::
instance
().
gpuOn
();
d_
model
.
update
(
d_frame
);
d_
fgd
->
apply
(
d_frame
,
d_fgmask
);
TestSystem
::
instance
().
gpuOff
();
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment