Commit 62cf7100 authored by Vitaly Tuzov's avatar Vitaly Tuzov Committed by Vadim Pisarevsky

Bit-exact GaussianBlur performance update (#10898)

* Added custom implementation for NxN bit-exact GaussianBlur

* Reworked fixedpoint interface a bit

* Reworked horizontal line estimation for bit-exact GaussianBlur

* Reworked vertical line estimation for bit-exact GaussianBlur

* Updated range estimation for vectorized part of bit-exact GaussianBlur evaluation
parent 30175594
......@@ -36,19 +36,25 @@ public:
typedef fixedpoint64 WT;
CV_ALWAYS_INLINE fixedpoint64() { val = 0; }
CV_ALWAYS_INLINE fixedpoint64(const int8_t& _val) { val = ((int64_t)_val) << fixedShift; }
CV_ALWAYS_INLINE fixedpoint64(const uint8_t& _val) { val = ((int64_t)_val) << fixedShift; }
CV_ALWAYS_INLINE fixedpoint64(const int16_t& _val) { val = ((int64_t)_val) << fixedShift; }
CV_ALWAYS_INLINE fixedpoint64(const uint16_t& _val) { val = ((int64_t)_val) << fixedShift; }
CV_ALWAYS_INLINE fixedpoint64(const int32_t& _val) { val = ((int64_t)_val) << fixedShift; }
CV_ALWAYS_INLINE fixedpoint64(const cv::softdouble& _val) { val = cvRound64(_val * cv::softdouble((int64_t)(1LL << fixedShift))); }
CV_ALWAYS_INLINE fixedpoint64& operator = (const int8_t& _val) { val = ((int64_t)_val) << fixedShift; return *this; }
CV_ALWAYS_INLINE fixedpoint64& operator = (const uint8_t& _val) { val = ((int64_t)_val) << fixedShift; return *this; }
CV_ALWAYS_INLINE fixedpoint64& operator = (const int16_t& _val) { val = ((int64_t)_val) << fixedShift; return *this; }
CV_ALWAYS_INLINE fixedpoint64& operator = (const uint16_t& _val) { val = ((int64_t)_val) << fixedShift; return *this; }
CV_ALWAYS_INLINE fixedpoint64& operator = (const int32_t& _val) { val = ((int64_t)_val) << fixedShift; return *this; }
CV_ALWAYS_INLINE fixedpoint64& operator = (const cv::softdouble& _val) { val = cvRound64(_val * cv::softdouble((int64_t)(1LL << fixedShift))); return *this; }
CV_ALWAYS_INLINE fixedpoint64& operator = (const fixedpoint64& _val) { val = _val.val; return *this; }
template <typename ET>
CV_ALWAYS_INLINE fixedpoint64 operator * (const ET& val2) const { return val * val2; } // Wrong rounding is possible for floating point types
CV_ALWAYS_INLINE fixedpoint64 operator * (const int8_t& val2) const { return operator *(fixedpoint64(val2)); }
CV_ALWAYS_INLINE fixedpoint64 operator * (const uint8_t& val2) const { return operator *(fixedpoint64(val2)); }
CV_ALWAYS_INLINE fixedpoint64 operator * (const int16_t& val2) const { return operator *(fixedpoint64(val2)); }
CV_ALWAYS_INLINE fixedpoint64 operator * (const uint16_t& val2) const { return operator *(fixedpoint64(val2)); }
CV_ALWAYS_INLINE fixedpoint64 operator * (const int32_t& val2) const { return operator *(fixedpoint64(val2)); }
CV_ALWAYS_INLINE fixedpoint64 operator * (const fixedpoint64& val2) const
{
//Assume -0x00000000C0000000 <= val2 <=0x0000000100000000 INT64_MIN <= val <= INT64_MAX, so shifted multiplication result is inside [INT64_MIN, INT64_MAX] range
uint64_t uval = (uint64_t)((val ^ (val >> 63)) - (val >> 63));
uint64_t umul = (uint64_t)((val2.val ^ (val2.val >> 63)) - (val2.val >> 63));
int64_t ressign = (val >> 63) ^ (val2.val >> 63);
......@@ -61,6 +67,9 @@ public:
uint64_t val0_h = (sh2 & 0xFFFFFFFF) + (sh1_0 >> 32) + (sh1_1 >> 32) + (val0_l >> 32);
val0_l &= 0xFFFFFFFF;
if ( (sh2 >> 32) || (val0_h >> ressign ? 32 : 31) )
return (ressign ? ~(int64_t)0x7FFFFFFFFFFFFFFF : (int64_t)0x7FFFFFFFFFFFFFFF);
if (ressign)
{
val0_l = (~val0_l + 1) & 0xFFFFFFFF;
......@@ -68,16 +77,19 @@ public:
}
return (int64_t)(val0_h << 32 | val0_l);
}
CV_ALWAYS_INLINE fixedpoint64 operator + (const fixedpoint64& val2) const { return fixedpoint64(val + val2.val); }
CV_ALWAYS_INLINE fixedpoint64 operator - (const fixedpoint64& val2) const { return fixedpoint64(val - val2.val); }
// CV_ALWAYS_INLINE fixedpoint64 operator + (const fixedpoint64& val2) const
// {
// int64_t nfrac = (int64_t)frac + val2.frac;
// int64_t nval = (int64_t)val + val2.val + nfrac >> 32;
// return nval > MAXINT32 ? beConv(MAXINT32, MAXINT32) : beConv((int32_t)(nval), 0);
// }
CV_ALWAYS_INLINE fixedpoint64 operator + (const fixedpoint64& val2) const
{
int64_t res = val + val2.val;
return ((val ^ res) & (val2.val ^ res)) >> 63 ? ~(res & ~0x7FFFFFFFFFFFFFFF) : res;
}
CV_ALWAYS_INLINE fixedpoint64 operator - (const fixedpoint64& val2) const
{
int64_t res = val - val2.val;
return ((val ^ val2.val) & (val ^ res)) >> 63 ? ~(res & ~0x7FFFFFFFFFFFFFFF) : res;
}
CV_ALWAYS_INLINE fixedpoint64 operator >> (int n) const { return fixedpoint64(val >> n); }
CV_ALWAYS_INLINE fixedpoint64 operator << (int n) const { return fixedpoint64(val << n); }
CV_ALWAYS_INLINE bool operator == (const fixedpoint64& val2) const { return val == val2.val; }
template <typename ET>
CV_ALWAYS_INLINE operator ET() const { return cv::saturate_cast<ET>((int64_t)fixedround((uint64_t)val) >> fixedShift); }
CV_ALWAYS_INLINE operator double() const { return (double)val / (1LL << fixedShift); }
......@@ -108,31 +120,36 @@ public:
CV_ALWAYS_INLINE ufixedpoint64& operator = (const uint32_t& _val) { val = ((uint64_t)_val) << fixedShift; return *this; }
CV_ALWAYS_INLINE ufixedpoint64& operator = (const cv::softdouble& _val) { val = _val.getSign() ? 0 : (uint64_t)cvRound64(_val * cv::softdouble((int64_t)(1LL << fixedShift))); return *this; }
CV_ALWAYS_INLINE ufixedpoint64& operator = (const ufixedpoint64& _val) { val = _val.val; return *this; }
template <typename ET>
CV_ALWAYS_INLINE ufixedpoint64 operator * (const ET& val2) const { return val * val2; } // Wrong rounding is possible for floating point types
CV_ALWAYS_INLINE ufixedpoint64 operator * (const uint8_t& val2) const { return operator *(ufixedpoint64(val2)); }
CV_ALWAYS_INLINE ufixedpoint64 operator * (const uint16_t& val2) const { return operator *(ufixedpoint64(val2)); }
CV_ALWAYS_INLINE ufixedpoint64 operator * (const uint32_t& val2) const { return operator *(ufixedpoint64(val2)); }
CV_ALWAYS_INLINE ufixedpoint64 operator * (const ufixedpoint64& val2) const
{
//Assume val2 <=0x0000000100000000, so shifted multiplication result is less than val and therefore than UINT64_MAX
uint64_t sh0 = fixedround((val & 0xFFFFFFFF) * (val2.val & 0xFFFFFFFF));
uint64_t sh1_0 = (val >> 32) * (val2.val & 0xFFFFFFFF);
uint64_t sh1_1 = (val & 0xFFFFFFFF) * (val2.val >> 32);
uint64_t sh2 = (val >> 32) * (val2.val >> 32);
uint64_t sh2 = (val >> 32) * (val2.val >> 32);
uint64_t val0_l = (sh1_0 & 0xFFFFFFFF) + (sh1_1 & 0xFFFFFFFF) + (sh0 >> 32);
uint64_t val0_h = (sh2 & 0xFFFFFFFF) + (sh1_0 >> 32) + (sh1_1 >> 32) + (val0_l >> 32);
val0_l &= 0xFFFFFFFF;
if ((sh2 >> 32) || (val0_h >> 32))
return ((uint64_t)0xFFFFFFFFFFFFFFFF);
return val0_h << 32 | val0_l;
}
CV_ALWAYS_INLINE ufixedpoint64 operator + (const ufixedpoint64& val2) const { return ufixedpoint64(val + val2.val); }
CV_ALWAYS_INLINE ufixedpoint64 operator - (const ufixedpoint64& val2) const { return ufixedpoint64(val - val2.val); }
// CV_ALWAYS_INLINE fixedpoint64 operator + (const fixedpoint64& val2) const
// {
// int64_t nfrac = (int64_t)frac + val2.frac;
// int64_t nval = (int64_t)val + val2.val + nfrac >> 32;
// return nval > MAXINT32 ? beConv(MAXINT32, MAXINT32) : beConv((int32_t)(nval), 0);
// }
CV_ALWAYS_INLINE ufixedpoint64 operator + (const ufixedpoint64& val2) const
{
uint64_t res = val + val2.val;
return (val > res) ? (uint64_t)0xFFFFFFFFFFFFFFFF : res;
}
CV_ALWAYS_INLINE ufixedpoint64 operator - (const ufixedpoint64& val2) const
{
return val > val2.val ? (val - val2.val) : 0;
}
CV_ALWAYS_INLINE ufixedpoint64 operator >> (int n) const { return ufixedpoint64(val >> n); }
CV_ALWAYS_INLINE ufixedpoint64 operator << (int n) const { return ufixedpoint64(val << n); }
CV_ALWAYS_INLINE bool operator == (const ufixedpoint64& val2) const { return val == val2.val; }
template <typename ET>
CV_ALWAYS_INLINE operator ET() const { return cv::saturate_cast<ET>(fixedround(val) >> fixedShift); }
CV_ALWAYS_INLINE operator double() const { return (double)val / (1LL << fixedShift); }
......@@ -163,21 +180,26 @@ public:
CV_ALWAYS_INLINE fixedpoint32& operator = (const int16_t& _val) { val = ((int32_t)_val) << fixedShift; return *this; }
CV_ALWAYS_INLINE fixedpoint32& operator = (const cv::softdouble& _val) { val = (int32_t)cvRound(_val * cv::softdouble((1 << fixedShift))); return *this; }
CV_ALWAYS_INLINE fixedpoint32& operator = (const fixedpoint32& _val) { val = _val.val; return *this; }
template <typename ET>
CV_ALWAYS_INLINE fixedpoint32 operator * (const ET& val2) const { return val * val2; } // Wrong rounding is possible for floating point types
CV_ALWAYS_INLINE fixedpoint32 operator * (const int8_t& val2) const { return cv::saturate_cast<int32_t>((int64_t)val * val2); }
CV_ALWAYS_INLINE fixedpoint32 operator * (const uint8_t& val2) const { return cv::saturate_cast<int32_t>((int64_t)val * val2); }
CV_ALWAYS_INLINE fixedpoint32 operator * (const int16_t& val2) const { return cv::saturate_cast<int32_t>((int64_t)val * val2); }
CV_ALWAYS_INLINE fixedpoint64 operator * (const fixedpoint32& val2) const { return (int64_t)val * (int64_t)(val2.val); }
CV_ALWAYS_INLINE fixedpoint32 operator + (const fixedpoint32& val2) const { return fixedpoint32(val + val2.val); }
CV_ALWAYS_INLINE fixedpoint32 operator - (const fixedpoint32& val2) const { return fixedpoint32(val - val2.val); }
// CV_ALWAYS_INLINE fixedpoint32 operator + (const fixedpoint32& val2) const
// {
// int32_t nfrac = (int32_t)frac + val2.frac;
// int32_t nval = (int32_t)val + val2.val + nfrac >> 32;
// return nval > MAXINT32 ? beConv(MAXINT32, MAXINT32) : beConv((int32_t)(nval), 0);
// }
CV_ALWAYS_INLINE fixedpoint32 operator + (const fixedpoint32& val2) const
{
int32_t res = val + val2.val;
return ((val ^ res) & (val2.val ^ res)) >> 31 ? ~(res & ~0x7FFFFFFF) : res;
}
CV_ALWAYS_INLINE fixedpoint32 operator - (const fixedpoint32& val2) const
{
int32_t res = val - val2.val;
return ((val ^ val2.val) & (val ^ res)) >> 31 ? ~(res & ~0x7FFFFFFF) : res;
}
CV_ALWAYS_INLINE fixedpoint32 operator >> (int n) const { return fixedpoint32(val >> n); }
CV_ALWAYS_INLINE fixedpoint32 operator << (int n) const { return fixedpoint32(val << n); }
CV_ALWAYS_INLINE bool operator == (const fixedpoint32& val2) const { return val == val2.val; }
template <typename ET>
CV_ALWAYS_INLINE operator ET() const { return cv::saturate_cast<ET>((int32_t)fixedround((uint32_t)val) >> fixedShift); }
CV_ALWAYS_INLINE operator fixedpoint64() const { return (int64_t)val << (fixedpoint64::fixedShift - fixedShift); }
CV_ALWAYS_INLINE operator double() const { return (double)val / (1 << fixedShift); }
CV_ALWAYS_INLINE operator float() const { return (float)val / (1 << fixedShift); }
CV_ALWAYS_INLINE bool isZero() { return val == 0; }
......@@ -204,21 +226,24 @@ public:
CV_ALWAYS_INLINE ufixedpoint32& operator = (const uint16_t& _val) { val = ((uint32_t)_val) << fixedShift; return *this; }
CV_ALWAYS_INLINE ufixedpoint32& operator = (const cv::softdouble& _val) { val = _val.getSign() ? 0 : (uint32_t)cvRound(_val * cv::softdouble((1 << fixedShift))); return *this; }
CV_ALWAYS_INLINE ufixedpoint32& operator = (const ufixedpoint32& _val) { val = _val.val; return *this; }
template <typename ET>
CV_ALWAYS_INLINE ufixedpoint32 operator * (const ET& val2) const { return val * val2; } // Wrong rounding is possible for floating point types
CV_ALWAYS_INLINE ufixedpoint32 operator * (const uint8_t& val2) const { return cv::saturate_cast<uint32_t>((uint64_t)val * val2); }
CV_ALWAYS_INLINE ufixedpoint32 operator * (const uint16_t& val2) const { return cv::saturate_cast<uint32_t>((uint64_t)val * val2); }
CV_ALWAYS_INLINE ufixedpoint64 operator * (const ufixedpoint32& val2) const { return (uint64_t)val * (uint64_t)(val2.val); }
CV_ALWAYS_INLINE ufixedpoint32 operator + (const ufixedpoint32& val2) const { return ufixedpoint32(val + val2.val); }
CV_ALWAYS_INLINE ufixedpoint32 operator - (const ufixedpoint32& val2) const { return ufixedpoint32(val - val2.val); }
// CV_ALWAYS_INLINE fixedpoint32 operator + (const fixedpoint32& val2) const
// {
// int32_t nfrac = (int32_t)frac + val2.frac;
// int32_t nval = (int32_t)val + val2.val + nfrac >> 32;
// return nval > MAXINT32 ? beConv(MAXINT32, MAXINT32) : beConv((int32_t)(nval), 0);
// }
CV_ALWAYS_INLINE ufixedpoint32 operator + (const ufixedpoint32& val2) const
{
uint32_t res = val + val2.val;
return (val > res) ? 0xFFFFFFFF : res;
}
CV_ALWAYS_INLINE ufixedpoint32 operator - (const ufixedpoint32& val2) const
{
return val > val2.val ? (val - val2.val) : 0;
}
CV_ALWAYS_INLINE ufixedpoint32 operator >> (int n) const { return ufixedpoint32(val >> n); }
CV_ALWAYS_INLINE ufixedpoint32 operator << (int n) const { return ufixedpoint32(val << n); }
CV_ALWAYS_INLINE bool operator == (const ufixedpoint32& val2) const { return val == val2.val; }
template <typename ET>
CV_ALWAYS_INLINE operator ET() const { return cv::saturate_cast<ET>(fixedround(val) >> fixedShift); }
CV_ALWAYS_INLINE operator ufixedpoint64() const { return (uint64_t)val << (ufixedpoint64::fixedShift - fixedShift); }
CV_ALWAYS_INLINE operator double() const { return (double)val / (1 << fixedShift); }
CV_ALWAYS_INLINE operator float() const { return (float)val / (1 << fixedShift); }
CV_ALWAYS_INLINE bool isZero() { return val == 0; }
......@@ -239,20 +264,28 @@ public:
typedef fixedpoint32 WT;
CV_ALWAYS_INLINE fixedpoint16() { val = 0; }
CV_ALWAYS_INLINE fixedpoint16(const int8_t& _val) { val = ((int16_t)_val) << fixedShift; }
CV_ALWAYS_INLINE fixedpoint16(const uint8_t& _val) { val = ((int16_t)_val) << fixedShift; }
CV_ALWAYS_INLINE fixedpoint16(const cv::softdouble& _val) { val = (int16_t)cvRound(_val * cv::softdouble((1 << fixedShift))); }
CV_ALWAYS_INLINE fixedpoint16& operator = (const int8_t& _val) { val = ((int16_t)_val) << fixedShift; return *this; }
CV_ALWAYS_INLINE fixedpoint16& operator = (const cv::softdouble& _val) { val = (int16_t)cvRound(_val * cv::softdouble((1 << fixedShift))); return *this; }
CV_ALWAYS_INLINE fixedpoint16& operator = (const fixedpoint16& _val) { val = _val.val; return *this; }
template <typename ET>
CV_ALWAYS_INLINE fixedpoint16 operator * (const ET& val2) const { return (int16_t)(val * val2); } // Wrong rounding is possible for floating point types
CV_ALWAYS_INLINE fixedpoint16 operator * (const int8_t& val2) const { return cv::saturate_cast<int16_t>((int32_t)val * val2); }
CV_ALWAYS_INLINE fixedpoint32 operator * (const fixedpoint16& val2) const { return (int32_t)val * (int32_t)(val2.val); }
CV_ALWAYS_INLINE fixedpoint16 operator + (const fixedpoint16& val2) const { return fixedpoint16((int16_t)(val + val2.val)); }
CV_ALWAYS_INLINE fixedpoint16 operator - (const fixedpoint16& val2) const { return fixedpoint16((int16_t)(val - val2.val)); }
CV_ALWAYS_INLINE fixedpoint16 operator + (const fixedpoint16& val2) const
{
int16_t res = val + val2.val;
return ((val ^ res) & (val2.val ^ res)) >> 15 ? (int16_t)(~(res & ~0x7FFF)) : res;
}
CV_ALWAYS_INLINE fixedpoint16 operator - (const fixedpoint16& val2) const
{
int16_t res = val - val2.val;
return ((val ^ val2.val) & (val ^ res)) >> 15 ? (int16_t)(~(res & ~(int16_t)0x7FFF)) : res;
}
CV_ALWAYS_INLINE fixedpoint16 operator >> (int n) const { return fixedpoint16((int16_t)(val >> n)); }
CV_ALWAYS_INLINE fixedpoint16 operator << (int n) const { return fixedpoint16((int16_t)(val << n)); }
CV_ALWAYS_INLINE bool operator == (const fixedpoint16& val2) const { return val == val2.val; }
template <typename ET>
CV_ALWAYS_INLINE operator ET() const { return cv::saturate_cast<ET>((int16_t)fixedround((uint16_t)val) >> fixedShift); }
CV_ALWAYS_INLINE operator fixedpoint32() const { return (int32_t)val << (fixedpoint32::fixedShift - fixedShift); }
CV_ALWAYS_INLINE operator double() const { return (double)val / (1 << fixedShift); }
CV_ALWAYS_INLINE operator float() const { return (float)val / (1 << fixedShift); }
CV_ALWAYS_INLINE bool isZero() { return val == 0; }
......@@ -276,15 +309,23 @@ public:
CV_ALWAYS_INLINE ufixedpoint16& operator = (const uint8_t& _val) { val = ((uint16_t)_val) << fixedShift; return *this; }
CV_ALWAYS_INLINE ufixedpoint16& operator = (const cv::softdouble& _val) { val = _val.getSign() ? 0 : (uint16_t)cvRound(_val * cv::softdouble((int32_t)(1 << fixedShift))); return *this; }
CV_ALWAYS_INLINE ufixedpoint16& operator = (const ufixedpoint16& _val) { val = _val.val; return *this; }
template <typename ET>
CV_ALWAYS_INLINE ufixedpoint16 operator * (const ET& val2) const { return (uint16_t)(val * val2); } // Wrong rounding is possible for floating point types
CV_ALWAYS_INLINE ufixedpoint16 operator * (const uint8_t& val2) const { return cv::saturate_cast<uint16_t>((uint32_t)val * val2); }
CV_ALWAYS_INLINE ufixedpoint32 operator * (const ufixedpoint16& val2) const { return ((uint32_t)val * (uint32_t)(val2.val)); }
CV_ALWAYS_INLINE ufixedpoint16 operator + (const ufixedpoint16& val2) const { return ufixedpoint16((uint16_t)(val + val2.val)); }
CV_ALWAYS_INLINE ufixedpoint16 operator - (const ufixedpoint16& val2) const { return ufixedpoint16((uint16_t)(val - val2.val)); }
CV_ALWAYS_INLINE ufixedpoint16 operator + (const ufixedpoint16& val2) const
{
uint16_t res = val + val2.val;
return (val > res) ? (uint16_t)0xFFFF : res;
}
CV_ALWAYS_INLINE ufixedpoint16 operator - (const ufixedpoint16& val2) const
{
return val > val2.val ? (uint16_t)(val - val2.val) : (uint16_t)0;
}
CV_ALWAYS_INLINE ufixedpoint16 operator >> (int n) const { return ufixedpoint16((uint16_t)(val >> n)); }
CV_ALWAYS_INLINE ufixedpoint16 operator << (int n) const { return ufixedpoint16((uint16_t)(val << n)); }
CV_ALWAYS_INLINE bool operator == (const ufixedpoint16& val2) const { return val == val2.val; }
template <typename ET>
CV_ALWAYS_INLINE operator ET() const { return cv::saturate_cast<ET>(fixedround(val) >> fixedShift); }
CV_ALWAYS_INLINE operator ufixedpoint32() const { return (uint32_t)val << (ufixedpoint32::fixedShift - fixedShift); }
CV_ALWAYS_INLINE operator double() const { return (double)val / (1 << fixedShift); }
CV_ALWAYS_INLINE operator float() const { return (float)val / (1 << fixedShift); }
CV_ALWAYS_INLINE bool isZero() { return val == 0; }
......
......@@ -1826,7 +1826,7 @@ void hlineSmooth1N<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufi
int lencn = len*cn;
v_uint16x8 v_mul = v_setall_u16(*((uint16_t*)m));
int i = 0;
for (; i < lencn - 15; i += 16)
for (; i <= lencn - 16; i += 16)
{
v_uint8x16 v_src = v_load(src + i);
v_uint16x8 v_tmp0, v_tmp1;
......@@ -1834,7 +1834,7 @@ void hlineSmooth1N<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufi
v_store((uint16_t*)dst + i, v_mul*v_tmp0);
v_store((uint16_t*)dst + i + 8, v_mul*v_tmp1);
}
if (i < lencn - 7)
if (i <= lencn - 8)
{
v_uint16x8 v_src = v_load_expand(src + i);
v_store((uint16_t*)dst + i, v_mul*v_src);
......@@ -1854,7 +1854,7 @@ void hlineSmooth1N1<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const uf
{
int lencn = len*cn;
int i = 0;
for (; i < lencn - 15; i += 16)
for (; i <= lencn - 16; i += 16)
{
v_uint8x16 v_src = v_load(src + i);
v_uint16x8 v_tmp0, v_tmp1;
......@@ -1862,7 +1862,7 @@ void hlineSmooth1N1<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const uf
v_store((uint16_t*)dst + i, v_shl<8>(v_tmp0));
v_store((uint16_t*)dst + i + 8, v_shl<8>(v_tmp1));
}
if (i < lencn - 7)
if (i <= lencn - 8)
{
v_uint16x8 v_src = v_load_expand(src + i);
v_store((uint16_t*)dst + i, v_shl<8>(v_src));
......@@ -1930,33 +1930,17 @@ void hlineSmooth3N<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufi
src += cn; dst += cn;
int i = cn, lencn = (len - 1)*cn;
v_int16x8 v_mul01 = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)m)));
v_int16x8 v_mul2 = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + 2))));
for (; i < lencn - 15; i += 16, src += 16, dst += 16)
v_uint16x8 v_mul0 = v_setall_u16(*((uint16_t*)m));
v_uint16x8 v_mul1 = v_setall_u16(*((uint16_t*)(m + 1)));
v_uint16x8 v_mul2 = v_setall_u16(*((uint16_t*)(m + 2)));
for (; i <= lencn - 16; i += 16, src += 16, dst += 16)
{
v_uint16x8 v_src00, v_src01, v_src10, v_src11;
v_int16x8 v_tmp0, v_tmp1;
v_uint16x8 v_src00, v_src01, v_src10, v_src11, v_src20, v_src21;
v_expand(v_load(src - cn), v_src00, v_src01);
v_expand(v_load(src), v_src10, v_src11);
v_zip(v_reinterpret_as_s16(v_src00), v_reinterpret_as_s16(v_src10), v_tmp0, v_tmp1);
v_int32x4 v_res0 = v_dotprod(v_tmp0, v_mul01);
v_int32x4 v_res1 = v_dotprod(v_tmp1, v_mul01);
v_zip(v_reinterpret_as_s16(v_src01), v_reinterpret_as_s16(v_src11), v_tmp0, v_tmp1);
v_int32x4 v_res2 = v_dotprod(v_tmp0, v_mul01);
v_int32x4 v_res3 = v_dotprod(v_tmp1, v_mul01);
v_int32x4 v_resj0, v_resj1, v_resj2, v_resj3;
v_expand(v_load(src + cn), v_src00, v_src01);
v_mul_expand(v_reinterpret_as_s16(v_src00), v_mul2, v_resj0, v_resj1);
v_mul_expand(v_reinterpret_as_s16(v_src01), v_mul2, v_resj2, v_resj3);
v_res0 += v_resj0;
v_res1 += v_resj1;
v_res2 += v_resj2;
v_res3 += v_resj3;
v_store((uint16_t*)dst, v_pack(v_reinterpret_as_u32(v_res0), v_reinterpret_as_u32(v_res1)));
v_store((uint16_t*)dst + 8, v_pack(v_reinterpret_as_u32(v_res2), v_reinterpret_as_u32(v_res3)));
v_expand(v_load(src + cn), v_src20, v_src21);
v_store((uint16_t*)dst, v_src00 * v_mul0 + v_src10 * v_mul1 + v_src20 * v_mul2);
v_store((uint16_t*)dst + 8, v_src01 * v_mul0 + v_src11 * v_mul1 + v_src21 * v_mul2);
}
for (; i < lencn; i++, src++, dst++)
*dst = m[0] * src[-cn] + m[1] * src[0] + m[2] * src[cn];
......@@ -1998,7 +1982,7 @@ void hlineSmooth3N121(const ET* src, int cn, const FT*, int, FT* dst, int len, i
src += cn; dst += cn;
for (int i = cn; i < (len - 1)*cn; i++, src++, dst++)
*dst = ((FT(src[-cn]) + FT(src[cn]))>>2) + (FT(src[0])>>1);
*dst = (FT(src[-cn])>>2) + (FT(src[cn])>>2) + (FT(src[0])>>1);
// Point that fall right from border
for (int k = 0; k < cn; k++)
......@@ -2037,7 +2021,7 @@ void hlineSmooth3N121<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const
src += cn; dst += cn;
int i = cn, lencn = (len - 1)*cn;
for (; i < lencn - 15; i += 16, src += 16, dst += 16)
for (; i <= lencn - 16; i += 16, src += 16, dst += 16)
{
v_uint16x8 v_src00, v_src01, v_src10, v_src11, v_src20, v_src21;
v_expand(v_load(src - cn), v_src00, v_src01);
......@@ -2061,11 +2045,107 @@ void hlineSmooth3N121<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const
}
}
template <typename ET, typename FT>
void hlineSmooth3Naba(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType)
{
if (len == 1)
{
FT msum = borderType != BORDER_CONSTANT ? (m[0]<<1) + m[1] : m[1];
for (int k = 0; k < cn; k++)
dst[k] = msum * src[k];
}
else
{
// Point that fall left from border
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
int src_idx = borderInterpolate(-1, len, borderType);
for (int k = 0; k < cn; k++)
dst[k] = m[1] * src[k] + m[0] * src[cn + k] + m[0] * src[src_idx*cn + k];
}
else
{
for (int k = 0; k < cn; k++)
dst[k] = m[1] * src[k] + m[0] * src[cn + k];
}
src += cn; dst += cn;
for (int i = cn; i < (len - 1)*cn; i++, src++, dst++)
*dst = m[1] * src[0] + m[0] * src[-cn] + m[0] * src[cn];
// Point that fall right from border
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn;
for (int k = 0; k < cn; k++)
dst[k] = m[1] * src[k] + m[0] * src[k - cn] + m[0] * src[src_idx + k];
}
else
{
for (int k = 0; k < cn; k++)
dst[k] = m[0] * src[k - cn] + m[1] * src[k];
}
}
}
template <>
void hlineSmooth3Naba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int borderType)
{
if (len == 1)
{
ufixedpoint16 msum = borderType != BORDER_CONSTANT ? (m[0]<<1) + m[1] : m[1];
for (int k = 0; k < cn; k++)
dst[k] = msum * src[k];
}
else
{
// Point that fall left from border
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
int src_idx = borderInterpolate(-1, len, borderType);
for (int k = 0; k < cn; k++)
((uint16_t*)dst)[k] = ((uint16_t*)m)[1] * src[k] + ((uint16_t*)m)[0] * ((uint16_t)(src[cn + k]) + (uint16_t)(src[src_idx*cn + k]));
}
else
{
for (int k = 0; k < cn; k++)
dst[k] = m[1] * src[k] + m[0] * src[cn + k];
}
src += cn; dst += cn;
int i = cn, lencn = (len - 1)*cn;
v_uint16x8 v_mul0 = v_setall_u16(*((uint16_t*)m));
v_uint16x8 v_mul1 = v_setall_u16(*((uint16_t*)m+1));
for (; i <= lencn - 16; i += 16, src += 16, dst += 16)
{
v_uint16x8 v_src00, v_src01, v_src10, v_src11, v_src20, v_src21;
v_expand(v_load(src - cn), v_src00, v_src01);
v_expand(v_load(src), v_src10, v_src11);
v_expand(v_load(src + cn), v_src20, v_src21);
v_store((uint16_t*)dst, (v_src00 + v_src20) * v_mul0 + v_src10 * v_mul1);
v_store((uint16_t*)dst + 8, (v_src01 + v_src21) * v_mul0 + v_src11 * v_mul1);
}
for (; i < lencn; i++, src++, dst++)
*((uint16_t*)dst) = ((uint16_t*)m)[1] * src[0] + ((uint16_t*)m)[0] * ((uint16_t)(src[-cn]) + (uint16_t)(src[cn]));
// Point that fall right from border
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn;
for (int k = 0; k < cn; k++)
((uint16_t*)dst)[k] = ((uint16_t*)m)[1] * src[k] + ((uint16_t*)m)[0] * ((uint16_t)(src[k - cn]) + (uint16_t)(src[src_idx + k]));
}
else
{
for (int k = 0; k < cn; k++)
dst[k] = m[0] * src[k - cn] + m[1] * src[k];
}
}
}
template <typename ET, typename FT>
void hlineSmooth5N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType)
{
if (len == 1)
{
ufixedpoint16 msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] + m[3] + m[4] : m[2];
FT msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] + m[3] + m[4] : m[2];
for (int k = 0; k < cn; k++)
dst[k] = msum * src[k];
}
......@@ -2228,44 +2308,21 @@ void hlineSmooth5N<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufi
src += 2 * cn; dst += 2 * cn;
int i = 2*cn, lencn = (len - 2)*cn;
v_int16x8 v_mul01 = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)m)));
v_int16x8 v_mul23 = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)(m + 2))));
v_int16x8 v_mul4 = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + 4))));
for (; i < lencn - 15; i += 16, src += 16, dst += 16)
v_uint16x8 v_mul0 = v_setall_u16(*((uint16_t*)m));
v_uint16x8 v_mul1 = v_setall_u16(*((uint16_t*)(m + 1)));
v_uint16x8 v_mul2 = v_setall_u16(*((uint16_t*)(m + 2)));
v_uint16x8 v_mul3 = v_setall_u16(*((uint16_t*)(m + 3)));
v_uint16x8 v_mul4 = v_setall_u16(*((uint16_t*)(m + 4)));
for (; i <= lencn - 16; i += 16, src += 16, dst += 16)
{
v_uint16x8 v_src00, v_src01, v_src10, v_src11;
v_int16x8 v_tmp0, v_tmp1;
v_uint16x8 v_src00, v_src01, v_src10, v_src11, v_src20, v_src21, v_src30, v_src31, v_src40, v_src41;
v_expand(v_load(src - 2*cn), v_src00, v_src01);
v_expand(v_load(src - cn), v_src10, v_src11);
v_zip(v_reinterpret_as_s16(v_src00), v_reinterpret_as_s16(v_src10), v_tmp0, v_tmp1);
v_int32x4 v_res0 = v_dotprod(v_tmp0, v_mul01);
v_int32x4 v_res1 = v_dotprod(v_tmp1, v_mul01);
v_zip(v_reinterpret_as_s16(v_src01), v_reinterpret_as_s16(v_src11), v_tmp0, v_tmp1);
v_int32x4 v_res2 = v_dotprod(v_tmp0, v_mul01);
v_int32x4 v_res3 = v_dotprod(v_tmp1, v_mul01);
v_expand(v_load(src), v_src00, v_src01);
v_expand(v_load(src + cn), v_src10, v_src11);
v_zip(v_reinterpret_as_s16(v_src00), v_reinterpret_as_s16(v_src10), v_tmp0, v_tmp1);
v_res0 += v_dotprod(v_tmp0, v_mul23);
v_res1 += v_dotprod(v_tmp1, v_mul23);
v_zip(v_reinterpret_as_s16(v_src01), v_reinterpret_as_s16(v_src11), v_tmp0, v_tmp1);
v_res2 += v_dotprod(v_tmp0, v_mul23);
v_res3 += v_dotprod(v_tmp1, v_mul23);
v_int32x4 v_resj0, v_resj1, v_resj2, v_resj3;
v_expand(v_load(src + 2*cn), v_src00, v_src01);
v_mul_expand(v_reinterpret_as_s16(v_src00), v_mul4, v_resj0, v_resj1);
v_mul_expand(v_reinterpret_as_s16(v_src01), v_mul4, v_resj2, v_resj3);
v_res0 += v_resj0;
v_res1 += v_resj1;
v_res2 += v_resj2;
v_res3 += v_resj3;
v_store((uint16_t*)dst, v_pack(v_reinterpret_as_u32(v_res0), v_reinterpret_as_u32(v_res1)));
v_store((uint16_t*)dst + 8, v_pack(v_reinterpret_as_u32(v_res2), v_reinterpret_as_u32(v_res3)));
v_expand(v_load(src), v_src20, v_src21);
v_expand(v_load(src + cn), v_src30, v_src31);
v_expand(v_load(src + 2*cn), v_src40, v_src41);
v_store((uint16_t*)dst, v_src00 * v_mul0 + v_src10 * v_mul1 + v_src20 * v_mul2 + v_src30 * v_mul3 + v_src40 * v_mul4);
v_store((uint16_t*)dst + 8, v_src01 * v_mul0 + v_src11 * v_mul1 + v_src21 * v_mul2 + v_src31 * v_mul3 + v_src41 * v_mul4);
}
for (; i < lencn; i++, src++, dst++)
*dst = m[0] * src[-2*cn] + m[1] * src[-cn] + m[2] * src[0] + m[3] * src[cn] + m[4] * src[2*cn];
......@@ -2295,7 +2352,7 @@ void hlineSmooth5N14641(const ET* src, int cn, const FT*, int, FT* dst, int len,
{
if (borderType == BORDER_CONSTANT)
for (int k = 0; k < cn; k++)
dst[k] = (FT(src[k])>>3)*3;
dst[k] = (FT(src[k])>>3)*(uint8_t)3;
else
for (int k = 0; k < cn; k++)
dst[k] = src[k];
......@@ -2305,8 +2362,8 @@ void hlineSmooth5N14641(const ET* src, int cn, const FT*, int, FT* dst, int len,
if (borderType == BORDER_CONSTANT)
for (int k = 0; k < cn; k++)
{
dst[k] = (FT(src[k])>>4)*6 + (FT(src[k + cn])>>2);
dst[k + cn] = (FT(src[k]) >> 2) + (FT(src[k + cn])>>4)*6;
dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2);
dst[k + cn] = (FT(src[k]) >> 2) + (FT(src[k + cn])>>4)*(uint8_t)6;
}
else
{
......@@ -2316,8 +2373,8 @@ void hlineSmooth5N14641(const ET* src, int cn, const FT*, int, FT* dst, int len,
int idxp2 = borderInterpolate(3, len, borderType)*cn;
for (int k = 0; k < cn; k++)
{
dst[k] = (FT(src[k])>>4)*6 + (FT(src[k + idxm1])>>2) + (FT(src[k + cn])>>2) + (FT(src[k + idxp1])>>4) + (FT(src[k + idxm2])>>4);
dst[k + cn] = (FT(src[k + cn])>>4)*6 + (FT(src[k])>>2) + (FT(src[k + idxp1])>>2) + (FT(src[k + idxm1])>>4) + (FT(src[k + idxp2])>>4);
dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k + idxm1])>>2) + (FT(src[k + cn])>>2) + (FT(src[k + idxp1])>>4) + (FT(src[k + idxm2])>>4);
dst[k + cn] = (FT(src[k + cn])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[k + idxp1])>>2) + (FT(src[k + idxm1])>>4) + (FT(src[k + idxp2])>>4);
}
}
}
......@@ -2326,9 +2383,9 @@ void hlineSmooth5N14641(const ET* src, int cn, const FT*, int, FT* dst, int len,
if (borderType == BORDER_CONSTANT)
for (int k = 0; k < cn; k++)
{
dst[k] = (FT(src[k])>>4)*6 + (FT(src[k + cn])>>2) + (FT(src[k + 2 * cn])>>4);
dst[k + cn] = (FT(src[k + cn])>>4)*6 + (FT(src[k])>>2) + (FT(src[k + 2 * cn])>>2);
dst[k + 2 * cn] = (FT(src[k + 2 * cn])>>4)*6 + (FT(src[k + cn])>>2) + (FT(src[k])>>4);
dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2) + (FT(src[k + 2 * cn])>>4);
dst[k + cn] = (FT(src[k + cn])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[k + 2 * cn])>>2);
dst[k + 2 * cn] = (FT(src[k + 2 * cn])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2) + (FT(src[k])>>4);
}
else
{
......@@ -2338,9 +2395,9 @@ void hlineSmooth5N14641(const ET* src, int cn, const FT*, int, FT* dst, int len,
int idxp2 = borderInterpolate(4, len, borderType)*cn;
for (int k = 0; k < cn; k++)
{
dst[k] = (FT(src[k])>>4)*6 + (FT(src[k + cn])>>2) + (FT(src[k + idxm1])>>2) + (FT(src[k + 2 * cn])>>4) + (FT(src[k + idxm2])>>4);
dst[k + cn] = (FT(src[k + cn])>>4)*6 + (FT(src[k])>>2) + (FT(src[k + 2 * cn])>>2) + (FT(src[k + idxm1])>>4) + (FT(src[k + idxp1])>>4);
dst[k + 2 * cn] = (FT(src[k + 2 * cn])>>4)*6 + (FT(src[k + cn])>>2) + (FT(src[k + idxp1])>>2) + (FT(src[k])>>4) + (FT(src[k + idxp2])>>4);
dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2) + (FT(src[k + idxm1])>>2) + (FT(src[k + 2 * cn])>>4) + (FT(src[k + idxm2])>>4);
dst[k + cn] = (FT(src[k + cn])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[k + 2 * cn])>>2) + (FT(src[k + idxm1])>>4) + (FT(src[k + idxp1])>>4);
dst[k + 2 * cn] = (FT(src[k + 2 * cn])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2) + (FT(src[k + idxp1])>>2) + (FT(src[k])>>4) + (FT(src[k + idxp2])>>4);
}
}
}
......@@ -2349,8 +2406,8 @@ void hlineSmooth5N14641(const ET* src, int cn, const FT*, int, FT* dst, int len,
// Points that fall left from border
for (int k = 0; k < cn; k++)
{
dst[k] = (FT(src[k])>>4)*6 + (FT(src[cn + k])>>2) + (FT(src[2 * cn + k])>>4);
dst[k + cn] = (FT(src[cn + k])>>4)*6 + (FT(src[k])>>2) + (FT(src[2 * cn + k])>>2) + (FT(src[3 * cn + k])>>4);
dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[cn + k])>>2) + (FT(src[2 * cn + k])>>4);
dst[k + cn] = (FT(src[cn + k])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[2 * cn + k])>>2) + (FT(src[3 * cn + k])>>4);
}
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
......@@ -2365,13 +2422,13 @@ void hlineSmooth5N14641(const ET* src, int cn, const FT*, int, FT* dst, int len,
src += 2 * cn; dst += 2 * cn;
for (int i = 2 * cn; i < (len - 2)*cn; i++, src++, dst++)
*dst = (FT(src[0])>>4)*6 + (FT(src[-cn])>>2) + (FT(src[cn])>>2) + (FT(src[-2 * cn])>>4) + (FT(src[2 * cn])>>4);
*dst = (FT(src[0])>>4)*(uint8_t)6 + (FT(src[-cn])>>2) + (FT(src[cn])>>2) + (FT(src[-2 * cn])>>4) + (FT(src[2 * cn])>>4);
// Points that fall right from border
for (int k = 0; k < cn; k++)
{
dst[k] = (FT(src[k])>>4)*6 + (FT(src[k - cn])>>2) + (FT(src[k + cn])>>2) + (FT(src[k - 2 * cn])>>4);
dst[k + cn] = (FT(src[k + cn])>>4)*6 + (FT(src[k])>>2) + (FT(src[k - cn])>>4);
dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k - cn])>>2) + (FT(src[k + cn])>>2) + (FT(src[k - 2 * cn])>>4);
dst[k + cn] = (FT(src[k + cn])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[k - cn])>>4);
}
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
......@@ -2392,7 +2449,7 @@ void hlineSmooth5N14641<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
{
if (borderType == BORDER_CONSTANT)
for (int k = 0; k < cn; k++)
dst[k] = (ufixedpoint16(src[k])>>3) * 3;
dst[k] = (ufixedpoint16(src[k])>>3) * (uint8_t)3;
else
{
for (int k = 0; k < cn; k++)
......@@ -2404,8 +2461,8 @@ void hlineSmooth5N14641<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
if (borderType == BORDER_CONSTANT)
for (int k = 0; k < cn; k++)
{
dst[k] = (ufixedpoint16(src[k]) >> 4) * 6 + (ufixedpoint16(src[k + cn]) >> 2);
dst[k + cn] = (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + cn]) >> 4) * 6;
dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2);
dst[k + cn] = (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6;
}
else
{
......@@ -2415,8 +2472,8 @@ void hlineSmooth5N14641<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
int idxp2 = borderInterpolate(3, len, borderType)*cn;
for (int k = 0; k < cn; k++)
{
dst[k] = (ufixedpoint16(src[k]) >> 4) * 6 + (ufixedpoint16(src[k + idxm1]) >> 2) + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 4) + (ufixedpoint16(src[k + idxm2]) >> 4);
dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * 6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 4) + (ufixedpoint16(src[k + idxp2]) >> 4);
dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + idxm1]) >> 2) + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 4) + (ufixedpoint16(src[k + idxm2]) >> 4);
dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 4) + (ufixedpoint16(src[k + idxp2]) >> 4);
}
}
}
......@@ -2425,9 +2482,9 @@ void hlineSmooth5N14641<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
if (borderType == BORDER_CONSTANT)
for (int k = 0; k < cn; k++)
{
dst[k] = (ufixedpoint16(src[k]) >> 4) * 6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 4);
dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * 6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 2);
dst[k + 2 * cn] = (ufixedpoint16(src[k + 2 * cn]) >> 4) * 6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k]) >> 4);
dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 4);
dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 2);
dst[k + 2 * cn] = (ufixedpoint16(src[k + 2 * cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k]) >> 4);
}
else
{
......@@ -2437,9 +2494,9 @@ void hlineSmooth5N14641<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
int idxp2 = borderInterpolate(4, len, borderType)*cn;
for (int k = 0; k < cn; k++)
{
dst[k] = (ufixedpoint16(src[k]) >> 4) * 6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 4) + (ufixedpoint16(src[k + idxm2]) >> 4);
dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * 6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 4) + (ufixedpoint16(src[k + idxp1]) >> 4);
dst[k + 2 * cn] = (ufixedpoint16(src[k + 2 * cn]) >> 4) * 6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 2) + (ufixedpoint16(src[k]) >> 4) + (ufixedpoint16(src[k + idxp2]) >> 4);
dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 4) + (ufixedpoint16(src[k + idxm2]) >> 4);
dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 4) + (ufixedpoint16(src[k + idxp1]) >> 4);
dst[k + 2 * cn] = (ufixedpoint16(src[k + 2 * cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 2) + (ufixedpoint16(src[k]) >> 4) + (ufixedpoint16(src[k + idxp2]) >> 4);
}
}
}
......@@ -2448,8 +2505,8 @@ void hlineSmooth5N14641<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
// Points that fall left from border
for (int k = 0; k < cn; k++)
{
dst[k] = (ufixedpoint16(src[k]) >> 4) * 6 + (ufixedpoint16(src[cn + k]) >> 2) + (ufixedpoint16(src[2 * cn + k]) >> 4);
dst[k + cn] = (ufixedpoint16(src[cn + k]) >> 4) * 6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[2 * cn + k]) >> 2) + (ufixedpoint16(src[3 * cn + k]) >> 4);
dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[cn + k]) >> 2) + (ufixedpoint16(src[2 * cn + k]) >> 4);
dst[k + cn] = (ufixedpoint16(src[cn + k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[2 * cn + k]) >> 2) + (ufixedpoint16(src[3 * cn + k]) >> 4);
}
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
......@@ -2465,7 +2522,7 @@ void hlineSmooth5N14641<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
src += 2 * cn; dst += 2 * cn;
int i = 2 * cn, lencn = (len - 2)*cn;
v_uint16x8 v_6 = v_setall_u16(6);
for (; i < lencn - 15; i += 16, src += 16, dst += 16)
for (; i <= lencn - 16; i += 16, src += 16, dst += 16)
{
v_uint16x8 v_src00, v_src01, v_src10, v_src11, v_src20, v_src21, v_src30, v_src31, v_src40, v_src41;
v_expand(v_load(src - 2*cn), v_src00, v_src01);
......@@ -2482,8 +2539,8 @@ void hlineSmooth5N14641<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
// Points that fall right from border
for (int k = 0; k < cn; k++)
{
dst[k] = (ufixedpoint16(src[k]) >> 4) * 6 + (ufixedpoint16(src[k - cn]) >> 2) + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k - 2 * cn]) >> 4);
dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * 6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k - cn]) >> 4);
dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k - cn]) >> 2) + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k - 2 * cn]) >> 4);
dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k - cn]) >> 4);
}
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
......@@ -2498,6 +2555,215 @@ void hlineSmooth5N14641<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
}
}
template <typename ET, typename FT>
void hlineSmooth5Nabcba(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType)
{
if (len == 1)
{
FT msum = borderType != BORDER_CONSTANT ? ((m[0] + m[1])<<1) + m[2] : m[2];
for (int k = 0; k < cn; k++)
dst[k] = msum * src[k];
}
else if (len == 2)
{
if (borderType == BORDER_CONSTANT)
for (int k = 0; k < cn; k++)
{
dst[k] = m[2] * src[k] + m[1] * src[k + cn];
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn];
}
else
{
int idxm2 = borderInterpolate(-2, len, borderType)*cn;
int idxm1 = borderInterpolate(-1, len, borderType)*cn;
int idxp1 = borderInterpolate(2, len, borderType)*cn;
int idxp2 = borderInterpolate(3, len, borderType)*cn;
for (int k = 0; k < cn; k++)
{
dst[k] = m[1] * src[k + idxm1] + m[2] * src[k] + m[1] * src[k + cn] + m[0] * src[k + idxp1] + m[0] * src[k + idxm2];
dst[k + cn] = m[0] * src[k + idxm1] + m[1] * src[k] + m[2] * src[k + cn] + m[1] * src[k + idxp1] + m[0] * src[k + idxp2];
}
}
}
else if (len == 3)
{
if (borderType == BORDER_CONSTANT)
for (int k = 0; k < cn; k++)
{
dst[k] = m[2] * src[k] + m[1] * src[k + cn] + m[0] * src[k + 2 * cn];
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[1] * src[k + 2 * cn];
dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn];
}
else
{
int idxm2 = borderInterpolate(-2, len, borderType)*cn;
int idxm1 = borderInterpolate(-1, len, borderType)*cn;
int idxp1 = borderInterpolate(3, len, borderType)*cn;
int idxp2 = borderInterpolate(4, len, borderType)*cn;
for (int k = 0; k < cn; k++)
{
dst[k] = m[2] * src[k] + m[1] * src[k + cn] + m[0] * src[k + 2 * cn] + m[0] * src[k + idxm2] + m[1] * src[k + idxm1];
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[1] * src[k + 2 * cn] + m[0] * src[k + idxm1] + m[0] * src[k + idxp1];
dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn] + m[1] * src[k + idxp1] + m[0] * src[k + idxp2];
}
}
}
else
{
// Points that fall left from border
for (int k = 0; k < cn; k++)
{
dst[k] = m[2] * src[k] + m[1] * src[cn + k] + m[0] * src[2 * cn + k];
dst[k + cn] = m[1] * src[k] + m[2] * src[cn + k] + m[1] * src[2 * cn + k] + m[0] * src[3 * cn + k];
}
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
int idxm2 = borderInterpolate(-2, len, borderType)*cn;
int idxm1 = borderInterpolate(-1, len, borderType)*cn;
for (int k = 0; k < cn; k++)
{
dst[k] = dst[k] + m[0] * src[idxm2 + k] + m[1] * src[idxm1 + k];
dst[k + cn] = dst[k + cn] + m[0] * src[idxm1 + k];
}
}
src += 2 * cn; dst += 2 * cn;
for (int i = 2 * cn; i < (len - 2)*cn; i++, src++, dst++)
*dst = m[0] * src[-2 * cn] + m[1] * src[-cn] + m[2] * src[0] + m[3] * src[cn] + m[4] * src[2 * cn];
// Points that fall right from border
for (int k = 0; k < cn; k++)
{
dst[k] = m[0] * src[k - 2 * cn] + m[1] * src[k - cn] + m[2] * src[k] + m[3] * src[k + cn];
dst[k + cn] = m[0] * src[k - cn] + m[1] * src[k] + m[2] * src[k + cn];
}
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn;
int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn;
for (int k = 0; k < cn; k++)
{
dst[k] = dst[k] + m[0] * src[idxp1 + k];
dst[k + cn] = dst[k + cn] + m[1] * src[idxp1 + k] + m[0] * src[idxp2 + k];
}
}
}
}
template <>
void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int borderType)
{
if (len == 1)
{
ufixedpoint16 msum = borderType != BORDER_CONSTANT ? ((m[0] + m[1]) << 1) + m[2] : m[2];
for (int k = 0; k < cn; k++)
dst[k] = msum * src[k];
}
else if (len == 2)
{
if (borderType == BORDER_CONSTANT)
for (int k = 0; k < cn; k++)
{
dst[k] = m[2] * src[k] + m[1] * src[k + cn];
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn];
}
else
{
int idxm2 = borderInterpolate(-2, len, borderType)*cn;
int idxm1 = borderInterpolate(-1, len, borderType)*cn;
int idxp1 = borderInterpolate(2, len, borderType)*cn;
int idxp2 = borderInterpolate(3, len, borderType)*cn;
for (int k = 0; k < cn; k++)
{
((uint16_t*)dst)[k] = ((uint16_t*)m)[1] * ((uint16_t)(src[k + idxm1]) + (uint16_t)(src[k + cn])) + ((uint16_t*)m)[2] * src[k] + ((uint16_t*)m)[0] * ((uint16_t)(src[k + idxp1]) + (uint16_t)(src[k + idxm2]));
((uint16_t*)dst)[k + cn] = ((uint16_t*)m)[0] * ((uint16_t)(src[k + idxm1]) + (uint16_t)(src[k + idxp2])) + ((uint16_t*)m)[1] * ((uint16_t)(src[k]) + (uint16_t)(src[k + idxp1])) + ((uint16_t*)m)[2] * src[k + cn];
}
}
}
else if (len == 3)
{
if (borderType == BORDER_CONSTANT)
for (int k = 0; k < cn; k++)
{
dst[k] = m[2] * src[k] + m[1] * src[k + cn] + m[0] * src[k + 2 * cn];
((uint16_t*)dst)[k + cn] = ((uint16_t*)m)[1] * ((uint16_t)(src[k]) + (uint16_t)(src[k + 2 * cn])) + ((uint16_t*)m)[2] * src[k + cn];
dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn];
}
else
{
int idxm2 = borderInterpolate(-2, len, borderType)*cn;
int idxm1 = borderInterpolate(-1, len, borderType)*cn;
int idxp1 = borderInterpolate(3, len, borderType)*cn;
int idxp2 = borderInterpolate(4, len, borderType)*cn;
for (int k = 0; k < cn; k++)
{
((uint16_t*)dst)[k] = ((uint16_t*)m)[2] * src[k] + ((uint16_t*)m)[1] * ((uint16_t)(src[k + cn]) + (uint16_t)(src[k + idxm1])) + ((uint16_t*)m)[0] * ((uint16_t)(src[k + 2 * cn]) + (uint16_t)(src[k + idxm2]));
((uint16_t*)dst)[k + cn] = ((uint16_t*)m)[2] * src[k + cn] + ((uint16_t*)m)[1] * ((uint16_t)(src[k]) + (uint16_t)(src[k + 2 * cn])) + ((uint16_t*)m)[0] * ((uint16_t)(src[k + idxm1]) + (uint16_t)(src[k + idxp1]));
((uint16_t*)dst)[k + 2 * cn] = ((uint16_t*)m)[0] * ((uint16_t)(src[k]) + (uint16_t)(src[k + idxp2])) + ((uint16_t*)m)[1] * ((uint16_t)(src[k + cn]) + (uint16_t)(src[k + idxp1])) + ((uint16_t*)m)[2] * src[k + 2 * cn];
}
}
}
else
{
// Points that fall left from border
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
int idxm2 = borderInterpolate(-2, len, borderType)*cn;
int idxm1 = borderInterpolate(-1, len, borderType)*cn;
for (int k = 0; k < cn; k++)
{
((uint16_t*)dst)[k] = ((uint16_t*)m)[2] * src[k] + ((uint16_t*)m)[1] * ((uint16_t)(src[cn + k]) + (uint16_t)(src[idxm1 + k])) + ((uint16_t*)m)[0] * ((uint16_t)(src[2 * cn + k]) + (uint16_t)(src[idxm2 + k]));
((uint16_t*)dst)[k + cn] = ((uint16_t*)m)[1] * ((uint16_t)(src[k]) + (uint16_t)(src[2 * cn + k])) + ((uint16_t*)m)[2] * src[cn + k] + ((uint16_t*)m)[0] * ((uint16_t)(src[3 * cn + k]) + (uint16_t)(src[idxm1 + k]));
}
}
else
{
for (int k = 0; k < cn; k++)
{
dst[k] = m[2] * src[k] + m[1] * src[cn + k] + m[0] * src[2 * cn + k];
((uint16_t*)dst)[k + cn] = ((uint16_t*)m)[1] * ((uint16_t)(src[k]) + (uint16_t)(src[2 * cn + k])) + ((uint16_t*)m)[2] * src[cn + k] + ((uint16_t*)m)[0] * src[3 * cn + k];
}
}
src += 2 * cn; dst += 2 * cn;
int i = 2 * cn, lencn = (len - 2)*cn;
v_uint16x8 v_mul0 = v_setall_u16(*((uint16_t*)m));
v_uint16x8 v_mul1 = v_setall_u16(*((uint16_t*)(m + 1)));
v_uint16x8 v_mul2 = v_setall_u16(*((uint16_t*)(m + 2)));
for (; i <= lencn - 16; i += 16, src += 16, dst += 16)
{
v_uint16x8 v_src00, v_src01, v_src10, v_src11, v_src20, v_src21, v_src30, v_src31, v_src40, v_src41;
v_expand(v_load(src - 2 * cn), v_src00, v_src01);
v_expand(v_load(src - cn), v_src10, v_src11);
v_expand(v_load(src), v_src20, v_src21);
v_expand(v_load(src + cn), v_src30, v_src31);
v_expand(v_load(src + 2 * cn), v_src40, v_src41);
v_store((uint16_t*)dst, (v_src00 + v_src40) * v_mul0 + (v_src10 + v_src30)* v_mul1 + v_src20 * v_mul2);
v_store((uint16_t*)dst + 8, (v_src01 + v_src41) * v_mul0 + (v_src11 + v_src31) * v_mul1 + v_src21 * v_mul2);
}
for (; i < lencn; i++, src++, dst++)
*((uint16_t*)dst) = ((uint16_t*)m)[0] * ((uint16_t)(src[-2 * cn]) + (uint16_t)(src[2 * cn])) + ((uint16_t*)m)[1] * ((uint16_t)(src[-cn]) + (uint16_t)(src[cn])) + ((uint16_t*)m)[2] * src[0];
// Points that fall right from border
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn;
int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn;
for (int k = 0; k < cn; k++)
{
((uint16_t*)dst)[k] = ((uint16_t*)m)[0] * ((uint16_t)(src[k - 2 * cn]) + (uint16_t)(src[idxp1 + k])) + ((uint16_t*)m)[1] * ((uint16_t)(src[k - cn]) + (uint16_t)(src[k + cn])) + ((uint16_t*)m)[2] * src[k];
((uint16_t*)dst)[k + cn] = ((uint16_t*)m)[0] * ((uint16_t)(src[k - cn]) + (uint16_t)(src[idxp2 + k])) + ((uint16_t*)m)[1] * ((uint16_t)(src[k]) + (uint16_t)(src[idxp1 + k])) + ((uint16_t*)m)[2] * src[k + cn];
}
}
else
{
for (int k = 0; k < cn; k++)
{
((uint16_t*)dst)[k] = ((uint16_t*)m)[0] * src[k - 2 * cn] + ((uint16_t*)m)[1] * ((uint16_t)(src[k - cn]) + (uint16_t)(src[k + cn])) + ((uint16_t*)m)[2] * src[k];
dst[k + cn] = m[0] * src[k - cn] + m[1] * src[k] + m[2] * src[k + cn];
}
}
}
}
template <typename ET, typename FT>
void hlineSmooth(const ET* src, int cn, const FT* m, int n, FT* dst, int len, int borderType)
{
int pre_shift = n / 2;
......@@ -2582,57 +2848,157 @@ void hlineSmooth<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixe
}
i *= cn;
int lencn = (len - post_shift + 1)*cn;
for (; i < lencn - 15; i+=16, src+=16, dst+=16)
for (; i <= lencn - 16; i+=16, src+=16, dst+=16)
{
v_uint16x8 v_src00, v_src01, v_src10, v_src11;
v_int16x8 v_tmp0, v_tmp1;
v_int16x8 v_mul = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)m)));
v_expand(v_load(src), v_src00, v_src01);
v_expand(v_load(src+cn), v_src10, v_src11);
v_zip(v_reinterpret_as_s16(v_src00), v_reinterpret_as_s16(v_src10), v_tmp0, v_tmp1);
v_int32x4 v_res0 = v_dotprod(v_tmp0, v_mul);
v_int32x4 v_res1 = v_dotprod(v_tmp1, v_mul);
v_zip(v_reinterpret_as_s16(v_src01), v_reinterpret_as_s16(v_src11), v_tmp0, v_tmp1);
v_int32x4 v_res2 = v_dotprod(v_tmp0, v_mul);
v_int32x4 v_res3 = v_dotprod(v_tmp1, v_mul);
int j = 2;
for (; j < n - 1; j += 2)
v_uint16x8 v_src0, v_src1;
v_uint16x8 v_mul = v_setall_u16(*((uint16_t*)m));
v_expand(v_load(src), v_src0, v_src1);
v_uint16x8 v_res0 = v_src0 * v_mul;
v_uint16x8 v_res1 = v_src1 * v_mul;
for (int j = 1; j < n; j++)
{
v_mul = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)(m + j))));
v_expand(v_load(src + j * cn), v_src00, v_src01);
v_expand(v_load(src + (j + 1) * cn), v_src10, v_src11);
v_zip(v_reinterpret_as_s16(v_src00), v_reinterpret_as_s16(v_src10), v_tmp0, v_tmp1);
v_res0 += v_dotprod(v_tmp0, v_mul);
v_res1 += v_dotprod(v_tmp1, v_mul);
v_zip(v_reinterpret_as_s16(v_src01), v_reinterpret_as_s16(v_src11), v_tmp0, v_tmp1);
v_res2 += v_dotprod(v_tmp0, v_mul);
v_res3 += v_dotprod(v_tmp1, v_mul);
v_mul = v_setall_u16(*((uint16_t*)(m + j)));
v_expand(v_load(src + j * cn), v_src0, v_src1);
v_res0 += v_src0 * v_mul;
v_res1 += v_src1 * v_mul;
}
if (j < n)
v_store((uint16_t*)dst, v_res0);
v_store((uint16_t*)dst+8, v_res1);
}
for (; i < lencn; i++, src++, dst++)
{
*dst = m[0] * src[0];
for (int j = 1; j < n; j++)
*dst = *dst + m[j] * src[j*cn];
}
i /= cn;
for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border
{
for (int k = 0; k < cn; k++)
dst[k] = m[0] * src[k];
int j = 1;
for (; j < len - i; j++)
for (int k = 0; k < cn; k++)
dst[k] = dst[k] + m[j] * src[j*cn + k];
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
for (; j < n; j++)
{
int src_idx = borderInterpolate(i + j, len, borderType) - i;
for (int k = 0; k < cn; k++)
dst[k] = dst[k] + m[j] * src[src_idx*cn + k];
}
}
}
template <typename ET, typename FT>
void hlineSmoothONa_yzy_a(const ET* src, int cn, const FT* m, int n, FT* dst, int len, int borderType)
{
int pre_shift = n / 2;
int post_shift = n - pre_shift;
int i = 0;
for (; i < min(pre_shift, len); i++, dst += cn) // Points that fall left from border
{
for (int k = 0; k < cn; k++)
dst[k] = m[pre_shift - i] * src[k];
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
for (int j = i - pre_shift, mid = 0; j < 0; j++, mid++)
{
int src_idx = borderInterpolate(j, len, borderType);
for (int k = 0; k < cn; k++)
dst[k] = dst[k] + m[mid] * src[src_idx*cn + k];
}
int j, mid;
for (j = 1, mid = pre_shift - i + 1; j < min(i + post_shift, len); j++, mid++)
for (int k = 0; k < cn; k++)
dst[k] = dst[k] + m[mid] * src[j*cn + k];
if (borderType != BORDER_CONSTANT)
for (; j < i + post_shift; j++, mid++)
{
int src_idx = borderInterpolate(j, len, borderType);
for (int k = 0; k < cn; k++)
dst[k] = dst[k] + m[mid] * src[src_idx*cn + k];
}
}
i *= cn;
for (; i < (len - post_shift + 1)*cn; i++, src++, dst++)
{
*dst = m[pre_shift] * src[pre_shift*cn];
for (int j = 0; j < pre_shift; j++)
*dst = *dst + m[j] * src[j*cn] + m[j] * src[(n-1-j)*cn];
}
i /= cn;
for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border
{
for (int k = 0; k < cn; k++)
dst[k] = m[0] * src[k];
int j = 1;
for (; j < len - i; j++)
for (int k = 0; k < cn; k++)
dst[k] = dst[k] + m[j] * src[j*cn + k];
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
for (; j < n; j++)
{
int src_idx = borderInterpolate(i + j, len, borderType) - i;
for (int k = 0; k < cn; k++)
dst[k] = dst[k] + m[j] * src[src_idx*cn + k];
}
}
}
template <>
void hlineSmoothONa_yzy_a<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int n, ufixedpoint16* dst, int len, int borderType)
{
int pre_shift = n / 2;
int post_shift = n - pre_shift;
int i = 0;
for (; i < min(pre_shift, len); i++, dst += cn) // Points that fall left from border
{
for (int k = 0; k < cn; k++)
dst[k] = m[pre_shift - i] * src[k];
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
for (int j = i - pre_shift, mid = 0; j < 0; j++, mid++)
{
int src_idx = borderInterpolate(j, len, borderType);
for (int k = 0; k < cn; k++)
dst[k] = dst[k] + m[mid] * src[src_idx*cn + k];
}
int j, mid;
for (j = 1, mid = pre_shift - i + 1; j < min(i + post_shift, len); j++, mid++)
for (int k = 0; k < cn; k++)
dst[k] = dst[k] + m[mid] * src[j*cn + k];
if (borderType != BORDER_CONSTANT)
for (; j < i + post_shift; j++, mid++)
{
int src_idx = borderInterpolate(j, len, borderType);
for (int k = 0; k < cn; k++)
dst[k] = dst[k] + m[mid] * src[src_idx*cn + k];
}
}
i *= cn;
int lencn = (len - post_shift + 1)*cn;
for (; i <= lencn - 16; i += 16, src += 16, dst += 16)
{
v_uint16x8 v_src00, v_src01, v_srcN00, v_srcN01;
v_uint16x8 v_mul = v_setall_u16(*((uint16_t*)(m + pre_shift)));
v_expand(v_load(src + pre_shift * cn), v_src00, v_src01);
v_uint16x8 v_res0 = v_src00 * v_mul;
v_uint16x8 v_res1 = v_src01 * v_mul;
for (int j = 0; j < pre_shift; j ++)
{
v_int32x4 v_resj0, v_resj1, v_resj2, v_resj3;
v_mul = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + j))));
v_mul = v_setall_u16(*((uint16_t*)(m + j)));
v_expand(v_load(src + j * cn), v_src00, v_src01);
v_mul_expand(v_reinterpret_as_s16(v_src00), v_mul, v_resj0, v_resj1);
v_mul_expand(v_reinterpret_as_s16(v_src01), v_mul, v_resj2, v_resj3);
v_res0 += v_resj0;
v_res1 += v_resj1;
v_res2 += v_resj2;
v_res3 += v_resj3;
v_expand(v_load(src + (n - 1 - j)*cn), v_srcN00, v_srcN01);
v_res0 += (v_src00 + v_srcN00) * v_mul;
v_res1 += (v_src01 + v_srcN01) * v_mul;
}
v_store((uint16_t*)dst, v_pack(v_reinterpret_as_u32(v_res0), v_reinterpret_as_u32(v_res1)));
v_store((uint16_t*)dst+8, v_pack(v_reinterpret_as_u32(v_res2), v_reinterpret_as_u32(v_res3)));
v_store((uint16_t*)dst, v_res0);
v_store((uint16_t*)dst + 8, v_res1);
}
for (; i < lencn; i++, src++, dst++)
{
*dst = m[0] * src[0];
for (int j = 1; j < n; j++)
*dst = *dst + m[j] * src[j*cn];
*dst = m[pre_shift] * src[pre_shift*cn];
for (int j = 0; j < pre_shift; j++)
*dst = *dst + m[j] * src[j*cn] + m[j] * src[(n - 1 - j)*cn];
}
i /= cn;
for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border
......@@ -2657,20 +3023,33 @@ void vlineSmooth1N(const FT* const * src, const FT* m, int, ET* dst, int len)
{
const FT* src0 = src[0];
for (int i = 0; i < len; i++)
dst[i] = m * src0[i];
dst[i] = *m * src0[i];
}
template <>
void vlineSmooth1N<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int, uint8_t* dst, int len)
{
const ufixedpoint16* src0 = src[0];
v_uint16x8 v_mul = v_setall_u16(*((uint16_t*)m));
#if CV_SSE2
v_uint16x8 v_1 = v_setall_u16(1);
v_mul += v_mul;
#endif
int i = 0;
for (; i < len - 7; i += 8)
for (; i <= len - 16; i += 16)
{
v_uint16x8 v_src0 = v_load((uint16_t*)src0 + i);
v_uint32x4 v_res0, v_res1;
v_uint16x8 v_src1 = v_load((uint16_t*)src0 + i + 8);
v_uint8x16 v_res;
#if CV_SSE2
v_res.val = _mm_packus_epi16(_mm_srli_epi16(_mm_add_epi16(v_1.val, _mm_mulhi_epu16(v_src0.val, v_mul.val)),1),
_mm_srli_epi16(_mm_add_epi16(v_1.val, _mm_mulhi_epu16(v_src1.val, v_mul.val)),1));
#else
v_uint32x4 v_res0, v_res1, v_res2, v_res3;
v_mul_expand(v_src0, v_mul, v_res0, v_res1);
v_pack_store(dst + i, v_rshr_pack<16>(v_res0, v_res1));
v_mul_expand(v_src1, v_mul, v_res2, v_res3);
v_res = v_pack(v_rshr_pack<16>(v_res0, v_res1), v_rshr_pack<16>(v_res2, v_res3));
#endif
v_store(dst + i, v_res);
}
for (; i < len; i++)
dst[i] = m[0] * src0[i];
......@@ -2687,7 +3066,7 @@ void vlineSmooth1N1<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, co
{
const ufixedpoint16* src0 = src[0];
int i = 0;
for (; i < len - 7; i += 8)
for (; i <= len - 8; i += 8)
v_rshr_pack_store<8>(dst + i, v_load((uint16_t*)(src0 + i)));
for (; i < len; i++)
dst[i] = src0[i];
......@@ -2701,40 +3080,73 @@ void vlineSmooth3N(const FT* const * src, const FT* m, int, ET* dst, int len)
template <>
void vlineSmooth3N<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int, uint8_t* dst, int len)
{
int i = 0;
static const v_int16x8 v_128 = v_reinterpret_as_s16(v_setall_u16((uint16_t)1 << 15));
v_int32x4 v_128_4 = v_setall_s32(128 << 16);
if (len > 7)
{
ufixedpoint32 val[] = { (m[0] + m[1] + m[2]) * ufixedpoint16((uint8_t)128) };
v_128_4 = v_setall_s32(*((int32_t*)val));
}
int i = 0;
v_int16x8 v_mul01 = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)m)));
v_int16x8 v_mul2 = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + 2))));
for (; i < len - 7; i += 8)
for (; i <= len - 32; i += 32)
{
v_int16x8 v_src0, v_src1;
v_int16x8 v_src00, v_src10, v_src01, v_src11, v_src02, v_src12, v_src03, v_src13;
v_int16x8 v_tmp0, v_tmp1;
v_src0 = v_load((int16_t*)(src[0]) + i);
v_src1 = v_load((int16_t*)(src[1]) + i);
v_zip(v_add_wrap(v_src0, v_128), v_add_wrap(v_src1, v_128), v_tmp0, v_tmp1);
v_src00 = v_load((int16_t*)(src[0]) + i);
v_src01 = v_load((int16_t*)(src[0]) + i + 8);
v_src02 = v_load((int16_t*)(src[0]) + i + 16);
v_src03 = v_load((int16_t*)(src[0]) + i + 24);
v_src10 = v_load((int16_t*)(src[1]) + i);
v_src11 = v_load((int16_t*)(src[1]) + i + 8);
v_src12 = v_load((int16_t*)(src[1]) + i + 16);
v_src13 = v_load((int16_t*)(src[1]) + i + 24);
v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1);
v_int32x4 v_res0 = v_dotprod(v_tmp0, v_mul01);
v_int32x4 v_res1 = v_dotprod(v_tmp1, v_mul01);
v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1);
v_int32x4 v_res2 = v_dotprod(v_tmp0, v_mul01);
v_int32x4 v_res3 = v_dotprod(v_tmp1, v_mul01);
v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1);
v_int32x4 v_res4 = v_dotprod(v_tmp0, v_mul01);
v_int32x4 v_res5 = v_dotprod(v_tmp1, v_mul01);
v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1);
v_int32x4 v_res6 = v_dotprod(v_tmp0, v_mul01);
v_int32x4 v_res7 = v_dotprod(v_tmp1, v_mul01);
v_int32x4 v_resj0, v_resj1;
v_src0 = v_load((int16_t*)(src[2]) + i);
v_mul_expand(v_add_wrap(v_src0, v_128), v_mul2, v_resj0, v_resj1);
v_src00 = v_load((int16_t*)(src[2]) + i);
v_src01 = v_load((int16_t*)(src[2]) + i + 8);
v_src02 = v_load((int16_t*)(src[2]) + i + 16);
v_src03 = v_load((int16_t*)(src[2]) + i + 24);
v_mul_expand(v_add_wrap(v_src00, v_128), v_mul2, v_resj0, v_resj1);
v_res0 += v_resj0;
v_res1 += v_resj1;
v_mul_expand(v_add_wrap(v_src01, v_128), v_mul2, v_resj0, v_resj1);
v_res2 += v_resj0;
v_res3 += v_resj1;
v_mul_expand(v_add_wrap(v_src02, v_128), v_mul2, v_resj0, v_resj1);
v_res4 += v_resj0;
v_res5 += v_resj1;
v_mul_expand(v_add_wrap(v_src03, v_128), v_mul2, v_resj0, v_resj1);
v_res6 += v_resj0;
v_res7 += v_resj1;
v_res0 += v_128_4;
v_res1 += v_128_4;
v_uint16x8 v_res = v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1));
v_pack_store(dst + i, v_res);
v_res2 += v_128_4;
v_res3 += v_128_4;
v_res4 += v_128_4;
v_res5 += v_128_4;
v_res6 += v_128_4;
v_res7 += v_128_4;
v_store(dst + i , v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1)),
v_reinterpret_as_u16(v_rshr_pack<16>(v_res2, v_res3))));
v_store(dst + i + 16, v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res4, v_res5)),
v_reinterpret_as_u16(v_rshr_pack<16>(v_res6, v_res7))));
}
for (; i < len; i++)
dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i];
......@@ -2743,20 +3155,23 @@ template <typename ET, typename FT>
void vlineSmooth3N121(const FT* const * src, const FT*, int, ET* dst, int len)
{
for (int i = 0; i < len; i++)
dst[i] = ((FT::WT(src[0][i]) + FT::WT(src[2][i])) >> 2) + (FT::WT(src[1][i]) >> 1);
dst[i] = (FT::WT(src[0][i]) >> 2) + (FT::WT(src[2][i]) >> 2) + (FT::WT(src[1][i]) >> 1);
}
template <>
void vlineSmooth3N121<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16*, int, uint8_t* dst, int len)
{
int i = 0;
for (; i < len - 7; i += 8)
for (; i <= len - 16; i += 16)
{
v_uint32x4 v_src00, v_src01, v_src10, v_src11, v_src20, v_src21;
v_uint32x4 v_src00, v_src01, v_src02, v_src03, v_src10, v_src11, v_src12, v_src13, v_src20, v_src21, v_src22, v_src23;
v_expand(v_load((uint16_t*)(src[0]) + i), v_src00, v_src01);
v_expand(v_load((uint16_t*)(src[0]) + i + 8), v_src02, v_src03);
v_expand(v_load((uint16_t*)(src[1]) + i), v_src10, v_src11);
v_expand(v_load((uint16_t*)(src[1]) + i + 8), v_src12, v_src13);
v_expand(v_load((uint16_t*)(src[2]) + i), v_src20, v_src21);
v_uint16x8 v_res = v_rshr_pack<10>(v_src00 + v_src20 + (v_src10 << 1), v_src01 + v_src21 + (v_src11 << 1));
v_pack_store(dst + i, v_res);
v_expand(v_load((uint16_t*)(src[2]) + i + 8), v_src22, v_src23);
v_store(dst + i, v_pack(v_rshr_pack<10>(v_src00 + v_src20 + (v_src10 + v_src10), v_src01 + v_src21 + (v_src11 + v_src11)),
v_rshr_pack<10>(v_src02 + v_src22 + (v_src12 + v_src12), v_src03 + v_src23 + (v_src13 + v_src13))));
}
for (; i < len; i++)
dst[i] = (((uint32_t)(((uint16_t*)(src[0]))[i]) + (uint32_t)(((uint16_t*)(src[2]))[i]) + ((uint32_t)(((uint16_t*)(src[1]))[i]) << 1)) + (1 << 9)) >> 10;
......@@ -2770,47 +3185,95 @@ void vlineSmooth5N(const FT* const * src, const FT* m, int, ET* dst, int len)
template <>
void vlineSmooth5N<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int, uint8_t* dst, int len)
{
int i = 0;
static const v_int16x8 v_128 = v_reinterpret_as_s16(v_setall_u16((uint16_t)1 << 15));
v_int32x4 v_128_4 = v_setall_s32(128 << 16);
if (len > 7)
{
ufixedpoint32 val[] = { (m[0] + m[1] + m[2] + m[3] + m[4]) * ufixedpoint16((uint8_t)128) };
v_128_4 = v_setall_s32(*((int32_t*)val));
}
int i = 0;
v_int16x8 v_mul01 = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)m)));
v_int16x8 v_mul23 = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)(m + 2))));
v_int16x8 v_mul4 = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + 4))));
for (; i < len - 7; i += 8)
for (; i <= len - 32; i += 32)
{
v_int16x8 v_src0, v_src1;
v_int16x8 v_src00, v_src10, v_src01, v_src11, v_src02, v_src12, v_src03, v_src13;
v_int16x8 v_tmp0, v_tmp1;
v_src0 = v_load((int16_t*)(src[0]) + i);
v_src1 = v_load((int16_t*)(src[1]) + i);
v_zip(v_add_wrap(v_src0, v_128), v_add_wrap(v_src1, v_128), v_tmp0, v_tmp1);
v_src00 = v_load((int16_t*)(src[0]) + i);
v_src01 = v_load((int16_t*)(src[0]) + i + 8);
v_src02 = v_load((int16_t*)(src[0]) + i + 16);
v_src03 = v_load((int16_t*)(src[0]) + i + 24);
v_src10 = v_load((int16_t*)(src[1]) + i);
v_src11 = v_load((int16_t*)(src[1]) + i + 8);
v_src12 = v_load((int16_t*)(src[1]) + i + 16);
v_src13 = v_load((int16_t*)(src[1]) + i + 24);
v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1);
v_int32x4 v_res0 = v_dotprod(v_tmp0, v_mul01);
v_int32x4 v_res1 = v_dotprod(v_tmp1, v_mul01);
v_src0 = v_load((int16_t*)(src[2]) + i);
v_src1 = v_load((int16_t*)(src[3]) + i);
v_zip(v_add_wrap(v_src0, v_128), v_add_wrap(v_src1, v_128), v_tmp0, v_tmp1);
v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1);
v_int32x4 v_res2 = v_dotprod(v_tmp0, v_mul01);
v_int32x4 v_res3 = v_dotprod(v_tmp1, v_mul01);
v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1);
v_int32x4 v_res4 = v_dotprod(v_tmp0, v_mul01);
v_int32x4 v_res5 = v_dotprod(v_tmp1, v_mul01);
v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1);
v_int32x4 v_res6 = v_dotprod(v_tmp0, v_mul01);
v_int32x4 v_res7 = v_dotprod(v_tmp1, v_mul01);
v_src00 = v_load((int16_t*)(src[2]) + i);
v_src01 = v_load((int16_t*)(src[2]) + i + 8);
v_src02 = v_load((int16_t*)(src[2]) + i + 16);
v_src03 = v_load((int16_t*)(src[2]) + i + 24);
v_src10 = v_load((int16_t*)(src[3]) + i);
v_src11 = v_load((int16_t*)(src[3]) + i + 8);
v_src12 = v_load((int16_t*)(src[3]) + i + 16);
v_src13 = v_load((int16_t*)(src[3]) + i + 24);
v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1);
v_res0 += v_dotprod(v_tmp0, v_mul23);
v_res1 += v_dotprod(v_tmp1, v_mul23);
v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1);
v_res2 += v_dotprod(v_tmp0, v_mul23);
v_res3 += v_dotprod(v_tmp1, v_mul23);
v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1);
v_res4 += v_dotprod(v_tmp0, v_mul23);
v_res5 += v_dotprod(v_tmp1, v_mul23);
v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1);
v_res6 += v_dotprod(v_tmp0, v_mul23);
v_res7 += v_dotprod(v_tmp1, v_mul23);
v_int32x4 v_resj0, v_resj1;
v_src0 = v_load((int16_t*)(src[4]) + i);
v_mul_expand(v_add_wrap(v_src0, v_128), v_mul4, v_resj0, v_resj1);
v_src00 = v_load((int16_t*)(src[4]) + i);
v_src01 = v_load((int16_t*)(src[4]) + i + 8);
v_src02 = v_load((int16_t*)(src[4]) + i + 16);
v_src03 = v_load((int16_t*)(src[4]) + i + 24);
v_mul_expand(v_add_wrap(v_src00, v_128), v_mul4, v_resj0, v_resj1);
v_res0 += v_resj0;
v_res1 += v_resj1;
v_mul_expand(v_add_wrap(v_src01, v_128), v_mul4, v_resj0, v_resj1);
v_res2 += v_resj0;
v_res3 += v_resj1;
v_mul_expand(v_add_wrap(v_src02, v_128), v_mul4, v_resj0, v_resj1);
v_res4 += v_resj0;
v_res5 += v_resj1;
v_mul_expand(v_add_wrap(v_src03, v_128), v_mul4, v_resj0, v_resj1);
v_res6 += v_resj0;
v_res7 += v_resj1;
v_res0 += v_128_4;
v_res1 += v_128_4;
v_uint16x8 v_res = v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1));
v_pack_store(dst + i, v_res);
v_res2 += v_128_4;
v_res3 += v_128_4;
v_res4 += v_128_4;
v_res5 += v_128_4;
v_res6 += v_128_4;
v_res7 += v_128_4;
v_store(dst + i , v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1)),
v_reinterpret_as_u16(v_rshr_pack<16>(v_res2, v_res3))));
v_store(dst + i + 16, v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res4, v_res5)),
v_reinterpret_as_u16(v_rshr_pack<16>(v_res6, v_res7))));
}
for (; i < len; i++)
dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i] + m[3] * src[3][i] + m[4] * src[4][i];
......@@ -2819,24 +3282,33 @@ template <typename ET, typename FT>
void vlineSmooth5N14641(const FT* const * src, const FT*, int, ET* dst, int len)
{
for (int i = 0; i < len; i++)
dst[i] = (FT::WT(src[2][i])*6 + ((FT::WT(src[1][i]) + FT::WT(src[3][i]))<<2) + FT::WT(src[0][i]) + FT::WT(src[4][i])) >> 4;
dst[i] = (FT::WT(src[2][i])*(uint8_t)6 + ((FT::WT(src[1][i]) + FT::WT(src[3][i]))<<2) + FT::WT(src[0][i]) + FT::WT(src[4][i])) >> 4;
}
template <>
void vlineSmooth5N14641<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16*, int, uint8_t* dst, int len)
{
int i = 0;
v_uint32x4 v_6 = v_setall_u32(6);
for (; i < len - 7; i += 8)
for (; i <= len - 16; i += 16)
{
v_uint32x4 v_src00, v_src01, v_src10, v_src11, v_src20, v_src21, v_src30, v_src31, v_src40, v_src41;
v_uint32x4 v_src00, v_src10, v_src20, v_src30, v_src40;
v_uint32x4 v_src01, v_src11, v_src21, v_src31, v_src41;
v_uint32x4 v_src02, v_src12, v_src22, v_src32, v_src42;
v_uint32x4 v_src03, v_src13, v_src23, v_src33, v_src43;
v_expand(v_load((uint16_t*)(src[0]) + i), v_src00, v_src01);
v_expand(v_load((uint16_t*)(src[0]) + i + 8), v_src02, v_src03);
v_expand(v_load((uint16_t*)(src[1]) + i), v_src10, v_src11);
v_expand(v_load((uint16_t*)(src[1]) + i + 8), v_src12, v_src13);
v_expand(v_load((uint16_t*)(src[2]) + i), v_src20, v_src21);
v_expand(v_load((uint16_t*)(src[2]) + i + 8), v_src22, v_src23);
v_expand(v_load((uint16_t*)(src[3]) + i), v_src30, v_src31);
v_expand(v_load((uint16_t*)(src[3]) + i + 8), v_src32, v_src33);
v_expand(v_load((uint16_t*)(src[4]) + i), v_src40, v_src41);
v_uint16x8 v_res = v_rshr_pack<12>(v_src20*v_6 + ((v_src10 + v_src30) << 2) + v_src00 + v_src40,
v_src21*v_6 + ((v_src11 + v_src31) << 2) + v_src01 + v_src41);
v_pack_store(dst + i, v_res);
v_expand(v_load((uint16_t*)(src[4]) + i + 8), v_src42, v_src43);
v_store(dst + i, v_pack(v_rshr_pack<12>(v_src20*v_6 + ((v_src10 + v_src30) << 2) + v_src00 + v_src40,
v_src21*v_6 + ((v_src11 + v_src31) << 2) + v_src01 + v_src41),
v_rshr_pack<12>(v_src22*v_6 + ((v_src12 + v_src32) << 2) + v_src02 + v_src42,
v_src23*v_6 + ((v_src13 + v_src33) << 2) + v_src03 + v_src43)));
}
for (; i < len; i++)
dst[i] = ((uint32_t)(((uint16_t*)(src[2]))[i]) * 6 +
......@@ -2857,8 +3329,8 @@ void vlineSmooth(const FT* const * src, const FT* m, int n, ET* dst, int len)
template <>
void vlineSmooth<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int n, uint8_t* dst, int len)
{
int i = 0;
static const v_int16x8 v_128 = v_reinterpret_as_s16(v_setall_u16((uint16_t)1 << 15));
v_int32x4 v_128_4 = v_setall_s32(128 << 16);
if (len > 7)
{
......@@ -2868,46 +3340,188 @@ void vlineSmooth<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const
ufixedpoint32 val[] = { msum * ufixedpoint16((uint8_t)128) };
v_128_4 = v_setall_s32(*((int32_t*)val));
}
int i = 0;
for (; i < len - 7; i += 8)
for (; i <= len - 32; i += 32)
{
v_int16x8 v_src0, v_src1;
v_int16x8 v_src00, v_src10, v_src01, v_src11, v_src02, v_src12, v_src03, v_src13;
v_int16x8 v_tmp0, v_tmp1;
v_int16x8 v_mul = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)m)));
v_src0 = v_load((int16_t*)(src[0]) + i);
v_src1 = v_load((int16_t*)(src[1]) + i);
v_zip(v_add_wrap(v_src0, v_128), v_add_wrap(v_src1, v_128), v_tmp0, v_tmp1);
v_src00 = v_load((int16_t*)(src[0]) + i);
v_src01 = v_load((int16_t*)(src[0]) + i + 8);
v_src02 = v_load((int16_t*)(src[0]) + i + 16);
v_src03 = v_load((int16_t*)(src[0]) + i + 24);
v_src10 = v_load((int16_t*)(src[1]) + i);
v_src11 = v_load((int16_t*)(src[1]) + i + 8);
v_src12 = v_load((int16_t*)(src[1]) + i + 16);
v_src13 = v_load((int16_t*)(src[1]) + i + 24);
v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1);
v_int32x4 v_res0 = v_dotprod(v_tmp0, v_mul);
v_int32x4 v_res1 = v_dotprod(v_tmp1, v_mul);
v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1);
v_int32x4 v_res2 = v_dotprod(v_tmp0, v_mul);
v_int32x4 v_res3 = v_dotprod(v_tmp1, v_mul);
v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1);
v_int32x4 v_res4 = v_dotprod(v_tmp0, v_mul);
v_int32x4 v_res5 = v_dotprod(v_tmp1, v_mul);
v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1);
v_int32x4 v_res6 = v_dotprod(v_tmp0, v_mul);
v_int32x4 v_res7 = v_dotprod(v_tmp1, v_mul);
int j = 2;
for (; j < n - 1; j+=2)
{
v_mul = v_reinterpret_as_s16(v_setall_u32(*((uint32_t*)(m+j))));
v_src0 = v_load((int16_t*)(src[j]) + i);
v_src1 = v_load((int16_t*)(src[j+1]) + i);
v_zip(v_add_wrap(v_src0, v_128), v_add_wrap(v_src1, v_128), v_tmp0, v_tmp1);
v_src00 = v_load((int16_t*)(src[j]) + i);
v_src01 = v_load((int16_t*)(src[j]) + i + 8);
v_src02 = v_load((int16_t*)(src[j]) + i + 16);
v_src03 = v_load((int16_t*)(src[j]) + i + 24);
v_src10 = v_load((int16_t*)(src[j+1]) + i);
v_src11 = v_load((int16_t*)(src[j+1]) + i + 8);
v_src12 = v_load((int16_t*)(src[j+1]) + i + 16);
v_src13 = v_load((int16_t*)(src[j+1]) + i + 24);
v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1);
v_res0 += v_dotprod(v_tmp0, v_mul);
v_res1 += v_dotprod(v_tmp1, v_mul);
v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1);
v_res2 += v_dotprod(v_tmp0, v_mul);
v_res3 += v_dotprod(v_tmp1, v_mul);
v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1);
v_res4 += v_dotprod(v_tmp0, v_mul);
v_res5 += v_dotprod(v_tmp1, v_mul);
v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1);
v_res6 += v_dotprod(v_tmp0, v_mul);
v_res7 += v_dotprod(v_tmp1, v_mul);
}
if(j < n)
{
v_int32x4 v_resj0, v_resj1;
v_mul = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + j))));
v_src0 = v_load((int16_t*)(src[j]) + i);
v_mul_expand(v_add_wrap(v_src0, v_128), v_mul, v_resj0, v_resj1);
v_src00 = v_load((int16_t*)(src[j]) + i);
v_src01 = v_load((int16_t*)(src[j]) + i + 8);
v_src02 = v_load((int16_t*)(src[j]) + i + 16);
v_src03 = v_load((int16_t*)(src[j]) + i + 24);
v_mul_expand(v_add_wrap(v_src00, v_128), v_mul, v_resj0, v_resj1);
v_res0 += v_resj0;
v_res1 += v_resj1;
v_mul_expand(v_add_wrap(v_src01, v_128), v_mul, v_resj0, v_resj1);
v_res2 += v_resj0;
v_res3 += v_resj1;
v_mul_expand(v_add_wrap(v_src02, v_128), v_mul, v_resj0, v_resj1);
v_res4 += v_resj0;
v_res5 += v_resj1;
v_mul_expand(v_add_wrap(v_src03, v_128), v_mul, v_resj0, v_resj1);
v_res6 += v_resj0;
v_res7 += v_resj1;
}
v_res0 += v_128_4;
v_res1 += v_128_4;
v_res2 += v_128_4;
v_res3 += v_128_4;
v_res4 += v_128_4;
v_res5 += v_128_4;
v_res6 += v_128_4;
v_res7 += v_128_4;
v_store(dst + i , v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1)),
v_reinterpret_as_u16(v_rshr_pack<16>(v_res2, v_res3))));
v_store(dst + i + 16, v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res4, v_res5)),
v_reinterpret_as_u16(v_rshr_pack<16>(v_res6, v_res7))));
}
for (; i < len; i++)
{
ufixedpoint32 val = m[0] * src[0][i];
for (int j = 1; j < n; j++)
{
val = val + m[j] * src[j][i];
}
dst[i] = val;
}
}
template <typename ET, typename FT>
void vlineSmoothONa_yzy_a(const FT* const * src, const FT* m, int n, ET* dst, int len)
{
int pre_shift = n / 2;
for (int i = 0; i < len; i++)
{
typename FT::WT val = m[pre_shift] * src[pre_shift][i];
for (int j = 0; j < pre_shift; j++)
val = val + m[j] * src[j][i] + m[j] * src[(n - 1 - j)][i];
dst[i] = val;
}
}
template <>
void vlineSmoothONa_yzy_a<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int n, uint8_t* dst, int len)
{
int pre_shift = n / 2;
int i = 0;
static const v_int16x8 v_128 = v_reinterpret_as_s16(v_setall_u16((uint16_t)1 << 15));
v_int32x4 v_128_4 = v_setall_s32(128 << 16);
if (len > 7)
{
ufixedpoint16 msum = m[0] + m[pre_shift] + m[n - 1];
for (int j = 1; j < pre_shift; j++)
msum = msum + m[j] + m[n - 1 - j];
ufixedpoint32 val[] = { msum * ufixedpoint16((uint8_t)128) };
v_128_4 = v_setall_s32(*((int32_t*)val));
}
for (; i <= len - 32; i += 32)
{
v_int16x8 v_src00, v_src10, v_src20, v_src30, v_src01, v_src11, v_src21, v_src31;
v_int32x4 v_res0, v_res1, v_res2, v_res3, v_res4, v_res5, v_res6, v_res7;
v_int16x8 v_tmp0, v_tmp1, v_tmp2, v_tmp3, v_tmp4, v_tmp5, v_tmp6, v_tmp7;
v_int16x8 v_mul = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + pre_shift))));
v_src00 = v_load((int16_t*)(src[pre_shift]) + i);
v_src10 = v_load((int16_t*)(src[pre_shift]) + i + 8);
v_src20 = v_load((int16_t*)(src[pre_shift]) + i + 16);
v_src30 = v_load((int16_t*)(src[pre_shift]) + i + 24);
v_mul_expand(v_add_wrap(v_src00, v_128), v_mul, v_res0, v_res1);
v_mul_expand(v_add_wrap(v_src10, v_128), v_mul, v_res2, v_res3);
v_mul_expand(v_add_wrap(v_src20, v_128), v_mul, v_res4, v_res5);
v_mul_expand(v_add_wrap(v_src30, v_128), v_mul, v_res6, v_res7);
int j = 0;
for (; j < pre_shift; j++)
{
v_mul = v_reinterpret_as_s16(v_setall_u16(*((uint16_t*)(m + j))));
v_src00 = v_load((int16_t*)(src[j]) + i);
v_src10 = v_load((int16_t*)(src[j]) + i + 8);
v_src20 = v_load((int16_t*)(src[j]) + i + 16);
v_src30 = v_load((int16_t*)(src[j]) + i + 24);
v_src01 = v_load((int16_t*)(src[n - 1 - j]) + i);
v_src11 = v_load((int16_t*)(src[n - 1 - j]) + i + 8);
v_src21 = v_load((int16_t*)(src[n - 1 - j]) + i + 16);
v_src31 = v_load((int16_t*)(src[n - 1 - j]) + i + 24);
v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src01, v_128), v_tmp0, v_tmp1);
v_res0 += v_dotprod(v_tmp0, v_mul);
v_res1 += v_dotprod(v_tmp1, v_mul);
v_zip(v_add_wrap(v_src10, v_128), v_add_wrap(v_src11, v_128), v_tmp2, v_tmp3);
v_res2 += v_dotprod(v_tmp2, v_mul);
v_res3 += v_dotprod(v_tmp3, v_mul);
v_zip(v_add_wrap(v_src20, v_128), v_add_wrap(v_src21, v_128), v_tmp4, v_tmp5);
v_res4 += v_dotprod(v_tmp4, v_mul);
v_res5 += v_dotprod(v_tmp5, v_mul);
v_zip(v_add_wrap(v_src30, v_128), v_add_wrap(v_src31, v_128), v_tmp6, v_tmp7);
v_res6 += v_dotprod(v_tmp6, v_mul);
v_res7 += v_dotprod(v_tmp7, v_mul);
}
v_uint16x8 v_res = v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1));
v_pack_store(dst + i, v_res);
v_res0 += v_128_4;
v_res1 += v_128_4;
v_res2 += v_128_4;
v_res3 += v_128_4;
v_res4 += v_128_4;
v_res5 += v_128_4;
v_res6 += v_128_4;
v_res7 += v_128_4;
v_store(dst + i , v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1)),
v_reinterpret_as_u16(v_rshr_pack<16>(v_res2, v_res3))));
v_store(dst + i + 16, v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res4, v_res5)),
v_reinterpret_as_u16(v_rshr_pack<16>(v_res6, v_res7))));
}
for (; i < len; i++)
{
......@@ -2930,52 +3544,76 @@ public:
{
if (kxlen == 1)
{
if ((kx[0] - FT::one()).isZero())
if (kx[0] == FT::one())
hlineSmoothFunc = hlineSmooth1N1;
else
hlineSmoothFunc = hlineSmooth1N;
}
else if (kxlen == 3)
{
if ((kx[0] - (FT::one()>>2)).isZero()&&(kx[1] - (FT::one()>>1)).isZero()&&(kx[2] - (FT::one()>>2)).isZero())
if (kx[0] == (FT::one()>>2)&&kx[1] == (FT::one()>>1)&&kx[2] == (FT::one()>>2))
hlineSmoothFunc = hlineSmooth3N121;
else if ((kx[0] - kx[2]).isZero())
hlineSmoothFunc = hlineSmooth3Naba;
else
hlineSmoothFunc = hlineSmooth3N;
}
else if (kxlen == 5)
{
if ((kx[2] - (FT::one()*3>>3)).isZero()&&
(kx[1] - (FT::one()>>2)).isZero()&&(kx[3] - (FT::one()>>2)).isZero()&&
(kx[0] - (FT::one()>>4)).isZero()&&(kx[4] - (FT::one()>>4)).isZero())
if (kx[2] == (FT::one()*(uint8_t)3>>3) &&
kx[1] == (FT::one()>>2) && kx[3] == (FT::one()>>2) &&
kx[0] == (FT::one()>>4) && kx[4] == (FT::one()>>4))
hlineSmoothFunc = hlineSmooth5N14641;
else if (kx[0] == kx[4] && kx[1] == kx[3])
hlineSmoothFunc = hlineSmooth5Nabcba;
else
hlineSmoothFunc = hlineSmooth5N;
}
else if (kxlen % 2 == 1)
{
hlineSmoothFunc = hlineSmoothONa_yzy_a;
for (int i = 0; i < kxlen / 2; i++)
if (!(kx[i] == kx[kxlen - 1 - i]))
{
hlineSmoothFunc = hlineSmooth;
break;
}
}
else
hlineSmoothFunc = hlineSmooth;
if (kylen == 1)
{
if ((ky[0] - FT::one()).isZero())
if (ky[0] == FT::one())
vlineSmoothFunc = vlineSmooth1N1;
else
vlineSmoothFunc = vlineSmooth1N;
}
else if (kylen == 3)
{
if ((ky[0] - (FT::one() >> 2)).isZero() && (ky[1] - (FT::one() >> 1)).isZero() && (ky[2] - (FT::one() >> 2)).isZero())
if (ky[0] == (FT::one() >> 2) && ky[1] == (FT::one() >> 1) && ky[2] == (FT::one() >> 2))
vlineSmoothFunc = vlineSmooth3N121;
else
vlineSmoothFunc = vlineSmooth3N;
}
else if (kylen == 5)
{
if ((ky[2] - (FT::one() * 3 >> 3)).isZero() &&
(ky[1] - (FT::one() >> 2)).isZero() && (ky[3] - (FT::one() >> 2)).isZero() &&
(ky[0] - (FT::one() >> 4)).isZero() && (ky[4] - (FT::one() >> 4)).isZero())
if (ky[2] == (FT::one() * (uint8_t)3 >> 3) &&
ky[1] == (FT::one() >> 2) && ky[3] == (FT::one() >> 2) &&
ky[0] == (FT::one() >> 4) && ky[4] == (FT::one() >> 4))
vlineSmoothFunc = vlineSmooth5N14641;
else
vlineSmoothFunc = vlineSmooth5N;
}
else if (kylen % 2 == 1)
{
vlineSmoothFunc = vlineSmoothONa_yzy_a;
for (int i = 0; i < kylen / 2; i++)
if (!(ky[i] == ky[kylen - 1 - i]))
{
vlineSmoothFunc = vlineSmooth;
break;
}
}
else
vlineSmoothFunc = vlineSmooth;
}
......@@ -3520,7 +4158,7 @@ void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
if (src.data == dst.data)
src = src.clone();
fixedSmoothInvoker<uint8_t, ufixedpoint16> invoker(src.ptr<uint8_t>(), src.step1(), dst.ptr<uint8_t>(), dst.step1(), dst.cols, dst.rows, dst.channels(), &fkx[0], (int)fkx.size(), &fky[0], (int)fky.size(), borderType & ~BORDER_ISOLATED);
parallel_for_(Range(0, dst.rows), invoker, dst.total() * cn / (double)(1 << 13));
parallel_for_(Range(0, dst.rows), invoker, std::max(1, std::min(getNumThreads(), getNumberOfCPUs())));
return;
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment