Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
5f6bbcc8
Commit
5f6bbcc8
authored
Jun 25, 2012
by
Marina Kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added test for GPU LBP cascade: load cascade
parent
715b0d18
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
45 additions
and
289 deletions
+45
-289
gpu.hpp
modules/gpu/include/opencv2/gpu/gpu.hpp
+1
-1
cascadeclassifier.cpp
modules/gpu/src/cascadeclassifier.cpp
+19
-288
test_objdetect.cpp
modules/gpu/test/test_objdetect.cpp
+25
-0
No files found.
modules/gpu/include/opencv2/gpu/gpu.hpp
View file @
5f6bbcc8
...
...
@@ -1451,7 +1451,7 @@ private:
bool
isStumps
;
int
ncategories
;
struct
Stage
;
Stage
*
stages
;
//
Stage* stages;
struct
DTree
;
// DTree* classifiers;
...
...
modules/gpu/src/cascadeclassifier.cpp
View file @
5f6bbcc8
...
...
@@ -42,6 +42,7 @@
#include "precomp.hpp"
#include <vector>
#include <iostream>
using
namespace
cv
;
using
namespace
cv
::
gpu
;
...
...
@@ -133,7 +134,7 @@ bool cv::gpu::CascadeClassifier_GPU_LBP::load(const string& classifierAsXml)
bool
CascadeClassifier_GPU_LBP
::
read
(
const
FileNode
&
root
)
{
string
stageTypeStr
=
(
string
)
root
[
GPU_CC_STAGE_TYPE
];
st
d
::
st
ring
stageTypeStr
=
(
string
)
root
[
GPU_CC_STAGE_TYPE
];
CV_Assert
(
stageTypeStr
==
GPU_CC_BOOST
);
string
featureTypeStr
=
(
string
)
root
[
GPU_CC_FEATURE_TYPE
];
...
...
@@ -151,17 +152,15 @@ bool CascadeClassifier_GPU_LBP::read(const FileNode &root)
return
false
;
ncategories
=
fn
[
GPU_CC_MAX_CAT_COUNT
];
int
subsetSize
=
(
ncategories
+
31
)
/
32
,
nodeStep
=
3
+
(
ncategories
>
0
?
subsetSize
:
1
);
// ?
int
subsetSize
=
(
ncategories
+
31
)
/
32
,
nodeStep
=
3
+
(
ncategories
>
0
?
subsetSize
:
1
);
fn
=
root
[
GPU_CC_STAGES
];
if
(
fn
.
empty
())
return
false
;
delete
[]
stages
;
// delete[] classifiers;
// delete[] nodes;
stages
=
new
Stage
[
fn
.
size
()];
std
::
vector
<
Stage
>
stages
;
stages
.
reserve
(
fn
.
size
());
std
::
vector
<
DTree
>
cl_trees
;
std
::
vector
<
DTreeNode
>
cl_nodes
;
...
...
@@ -169,18 +168,21 @@ bool CascadeClassifier_GPU_LBP::read(const FileNode &root)
std
::
vector
<
int
>
subsets
;
FileNodeIterator
it
=
fn
.
begin
(),
it_end
=
fn
.
end
();
size_t
s_it
=
0
;
int
i
=
0
;
for
(
size_t
si
=
0
;
it
!=
it_end
;
si
++
,
++
it
)
{
FileNode
fns
=
*
it
;
Stage
st
;
st
.
threshold
=
(
float
)
fns
[
GPU_CC_STAGE_THRESHOLD
]
-
GPU_THRESHOLD_EPS
;
fns
=
fns
[
GPU_CC_WEAK_CLASSIFIERS
];
if
(
fns
.
empty
())
return
false
;
stages
[
s_it
++
]
=
Stage
((
float
)
fns
[
GPU_CC_STAGE_THRESHOLD
]
-
GPU_THRESHOLD_EPS
,
(
int
)
cl_trees
.
size
(),
(
int
)
fns
.
size
());
st
.
ntrees
=
(
int
)
fns
.
size
();
st
.
first
=
(
int
)
cl_trees
.
size
();
stages
.
push_back
(
st
);
cl_trees
.
reserve
(
stages
[
si
].
first
+
stages
[
si
].
ntrees
);
...
...
@@ -194,6 +196,7 @@ bool CascadeClassifier_GPU_LBP::read(const FileNode &root)
FileNode
leafValues
=
fnw
[
GPU_CC_LEAF_VALUES
];
if
(
internalNodes
.
empty
()
||
leafValues
.
empty
()
)
return
false
;
DTree
tree
((
int
)
internalNodes
.
size
()
/
nodeStep
);
cl_trees
.
push_back
(
tree
);
...
...
@@ -211,20 +214,19 @@ bool CascadeClassifier_GPU_LBP::read(const FileNode &root)
DTreeNode
node
((
int
)
*
(
iIt
++
),
(
int
)
*
(
iIt
++
),
(
int
)
*
(
iIt
++
));
cl_nodes
.
push_back
(
node
);
if
(
subsetSize
>
0
)
{
if
(
subsetSize
>
0
)
for
(
int
j
=
0
;
j
<
subsetSize
;
j
++
,
++
iIt
)
subsets
.
push_back
((
int
)
*
iIt
);
//????
}
subsets
.
push_back
((
int
)
*
iIt
);
}
iIt
=
leafValues
.
begin
(),
iEnd
=
leafValues
.
end
();
// leaves
iIt
=
leafValues
.
begin
(),
iEnd
=
leafValues
.
end
();
for
(
;
iIt
!=
iEnd
;
++
iIt
)
cl_leaves
.
push_back
((
float
)
*
iIt
);
}
}
// copy data structures on gpu
// GpuMat stages;
return
true
;
}
...
...
@@ -513,9 +515,6 @@ void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, do
hypotheses
.
resize
(
rects
.
size
());
}
#if 1
/* loadFromXML implementation switch */
NCVStatus
loadFromXML
(
const
std
::
string
&
filename
,
HaarClassifierCascadeDescriptor
&
haar
,
std
::
vector
<
HaarStage64
>
&
haarStages
,
...
...
@@ -714,272 +713,4 @@ NCVStatus loadFromXML(const std::string &filename,
return
NCV_SUCCESS
;
}
#else
/* loadFromXML implementation switch */
#include "e:/devNPP-OpenCV/src/external/_rapidxml-1.13/rapidxml.hpp"
NCVStatus
loadFromXML
(
const
std
::
string
&
filename
,
HaarClassifierCascadeDescriptor
&
haar
,
std
::
vector
<
HaarStage64
>
&
haarStages
,
std
::
vector
<
HaarClassifierNode128
>
&
haarClassifierNodes
,
std
::
vector
<
HaarFeature64
>
&
haarFeatures
)
{
NCVStatus
ncvStat
;
haar
.
NumStages
=
0
;
haar
.
NumClassifierRootNodes
=
0
;
haar
.
NumClassifierTotalNodes
=
0
;
haar
.
NumFeatures
=
0
;
haar
.
ClassifierSize
.
width
=
0
;
haar
.
ClassifierSize
.
height
=
0
;
haar
.
bNeedsTiltedII
=
false
;
haar
.
bHasStumpsOnly
=
false
;
FILE
*
fp
;
fopen_s
(
&
fp
,
filename
.
c_str
(),
"r"
);
ncvAssertReturn
(
fp
!=
NULL
,
NCV_FILE_ERROR
);
//get file size
fseek
(
fp
,
0
,
SEEK_END
);
Ncv32u
xmlSize
=
ftell
(
fp
);
fseek
(
fp
,
0
,
SEEK_SET
);
//load file to vector
std
::
vector
<
char
>
xmlFileCont
;
xmlFileCont
.
resize
(
xmlSize
+
1
);
memset
(
&
xmlFileCont
[
0
],
0
,
xmlSize
+
1
);
fread_s
(
&
xmlFileCont
[
0
],
xmlSize
,
1
,
xmlSize
,
fp
);
fclose
(
fp
);
haar
.
bHasStumpsOnly
=
true
;
haar
.
bNeedsTiltedII
=
false
;
Ncv32u
curMaxTreeDepth
;
std
::
vector
<
HaarClassifierNode128
>
h_TmpClassifierNotRootNodes
;
haarStages
.
resize
(
0
);
haarClassifierNodes
.
resize
(
0
);
haarFeatures
.
resize
(
0
);
//XML loading and OpenCV XML classifier syntax verification
try
{
rapidxml
::
xml_document
<>
doc
;
doc
.
parse
<
0
>
(
&
xmlFileCont
[
0
]);
//opencv_storage
rapidxml
::
xml_node
<>
*
parserGlobal
=
doc
.
first_node
();
ncvAssertReturn
(
!
strcmp
(
parserGlobal
->
name
(),
"opencv_storage"
),
NCV_HAAR_XML_LOADING_EXCEPTION
);
//classifier type
parserGlobal
=
parserGlobal
->
first_node
();
ncvAssertReturn
(
parserGlobal
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
rapidxml
::
xml_attribute
<>
*
attr
=
parserGlobal
->
first_attribute
(
"type_id"
);
ncvAssertReturn
(
!
strcmp
(
attr
->
value
(),
"opencv-haar-classifier"
),
NCV_HAAR_XML_LOADING_EXCEPTION
);
//classifier size
parserGlobal
=
parserGlobal
->
first_node
(
"size"
);
ncvAssertReturn
(
parserGlobal
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
sscanf_s
(
parserGlobal
->
value
(),
"%d %d"
,
&
(
haar
.
ClassifierSize
.
width
),
&
(
haar
.
ClassifierSize
.
height
));
//parse stages
parserGlobal
=
parserGlobal
->
next_sibling
(
"stages"
);
ncvAssertReturn
(
parserGlobal
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
parserGlobal
=
parserGlobal
->
first_node
(
"_"
);
ncvAssertReturn
(
parserGlobal
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
while
(
parserGlobal
)
{
HaarStage64
curStage
;
curStage
.
setStartClassifierRootNodeOffset
(
haarClassifierNodes
.
size
());
Ncv32u
tmpNumClassifierRootNodes
=
0
;
rapidxml
::
xml_node
<>
*
parserStageThreshold
=
parserGlobal
->
first_node
(
"stage_threshold"
);
ncvAssertReturn
(
parserStageThreshold
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
Ncv32f
tmpStageThreshold
;
sscanf_s
(
parserStageThreshold
->
value
(),
"%f"
,
&
tmpStageThreshold
);
curStage
.
setStageThreshold
(
tmpStageThreshold
);
//parse trees
rapidxml
::
xml_node
<>
*
parserTree
;
parserTree
=
parserGlobal
->
first_node
(
"trees"
);
ncvAssertReturn
(
parserTree
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
parserTree
=
parserTree
->
first_node
(
"_"
);
ncvAssertReturn
(
parserTree
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
while
(
parserTree
)
{
rapidxml
::
xml_node
<>
*
parserNode
;
parserNode
=
parserTree
->
first_node
(
"_"
);
ncvAssertReturn
(
parserNode
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
Ncv32u
nodeId
=
0
;
while
(
parserNode
)
{
HaarClassifierNode128
curNode
;
rapidxml
::
xml_node
<>
*
parserNodeThreshold
=
parserNode
->
first_node
(
"threshold"
);
ncvAssertReturn
(
parserNodeThreshold
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
Ncv32f
tmpThreshold
;
sscanf_s
(
parserNodeThreshold
->
value
(),
"%f"
,
&
tmpThreshold
);
curNode
.
setThreshold
(
tmpThreshold
);
rapidxml
::
xml_node
<>
*
parserNodeLeft
=
parserNode
->
first_node
(
"left_val"
);
HaarClassifierNodeDescriptor32
nodeLeft
;
if
(
parserNodeLeft
)
{
Ncv32f
leftVal
;
sscanf_s
(
parserNodeLeft
->
value
(),
"%f"
,
&
leftVal
);
ncvStat
=
nodeLeft
.
create
(
leftVal
);
ncvAssertReturn
(
ncvStat
==
NCV_SUCCESS
,
ncvStat
);
}
else
{
parserNodeLeft
=
parserNode
->
first_node
(
"left_node"
);
ncvAssertReturn
(
parserNodeLeft
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
Ncv32u
leftNodeOffset
;
sscanf_s
(
parserNodeLeft
->
value
(),
"%d"
,
&
leftNodeOffset
);
nodeLeft
.
create
(
h_TmpClassifierNotRootNodes
.
size
()
+
leftNodeOffset
-
1
);
haar
.
bHasStumpsOnly
=
false
;
}
curNode
.
setLeftNodeDesc
(
nodeLeft
);
rapidxml
::
xml_node
<>
*
parserNodeRight
=
parserNode
->
first_node
(
"right_val"
);
HaarClassifierNodeDescriptor32
nodeRight
;
if
(
parserNodeRight
)
{
Ncv32f
rightVal
;
sscanf_s
(
parserNodeRight
->
value
(),
"%f"
,
&
rightVal
);
ncvStat
=
nodeRight
.
create
(
rightVal
);
ncvAssertReturn
(
ncvStat
==
NCV_SUCCESS
,
ncvStat
);
}
else
{
parserNodeRight
=
parserNode
->
first_node
(
"right_node"
);
ncvAssertReturn
(
parserNodeRight
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
Ncv32u
rightNodeOffset
;
sscanf_s
(
parserNodeRight
->
value
(),
"%d"
,
&
rightNodeOffset
);
nodeRight
.
create
(
h_TmpClassifierNotRootNodes
.
size
()
+
rightNodeOffset
-
1
);
haar
.
bHasStumpsOnly
=
false
;
}
curNode
.
setRightNodeDesc
(
nodeRight
);
rapidxml
::
xml_node
<>
*
parserNodeFeatures
=
parserNode
->
first_node
(
"feature"
);
ncvAssertReturn
(
parserNodeFeatures
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
rapidxml
::
xml_node
<>
*
parserNodeFeaturesTilted
=
parserNodeFeatures
->
first_node
(
"tilted"
);
ncvAssertReturn
(
parserNodeFeaturesTilted
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
Ncv32u
tiltedVal
;
sscanf_s
(
parserNodeFeaturesTilted
->
value
(),
"%d"
,
&
tiltedVal
);
haar
.
bNeedsTiltedII
=
(
tiltedVal
!=
0
);
rapidxml
::
xml_node
<>
*
parserNodeFeaturesRects
=
parserNodeFeatures
->
first_node
(
"rects"
);
ncvAssertReturn
(
parserNodeFeaturesRects
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
parserNodeFeaturesRects
=
parserNodeFeaturesRects
->
first_node
(
"_"
);
ncvAssertReturn
(
parserNodeFeaturesRects
,
NCV_HAAR_XML_LOADING_EXCEPTION
);
Ncv32u
featureId
=
0
;
while
(
parserNodeFeaturesRects
)
{
Ncv32u
rectX
,
rectY
,
rectWidth
,
rectHeight
;
Ncv32f
rectWeight
;
sscanf_s
(
parserNodeFeaturesRects
->
value
(),
"%d %d %d %d %f"
,
&
rectX
,
&
rectY
,
&
rectWidth
,
&
rectHeight
,
&
rectWeight
);
HaarFeature64
curFeature
;
ncvStat
=
curFeature
.
setRect
(
rectX
,
rectY
,
rectWidth
,
rectHeight
,
haar
.
ClassifierSize
.
width
,
haar
.
ClassifierSize
.
height
);
curFeature
.
setWeight
(
rectWeight
);
ncvAssertReturn
(
NCV_SUCCESS
==
ncvStat
,
ncvStat
);
haarFeatures
.
push_back
(
curFeature
);
parserNodeFeaturesRects
=
parserNodeFeaturesRects
->
next_sibling
(
"_"
);
featureId
++
;
}
HaarFeatureDescriptor32
tmpFeatureDesc
;
ncvStat
=
tmpFeatureDesc
.
create
(
haar
.
bNeedsTiltedII
,
featureId
,
haarFeatures
.
size
()
-
featureId
);
ncvAssertReturn
(
NCV_SUCCESS
==
ncvStat
,
ncvStat
);
curNode
.
setFeatureDesc
(
tmpFeatureDesc
);
if
(
!
nodeId
)
{
//root node
haarClassifierNodes
.
push_back
(
curNode
);
curMaxTreeDepth
=
1
;
}
else
{
//other node
h_TmpClassifierNotRootNodes
.
push_back
(
curNode
);
curMaxTreeDepth
++
;
}
parserNode
=
parserNode
->
next_sibling
(
"_"
);
nodeId
++
;
}
parserTree
=
parserTree
->
next_sibling
(
"_"
);
tmpNumClassifierRootNodes
++
;
}
curStage
.
setNumClassifierRootNodes
(
tmpNumClassifierRootNodes
);
haarStages
.
push_back
(
curStage
);
parserGlobal
=
parserGlobal
->
next_sibling
(
"_"
);
}
}
catch
(...)
{
return
NCV_HAAR_XML_LOADING_EXCEPTION
;
}
//fill in cascade stats
haar
.
NumStages
=
haarStages
.
size
();
haar
.
NumClassifierRootNodes
=
haarClassifierNodes
.
size
();
haar
.
NumClassifierTotalNodes
=
haar
.
NumClassifierRootNodes
+
h_TmpClassifierNotRootNodes
.
size
();
haar
.
NumFeatures
=
haarFeatures
.
size
();
//merge root and leaf nodes in one classifiers array
Ncv32u
offsetRoot
=
haarClassifierNodes
.
size
();
for
(
Ncv32u
i
=
0
;
i
<
haarClassifierNodes
.
size
();
i
++
)
{
HaarClassifierNodeDescriptor32
nodeLeft
=
haarClassifierNodes
[
i
].
getLeftNodeDesc
();
if
(
!
nodeLeft
.
isLeaf
())
{
Ncv32u
newOffset
=
nodeLeft
.
getNextNodeOffset
()
+
offsetRoot
;
nodeLeft
.
create
(
newOffset
);
}
haarClassifierNodes
[
i
].
setLeftNodeDesc
(
nodeLeft
);
HaarClassifierNodeDescriptor32
nodeRight
=
haarClassifierNodes
[
i
].
getRightNodeDesc
();
if
(
!
nodeRight
.
isLeaf
())
{
Ncv32u
newOffset
=
nodeRight
.
getNextNodeOffset
()
+
offsetRoot
;
nodeRight
.
create
(
newOffset
);
}
haarClassifierNodes
[
i
].
setRightNodeDesc
(
nodeRight
);
}
for
(
Ncv32u
i
=
0
;
i
<
h_TmpClassifierNotRootNodes
.
size
();
i
++
)
{
HaarClassifierNodeDescriptor32
nodeLeft
=
h_TmpClassifierNotRootNodes
[
i
].
getLeftNodeDesc
();
if
(
!
nodeLeft
.
isLeaf
())
{
Ncv32u
newOffset
=
nodeLeft
.
getNextNodeOffset
()
+
offsetRoot
;
nodeLeft
.
create
(
newOffset
);
}
h_TmpClassifierNotRootNodes
[
i
].
setLeftNodeDesc
(
nodeLeft
);
HaarClassifierNodeDescriptor32
nodeRight
=
h_TmpClassifierNotRootNodes
[
i
].
getRightNodeDesc
();
if
(
!
nodeRight
.
isLeaf
())
{
Ncv32u
newOffset
=
nodeRight
.
getNextNodeOffset
()
+
offsetRoot
;
nodeRight
.
create
(
newOffset
);
}
h_TmpClassifierNotRootNodes
[
i
].
setRightNodeDesc
(
nodeRight
);
haarClassifierNodes
.
push_back
(
h_TmpClassifierNotRootNodes
[
i
]);
}
return
NCV_SUCCESS
;
}
#endif
/* loadFromXML implementation switch */
#endif
/* HAVE_CUDA */
modules/gpu/test/test_objdetect.cpp
View file @
5f6bbcc8
...
...
@@ -40,6 +40,7 @@
//M*/
#include "precomp.hpp"
#include <string>
namespace
{
...
...
@@ -284,4 +285,28 @@ TEST_P(HOG, GetDescriptors)
INSTANTIATE_TEST_CASE_P
(
GPU_ObjDetect
,
HOG
,
ALL_DEVICES
);
PARAM_TEST_CASE
(
LBP_Read_classifier
,
cv
::
gpu
::
DeviceInfo
,
int
)
{
cv
::
gpu
::
DeviceInfo
devInfo
;
virtual
void
SetUp
()
{
devInfo
=
GET_PARAM
(
0
);
cv
::
gpu
::
setDevice
(
devInfo
.
deviceID
());
}
};
TEST_P
(
LBP_Read_classifier
,
Accuracy
)
{
cv
::
gpu
::
CascadeClassifier_GPU_LBP
classifier
;
std
::
cout
<<
(
std
::
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
())
+
"lbpcascade/lbpcascade_frontalface.xml"
)
<<
std
::
endl
;
std
::
string
classifierXmlPath
=
std
::
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
())
+
"lbpcascade/lbpcascade_frontalface.xml"
;
classifier
.
load
(
classifierXmlPath
);
}
INSTANTIATE_TEST_CASE_P
(
GPU_ObjDetect
,
LBP_Read_classifier
,
testing
::
Combine
(
ALL_DEVICES
,
testing
::
Values
<
int
>
(
0
)
));
}
// namespace
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment