Commit 6074f92d authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #10228 from pengli:dnn_new

parents 0b688cd2 59cbaca4
......@@ -185,12 +185,13 @@ public:
outs.getUMatVector(outputs);
int cAxis = clamp(axis, inputs[0].dims);
if (!(cAxis == 1 && outputs[0].dims == 4 && !padding))
if (padding)
return false;
int bottom_concat_axis;
int concat_size = inputs[0].size[2] * inputs[0].size[3];
int top_concat_axis = outputs[0].size[1];
int concat_size = total(shape(inputs[0]), cAxis + 1);
int top_concat_axis = outputs[0].size[cAxis];
int num_concats = total(shape(inputs[0]), 0, cAxis);
int offset_concat_axis = 0;
UMat& outMat = outputs[0];
String buildopt = String("-DDtype=") + ocl::typeToStr(inputs[0].type()) + String(" ");
......@@ -202,12 +203,12 @@ public:
return false;
UMat& inpMat = inputs[i];
bottom_concat_axis = inputs[i].size[1];
bottom_concat_axis = inputs[i].size[cAxis];
size_t nthreads = inputs[i].total();
kernel.set(0, (int)nthreads);
kernel.set(1, ocl::KernelArg::PtrReadOnly(inpMat));
kernel.set(2, (int)inputs[i].size[0]);
kernel.set(2, (int)num_concats);
kernel.set(3, (int)concat_size);
kernel.set(4, (int)top_concat_axis);
kernel.set(5, (int)bottom_concat_axis);
......
......@@ -45,6 +45,7 @@
#include <float.h>
#include <string>
#include "../nms.inl.hpp"
#include "opencl_kernels_dnn.hpp"
namespace cv
{
......@@ -211,11 +212,160 @@ public:
return false;
}
#ifdef HAVE_OPENCL
// Decode all bboxes in a batch
bool ocl_DecodeBBoxesAll(UMat& loc_mat, UMat& prior_mat,
const int num, const int numPriors, const bool share_location,
const int num_loc_classes, const int background_label_id,
const cv::String& code_type, const bool variance_encoded_in_target,
const bool clip, std::vector<LabelBBox>& all_decode_bboxes)
{
UMat outmat = UMat(loc_mat.dims, loc_mat.size, CV_32F);
size_t nthreads = loc_mat.total();
String kernel_name;
if (code_type == "CORNER")
kernel_name = "DecodeBBoxesCORNER";
else if (code_type == "CENTER_SIZE")
kernel_name = "DecodeBBoxesCENTER_SIZE";
else
return false;
for (int i = 0; i < num; ++i)
{
ocl::Kernel kernel(kernel_name.c_str(), ocl::dnn::detection_output_oclsrc);
kernel.set(0, (int)nthreads);
kernel.set(1, ocl::KernelArg::PtrReadOnly(loc_mat));
kernel.set(2, ocl::KernelArg::PtrReadOnly(prior_mat));
kernel.set(3, (int)variance_encoded_in_target);
kernel.set(4, (int)numPriors);
kernel.set(5, (int)share_location);
kernel.set(6, (int)num_loc_classes);
kernel.set(7, (int)background_label_id);
kernel.set(8, (int)clip);
kernel.set(9, ocl::KernelArg::PtrWriteOnly(outmat));
if (!kernel.run(1, &nthreads, NULL, false))
return false;
}
all_decode_bboxes.clear();
all_decode_bboxes.resize(num);
{
Mat mat = outmat.getMat(ACCESS_READ);
const float* decode_data = mat.ptr<float>();
for (int i = 0; i < num; ++i)
{
LabelBBox& decode_bboxes = all_decode_bboxes[i];
for (int c = 0; c < num_loc_classes; ++c)
{
int label = share_location ? -1 : c;
decode_bboxes[label].resize(numPriors);
for (int p = 0; p < numPriors; ++p)
{
int startIdx = p * num_loc_classes * 4;
util::NormalizedBBox& bbox = decode_bboxes[label][p];
bbox.xmin = decode_data[startIdx + c * 4];
bbox.ymin = decode_data[startIdx + c * 4 + 1];
bbox.xmax = decode_data[startIdx + c * 4 + 2];
bbox.ymax = decode_data[startIdx + c * 4 + 3];
}
}
}
}
return true;
}
void ocl_GetConfidenceScores(const UMat& inp1, const int num,
const int numPredsPerClass, const int numClasses,
std::vector<Mat>& confPreds)
{
int shape[] = { numClasses, numPredsPerClass };
for (int i = 0; i < num; i++)
confPreds.push_back(Mat(2, shape, CV_32F));
UMat umat = inp1.reshape(1, num * numPredsPerClass);
for (int i = 0; i < num; ++i)
{
Range ranges[] = { Range(i * numPredsPerClass, (i + 1) * numPredsPerClass), Range::all() };
transpose(umat(ranges), confPreds[i]);
}
}
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
std::vector<LabelBBox> allDecodedBBoxes;
std::vector<Mat> allConfidenceScores;
int num = inputs[0].size[0];
// extract predictions from input layers
{
int numPriors = inputs[2].size[2] / 4;
// Retrieve all confidences
ocl_GetConfidenceScores(inputs[1], num, numPriors, _numClasses, allConfidenceScores);
// Decode all loc predictions to bboxes
bool ret = ocl_DecodeBBoxesAll(inputs[0], inputs[2], num, numPriors,
_shareLocation, _numLocClasses, _backgroundLabelId,
_codeType, _varianceEncodedInTarget, false,
allDecodedBBoxes);
if (!ret)
return false;
}
size_t numKept = 0;
std::vector<std::map<int, std::vector<int> > > allIndices;
for (int i = 0; i < num; ++i)
{
numKept += processDetections_(allDecodedBBoxes[i], allConfidenceScores[i], allIndices);
}
if (numKept == 0)
{
// Set confidences to zeros.
Range ranges[] = {Range::all(), Range::all(), Range::all(), Range(2, 3)};
outputs[0](ranges).setTo(0);
return true;
}
int outputShape[] = {1, 1, (int)numKept, 7};
UMat umat = UMat(4, outputShape, CV_32F);
{
Mat mat = umat.getMat(ACCESS_WRITE);
float* outputsData = mat.ptr<float>();
size_t count = 0;
for (int i = 0; i < num; ++i)
{
count += outputDetections_(i, &outputsData[count * 7],
allDecodedBBoxes[i], allConfidenceScores[i],
allIndices[i]);
}
CV_Assert(count == numKept);
}
outputs.clear();
outputs.push_back(umat);
outs.assign(outputs);
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
......@@ -225,7 +375,7 @@ public:
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
std::vector<LabelBBox> allDecodedBBoxes;
std::vector<std::vector<std::vector<float> > > allConfidenceScores;
std::vector<Mat> allConfidenceScores;
int num = inputs[0]->size[0];
......@@ -286,7 +436,7 @@ public:
size_t outputDetections_(
const int i, float* outputsData,
const LabelBBox& decodeBBoxes, const std::vector<std::vector<float> >& confidenceScores,
const LabelBBox& decodeBBoxes, Mat& confidenceScores,
const std::map<int, std::vector<int> >& indicesMap
)
{
......@@ -294,9 +444,9 @@ public:
for (std::map<int, std::vector<int> >::const_iterator it = indicesMap.begin(); it != indicesMap.end(); ++it)
{
int label = it->first;
if (confidenceScores.size() <= label)
if (confidenceScores.rows <= label)
CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find confidence predictions for label %d", label));
const std::vector<float>& scores = confidenceScores[label];
const std::vector<float>& scores = confidenceScores.row(label);
int locLabel = _shareLocation ? -1 : label;
LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(locLabel);
if (label_bboxes == decodeBBoxes.end())
......@@ -320,7 +470,7 @@ public:
}
size_t processDetections_(
const LabelBBox& decodeBBoxes, const std::vector<std::vector<float> >& confidenceScores,
const LabelBBox& decodeBBoxes, Mat& confidenceScores,
std::vector<std::map<int, std::vector<int> > >& allIndices
)
{
......@@ -330,10 +480,10 @@ public:
{
if (c == _backgroundLabelId)
continue; // Ignore background class.
if (c >= confidenceScores.size())
if (c >= confidenceScores.rows)
CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find confidence predictions for label %d", c));
const std::vector<float>& scores = confidenceScores[c];
const std::vector<float> scores = confidenceScores.row(c);
int label = _shareLocation ? -1 : c;
LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(label);
......@@ -351,9 +501,9 @@ public:
{
int label = it->first;
const std::vector<int>& labelIndices = it->second;
if (label >= confidenceScores.size())
if (label >= confidenceScores.rows)
CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
const std::vector<float>& scores = confidenceScores[label];
const std::vector<float>& scores = confidenceScores.row(label);
for (size_t j = 0; j < labelIndices.size(); ++j)
{
size_t idx = labelIndices[j];
......@@ -630,20 +780,20 @@ public:
// confidence prediction for an image.
static void GetConfidenceScores(const float* confData, const int num,
const int numPredsPerClass, const int numClasses,
std::vector<std::vector<std::vector<float> > >& confPreds)
std::vector<Mat>& confPreds)
{
confPreds.clear(); confPreds.resize(num);
int shape[] = { numClasses, numPredsPerClass };
for (int i = 0; i < num; i++)
confPreds.push_back(Mat(2, shape, CV_32F));
for (int i = 0; i < num; ++i, confData += numPredsPerClass * numClasses)
{
std::vector<std::vector<float> >& labelScores = confPreds[i];
labelScores.resize(numClasses);
Mat labelScores = confPreds[i];
for (int c = 0; c < numClasses; ++c)
{
std::vector<float>& classLabelScores = labelScores[c];
classLabelScores.resize(numPredsPerClass);
for (int p = 0; p < numPredsPerClass; ++p)
{
classLabelScores[p] = confData[p * numClasses + c];
labelScores.at<float>(c, p) = confData[p * numClasses + c];
}
}
}
......
......@@ -44,6 +44,7 @@
#include "layers_common.hpp"
#include <float.h>
#include <algorithm>
#include "opencl_kernels_dnn.hpp"
namespace cv
{
......@@ -173,6 +174,24 @@ public:
CV_Assert((int)_numAxes == inp0.dims);
computeStrides(shape(*inputs[0]), shape(outputs[0]));
#ifdef HAVE_OPENCL
if (uorder.empty())
{
std::vector<int> orderVec(_order.begin(), _order.end());;
Mat morder(1, orderVec.size(), CV_32SC1, &orderVec[0]);
std::vector<int> oldStrideVec(_oldStride.begin(), _oldStride.end());
Mat mold_stride(1, _oldStride.size(), CV_32SC1, &oldStrideVec[0]);
std::vector<int> newStrideVec(_newStride.begin(), _newStride.end());
Mat mnew_stride(1, newStrideVec.size(), CV_32SC1, &newStrideVec[0]);
morder.copyTo(uorder);
mold_stride.copyTo(uold_stride);
mnew_stride.copyTo(unew_stride);
}
#endif
}
class PermuteInvoker : public ParallelLoopBody
......@@ -247,11 +266,47 @@ public:
}
};
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
if (!_needsPermute)
return false;
for (size_t i = 0; i < inputs.size(); i++)
{
ocl::Kernel kernel("permute", ocl::dnn::permute_oclsrc);
kernel.set(0, (int)_count);
kernel.set(1, ocl::KernelArg::PtrReadOnly(inputs[i]));
kernel.set(2, ocl::KernelArg::PtrReadOnly(uorder));
kernel.set(3, ocl::KernelArg::PtrReadOnly(uold_stride));
kernel.set(4, ocl::KernelArg::PtrReadOnly(unew_stride));
kernel.set(5, (int)_numAxes);
kernel.set(6, ocl::KernelArg::PtrWriteOnly(outputs[i]));
if (!kernel.run(1, &_count, NULL, false))
return false;
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
......@@ -325,6 +380,10 @@ public:
std::vector<size_t> _newStride;
bool _needsPermute;
#ifdef HAVE_OPENCL
UMat uorder, uold_stride, unew_stride;
#endif
size_t _numAxes;
};
......
......@@ -44,6 +44,7 @@
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/dnn/all_layers.hpp>
#include <iostream>
#include "opencl_kernels_dnn.hpp"
namespace cv
{
......@@ -114,11 +115,83 @@ public:
}
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
if (useSoftmaxTree) { // Yolo 9000
CV_Error(cv::Error::StsNotImplemented, "Yolo9000 is not implemented");
return false;
}
CV_Assert(inputs.size() >= 1);
int const cell_size = classes + coords + 1;
UMat blob_umat = blobs[0].getUMat(ACCESS_READ);
for (size_t ii = 0; ii < outputs.size(); ii++)
{
UMat& inpBlob = inputs[ii];
UMat& outBlob = outputs[ii];
int rows = inpBlob.size[1];
int cols = inpBlob.size[2];
ocl::Kernel logistic_kernel("logistic_activ", ocl::dnn::region_oclsrc);
size_t global = rows*cols*anchors;
logistic_kernel.set(0, (int)global);
logistic_kernel.set(1, ocl::KernelArg::PtrReadOnly(inpBlob));
logistic_kernel.set(2, (int)cell_size);
logistic_kernel.set(3, ocl::KernelArg::PtrWriteOnly(outBlob));
logistic_kernel.run(1, &global, NULL, false);
if (useSoftmax)
{
// Yolo v2
// softmax activation for Probability, for each grid cell (X x Y x Anchor-index)
ocl::Kernel softmax_kernel("softmax_activ", ocl::dnn::region_oclsrc);
size_t nthreads = rows*cols*anchors;
softmax_kernel.set(0, (int)nthreads);
softmax_kernel.set(1, ocl::KernelArg::PtrReadOnly(inpBlob));
softmax_kernel.set(2, ocl::KernelArg::PtrReadOnly(blob_umat));
softmax_kernel.set(3, (int)cell_size);
softmax_kernel.set(4, (int)classes);
softmax_kernel.set(5, (int)classfix);
softmax_kernel.set(6, (int)rows);
softmax_kernel.set(7, (int)cols);
softmax_kernel.set(8, (int)anchors);
softmax_kernel.set(9, (float)thresh);
softmax_kernel.set(10, ocl::KernelArg::PtrWriteOnly(outBlob));
if (!softmax_kernel.run(1, &nthreads, NULL, false))
return false;
}
if (nmsThreshold > 0) {
Mat mat = outBlob.getMat(ACCESS_WRITE);
float *dstData = mat.ptr<float>();
do_nms_sort(dstData, rows*cols*anchors, nmsThreshold);
//do_nms(dstData, rows*cols*anchors, nmsThreshold);
}
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
......
......@@ -44,6 +44,7 @@
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/dnn/all_layers.hpp>
#include <iostream>
#include "opencl_kernels_dnn.hpp"
namespace cv
{
......@@ -86,11 +87,54 @@ public:
return backendId == DNN_BACKEND_DEFAULT;
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
String buildopt = String("-DDtype=") + ocl::typeToStr(inputs[0].type()) + String(" ");
for (size_t i = 0; i < inputs.size(); i++)
{
ocl::Kernel kernel("reorg", ocl::dnn::reorg_oclsrc, buildopt);
if (kernel.empty())
return false;
UMat& srcBlob = inputs[i];
UMat& dstBlob = outputs[0];
int channels = srcBlob.size[1];
int height = srcBlob.size[2];
int width = srcBlob.size[3];
size_t nthreads = channels * height * width;
kernel.set(0, (int)nthreads);
kernel.set(1, ocl::KernelArg::PtrReadOnly(srcBlob));
kernel.set(2, (int)channels);
kernel.set(3, (int)height);
kernel.set(4, (int)width);
kernel.set(5, (int)reorgStride);
kernel.set(6, ocl::KernelArg::PtrWriteOnly(dstBlob));
if (!kernel.run(1, &nthreads, NULL, false))
return false;
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
......
......@@ -182,11 +182,40 @@ public:
return true;
}
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
for (size_t i = 0; i < inputs.size(); i++)
{
UMat srcBlob = inputs[i];
void *src_handle = inputs[i].handle(ACCESS_READ);
void *dst_handle = outputs[i].handle(ACCESS_WRITE);
if (src_handle != dst_handle)
{
MatShape outShape = shape(outputs[i]);
UMat umat = srcBlob.reshape(1, (int)outShape.size(), &outShape[0]);
umat.copyTo(outputs[i]);
}
}
outs.assign(outputs);
return true;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define Dtype float
#define Dtype4 float4
__kernel void DecodeBBoxesCORNER(const int nthreads,
__global const Dtype* loc_data,
__global const Dtype* prior_data,
const int variance_encoded_in_target,
const int num_priors,
const int share_location,
const int num_loc_classes,
const int background_label_id,
const int clip_bbox,
__global Dtype* bbox_data)
{
for (int index = get_global_id(0); index < nthreads; index += get_global_size(0))
{
Dtype bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax;
const int i = index % 4;
const int p = ((index / 4 / num_loc_classes) % num_priors) * 4;
const int c = (index / 4) % num_loc_classes;
int label = share_location ? -1 : c;
if (label == background_label_id)
return; // Ignore background class.
Dtype4 loc_vec = vload4(0, loc_data + index - i);
Dtype4 bbox_vec, prior_variance;
if (variance_encoded_in_target)
{
bbox_vec = loc_vec;
} else {
const int start_index = num_priors * 4 + p;
prior_variance = vload4(0, prior_data + start_index);
bbox_vec = loc_vec * prior_variance;
}
bbox_xmin = bbox_vec.x;
bbox_ymin = bbox_vec.y;
bbox_xmax = bbox_vec.z;
bbox_ymax = bbox_vec.w;
Dtype4 prior_vec = vload4(0, prior_data + p);
Dtype val;
switch (i)
{
case 0:
val = prior_vec.x + bbox_xmin;
break;
case 1:
val = prior_vec.y + bbox_ymin;
break;
case 2:
val = prior_vec.z + bbox_xmax;
break;
case 3:
val = prior_vec.w + bbox_ymax;
break;
}
if (clip_bbox)
val = max(min(val, (Dtype)1.), (Dtype)0.);
bbox_data[index] = val;
}
}
__kernel void DecodeBBoxesCENTER_SIZE(const int nthreads,
__global const Dtype* loc_data,
__global const Dtype* prior_data,
const int variance_encoded_in_target,
const int num_priors,
const int share_location,
const int num_loc_classes,
const int background_label_id,
const int clip_bbox,
__global Dtype* bbox_data)
{
for (int index = get_global_id(0); index < nthreads; index += get_global_size(0))
{
Dtype bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax;
const int i = index % 4;
const int p = ((index / 4 / num_loc_classes) % num_priors) * 4;
const int c = (index / 4) % num_loc_classes;
int label = share_location ? -1 : c;
if (label == background_label_id)
return; // Ignore background class.
Dtype4 loc_vec = vload4(0, loc_data + index - i);
Dtype4 bbox_vec, prior_variance;
if (variance_encoded_in_target)
{
bbox_vec = loc_vec;
} else {
const int start_index = num_priors * 4 + p;
prior_variance = vload4(0, prior_data + start_index);
bbox_vec = loc_vec * prior_variance;
}
bbox_xmin = bbox_vec.x;
bbox_ymin = bbox_vec.y;
bbox_xmax = bbox_vec.z;
bbox_ymax = bbox_vec.w;
Dtype4 prior_vec = vload4(0, prior_data + p);
Dtype prior_width = prior_vec.z - prior_vec.x;
Dtype prior_height = prior_vec.w - prior_vec.y;
Dtype prior_center_x = (prior_vec.x + prior_vec.z) * .5;
Dtype prior_center_y = (prior_vec.y + prior_vec.w) * .5;
Dtype decode_bbox_center_x, decode_bbox_center_y;
Dtype decode_bbox_width, decode_bbox_height;
decode_bbox_center_x = bbox_xmin * prior_width + prior_center_x;
decode_bbox_center_y = bbox_ymin * prior_height + prior_center_y;
decode_bbox_width = exp(bbox_xmax) * prior_width;
decode_bbox_height = exp(bbox_ymax) * prior_height;
Dtype val;
switch (i)
{
case 0:
val = decode_bbox_center_x - decode_bbox_width * .5;
break;
case 1:
val = decode_bbox_center_y - decode_bbox_height * .5;
break;
case 2:
val = decode_bbox_center_x + decode_bbox_width * .5;
break;
case 3:
val = decode_bbox_center_y + decode_bbox_height * .5;
break;
}
if (clip_bbox)
val = max(min(val, (Dtype)1.), (Dtype)0.);
bbox_data[index] = val;
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define Dtype float
__kernel void permute(const int nthreads,
__global Dtype* bottom_data,
global int* permute_order,
global int* oldStride,
global int* newStride,
const int num_axes,
__global Dtype* top_data)
{
for (int i = get_global_id(0); i < nthreads; i += get_global_size(0))
{
int oldPosition = 0;
int newPosition = i;
for (int j = 0; j < num_axes; ++j)
{
int order = permute_order[j];
oldPosition += (newPosition / newStride[j]) * oldStride[order];
newPosition %= newStride[j];
}
top_data[i] = bottom_data[oldPosition];
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define Dtype float
__kernel void logistic_activ(const int count,
__global const Dtype* src,
const int cell_size,
__global Dtype* dst)
{
for (int i = get_global_id(0); i < count; i += get_global_size(0))
{
int index = cell_size * i;
Dtype x = src[index + 4];
dst[index + 4] = 1.f / (1.f + exp(-x));
}
}
__kernel void softmax_activ(const int count,
__global const Dtype* src,
__global const Dtype* biasData,
const int cell_size,
const int classes,
const int classfix,
const int rows,
const int cols,
const int anchors,
const float thresh,
__global Dtype* dst)
{
for (int index = get_global_id(0); index < count; index += get_global_size(0))
{
int box_index = index * cell_size;
float largest = -FLT_MAX;
__global const Dtype *input = src + box_index + 5;
__global Dtype *output = dst + box_index + 5;
for (int i = 0; i < classes; ++i)
largest = fmax(largest, input[i]);
float sum = 0;
for (int i = 0; i < classes; ++i)
{
float e = exp((input[i] - largest));
sum += e;
output[i] = e;
}
int y = index / anchors / cols;
int x = index / anchors % cols;
int a = index - anchors * (x + y * cols);
float scale = dst[box_index + 4];
if (classfix == -1 && scale < .5) scale = 0;
float v1 = src[box_index + 0];
float v2 = src[box_index + 1];
float l1 = 1.f / (1.f + exp(-v1));
float l2 = 1.f / (1.f + exp(-v2));
dst[box_index + 0] = (x + l1) / cols;
dst[box_index + 1] = (y + l2) / rows;
dst[box_index + 2] = exp(src[box_index + 2]) * biasData[2 * a] / cols;
dst[box_index + 3] = exp(src[box_index + 3]) * biasData[2 * a + 1] / rows;
for (int i = 0; i < classes; ++i)
{
float prob = scale * output[i] / sum;
output[i] = (prob > thresh) ? prob : 0;
}
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
__kernel void reorg(const int count,
__global const Dtype* src,
const int channels,
const int height,
const int width,
const int reorgStride,
__global Dtype* dst)
{
for (int index = get_global_id(0); index < count; index += get_global_size(0))
{
int k = index / (height * width);
int j = (index - (k * height * width)) / width;
int i = (index - (k * height * width)) % width;
int out_c = channels / (reorgStride*reorgStride);
int c2 = k % out_c;
int offset = k / out_c;
int w2 = i*reorgStride + offset % reorgStride;
int h2 = j*reorgStride + offset / reorgStride;
int in_index = w2 + width*reorgStride*(h2 + height*reorgStride*c2);
dst[index] = src[in_index];
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment