Commit 5d15676b authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #3532 from oresths:filter_neon

parents 8d4d36f8 fffe2464
......@@ -132,7 +132,7 @@ protected:
stringstream ss;
ss << "Max distance between valid and computed descriptors " << curMaxDist;
if( curMaxDist < maxDist )
if( curMaxDist <= maxDist )
ss << "." << endl;
else
{
......@@ -322,7 +322,11 @@ TEST( Features2d_DescriptorExtractor_ORB, regression )
{
// TODO adjust the parameters below
CV_DescriptorExtractorTest<Hamming> test( "descriptor-orb",
#if CV_NEON
(CV_DescriptorExtractorTest<Hamming>::DistanceType)25.f,
#else
(CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f,
#endif
ORB::create() );
test.safe_run();
}
......
......@@ -183,7 +183,7 @@ PERF_TEST_P(Size_MatType_BorderType, gaussianBlur5x5,
TEST_CYCLE() GaussianBlur(src, dst, Size(5,5), 0, 0, btype);
SANITY_CHECK(dst, 1e-3);
SANITY_CHECK(dst, 1);
}
PERF_TEST_P(Size_MatType_BorderType, blur5x5,
......
......@@ -2207,6 +2207,852 @@ struct FilterVec_32f
};
#elif CV_NEON
struct SymmRowSmallVec_8u32s
{
SymmRowSmallVec_8u32s() { smallValues = false; }
SymmRowSmallVec_8u32s( const Mat& _kernel, int _symmetryType )
{
kernel = _kernel;
symmetryType = _symmetryType;
smallValues = true;
int k, ksize = kernel.rows + kernel.cols - 1;
for( k = 0; k < ksize; k++ )
{
int v = kernel.ptr<int>()[k];
if( v < SHRT_MIN || v > SHRT_MAX )
{
smallValues = false;
break;
}
}
}
int operator()(const uchar* src, uchar* _dst, int width, int cn) const
{
//Uncomment the two following lines when runtime support for neon is implemented.
// if( !checkHardwareSupport(CV_CPU_NEON) )
// return 0;
int i = 0, _ksize = kernel.rows + kernel.cols - 1;
int* dst = (int*)_dst;
bool symmetrical = (symmetryType & KERNEL_SYMMETRICAL) != 0;
const int* kx = kernel.ptr<int>() + _ksize/2;
if( !smallValues )
return 0;
src += (_ksize/2)*cn;
width *= cn;
if( symmetrical )
{
if( _ksize == 1 )
return 0;
if( _ksize == 3 )
{
if( kx[0] == 2 && kx[1] == 1 )
{
uint16x8_t zq = vdupq_n_u16(0);
for( ; i <= width - 8; i += 8, src += 8 )
{
uint8x8_t x0, x1, x2;
x0 = vld1_u8( (uint8_t *) (src - cn) );
x1 = vld1_u8( (uint8_t *) (src) );
x2 = vld1_u8( (uint8_t *) (src + cn) );
uint16x8_t y0, y1, y2;
y0 = vaddl_u8(x0, x2);
y1 = vshll_n_u8(x1, 1);
y2 = vaddq_u16(y0, y1);
uint16x8x2_t str;
str.val[0] = y2; str.val[1] = zq;
vst2q_u16( (uint16_t *) (dst + i), str );
}
}
else if( kx[0] == -2 && kx[1] == 1 )
return 0;
else
{
int32x4_t k32 = vdupq_n_s32(0);
k32 = vld1q_lane_s32(kx, k32, 0);
k32 = vld1q_lane_s32(kx + 1, k32, 1);
int16x4_t k = vqmovn_s32(k32);
uint8x8_t z = vdup_n_u8(0);
for( ; i <= width - 8; i += 8, src += 8 )
{
uint8x8_t x0, x1, x2;
x0 = vld1_u8( (uint8_t *) (src - cn) );
x1 = vld1_u8( (uint8_t *) (src) );
x2 = vld1_u8( (uint8_t *) (src + cn) );
int16x8_t y0, y1;
int32x4_t y2, y3;
y0 = vreinterpretq_s16_u16(vaddl_u8(x1, z));
y1 = vreinterpretq_s16_u16(vaddl_u8(x0, x2));
y2 = vmull_lane_s16(vget_low_s16(y0), k, 0);
y2 = vmlal_lane_s16(y2, vget_low_s16(y1), k, 1);
y3 = vmull_lane_s16(vget_high_s16(y0), k, 0);
y3 = vmlal_lane_s16(y3, vget_high_s16(y1), k, 1);
vst1q_s32((int32_t *)(dst + i), y2);
vst1q_s32((int32_t *)(dst + i + 4), y3);
}
}
}
else if( _ksize == 5 )
{
if( kx[0] == -2 && kx[1] == 0 && kx[2] == 1 )
return 0;
else
{
int32x4_t k32 = vdupq_n_s32(0);
k32 = vld1q_lane_s32(kx, k32, 0);
k32 = vld1q_lane_s32(kx + 1, k32, 1);
k32 = vld1q_lane_s32(kx + 2, k32, 2);
int16x4_t k = vqmovn_s32(k32);
uint8x8_t z = vdup_n_u8(0);
for( ; i <= width - 8; i += 8, src += 8 )
{
uint8x8_t x0, x1, x2, x3, x4;
x0 = vld1_u8( (uint8_t *) (src - cn) );
x1 = vld1_u8( (uint8_t *) (src) );
x2 = vld1_u8( (uint8_t *) (src + cn) );
int16x8_t y0, y1;
int32x4_t accl, acch;
y0 = vreinterpretq_s16_u16(vaddl_u8(x1, z));
y1 = vreinterpretq_s16_u16(vaddl_u8(x0, x2));
accl = vmull_lane_s16(vget_low_s16(y0), k, 0);
accl = vmlal_lane_s16(accl, vget_low_s16(y1), k, 1);
acch = vmull_lane_s16(vget_high_s16(y0), k, 0);
acch = vmlal_lane_s16(acch, vget_high_s16(y1), k, 1);
int16x8_t y2;
x3 = vld1_u8( (uint8_t *) (src - cn*2) );
x4 = vld1_u8( (uint8_t *) (src + cn*2) );
y2 = vreinterpretq_s16_u16(vaddl_u8(x3, x4));
accl = vmlal_lane_s16(accl, vget_low_s16(y2), k, 2);
acch = vmlal_lane_s16(acch, vget_high_s16(y2), k, 2);
vst1q_s32((int32_t *)(dst + i), accl);
vst1q_s32((int32_t *)(dst + i + 4), acch);
}
}
}
}
else
{
if( _ksize == 3 )
{
if( kx[0] == 0 && kx[1] == 1 )
{
uint8x8_t z = vdup_n_u8(0);
for( ; i <= width - 8; i += 8, src += 8 )
{
uint8x8_t x0, x1;
x0 = vld1_u8( (uint8_t *) (src - cn) );
x1 = vld1_u8( (uint8_t *) (src + cn) );
int16x8_t y0;
y0 = vsubq_s16(vreinterpretq_s16_u16(vaddl_u8(x1, z)),
vreinterpretq_s16_u16(vaddl_u8(x0, z)));
vst1q_s32((int32_t *)(dst + i), vmovl_s16(vget_low_s16(y0)));
vst1q_s32((int32_t *)(dst + i + 4), vmovl_s16(vget_high_s16(y0)));
}
}
else
{
int32x4_t k32 = vdupq_n_s32(0);
k32 = vld1q_lane_s32(kx + 1, k32, 1);
int16x4_t k = vqmovn_s32(k32);
uint8x8_t z = vdup_n_u8(0);
for( ; i <= width - 8; i += 8, src += 8 )
{
uint8x8_t x0, x1;
x0 = vld1_u8( (uint8_t *) (src - cn) );
x1 = vld1_u8( (uint8_t *) (src + cn) );
int16x8_t y0;
int32x4_t y1, y2;
y0 = vsubq_s16(vreinterpretq_s16_u16(vaddl_u8(x1, z)),
vreinterpretq_s16_u16(vaddl_u8(x0, z)));
y1 = vmull_lane_s16(vget_low_s16(y0), k, 1);
y2 = vmull_lane_s16(vget_high_s16(y0), k, 1);
vst1q_s32((int32_t *)(dst + i), y1);
vst1q_s32((int32_t *)(dst + i + 4), y2);
}
}
}
else if( _ksize == 5 )
{
int32x4_t k32 = vdupq_n_s32(0);
k32 = vld1q_lane_s32(kx + 1, k32, 1);
k32 = vld1q_lane_s32(kx + 2, k32, 2);
int16x4_t k = vqmovn_s32(k32);
uint8x8_t z = vdup_n_u8(0);
for( ; i <= width - 8; i += 8, src += 8 )
{
uint8x8_t x0, x1;
x0 = vld1_u8( (uint8_t *) (src - cn) );
x1 = vld1_u8( (uint8_t *) (src + cn) );
int32x4_t accl, acch;
int16x8_t y0;
y0 = vsubq_s16(vreinterpretq_s16_u16(vaddl_u8(x1, z)),
vreinterpretq_s16_u16(vaddl_u8(x0, z)));
accl = vmull_lane_s16(vget_low_s16(y0), k, 1);
acch = vmull_lane_s16(vget_high_s16(y0), k, 1);
uint8x8_t x2, x3;
x2 = vld1_u8( (uint8_t *) (src - cn*2) );
x3 = vld1_u8( (uint8_t *) (src + cn*2) );
int16x8_t y1;
y1 = vsubq_s16(vreinterpretq_s16_u16(vaddl_u8(x3, z)),
vreinterpretq_s16_u16(vaddl_u8(x2, z)));
accl = vmlal_lane_s16(accl, vget_low_s16(y1), k, 2);
acch = vmlal_lane_s16(acch, vget_high_s16(y1), k, 2);
vst1q_s32((int32_t *)(dst + i), accl);
vst1q_s32((int32_t *)(dst + i + 4), acch);
}
}
}
return i;
}
Mat kernel;
int symmetryType;
bool smallValues;
};
struct SymmColumnVec_32s8u
{
SymmColumnVec_32s8u() { symmetryType=0; }
SymmColumnVec_32s8u(const Mat& _kernel, int _symmetryType, int _bits, double _delta)
{
symmetryType = _symmetryType;
_kernel.convertTo(kernel, CV_32F, 1./(1 << _bits), 0);
delta = (float)(_delta/(1 << _bits));
CV_Assert( (symmetryType & (KERNEL_SYMMETRICAL | KERNEL_ASYMMETRICAL)) != 0 );
}
int operator()(const uchar** _src, uchar* dst, int width) const
{
//Uncomment the two following lines when runtime support for neon is implemented.
// if( !checkHardwareSupport(CV_CPU_NEON) )
// return 0;
int _ksize = kernel.rows + kernel.cols - 1;
int ksize2 = _ksize / 2;
const float* ky = kernel.ptr<float>() + ksize2;
int i = 0, k;
bool symmetrical = (symmetryType & KERNEL_SYMMETRICAL) != 0;
const int** src = (const int**)_src;
const int *S, *S2;
float32x4_t d4 = vdupq_n_f32(delta);
if( symmetrical )
{
if( _ksize == 1 )
return 0;
float32x2_t k32;
k32 = vdup_n_f32(0);
k32 = vld1_lane_f32(ky, k32, 0);
k32 = vld1_lane_f32(ky + 1, k32, 1);
for( ; i <= width - 8; i += 8 )
{
float32x4_t accl, acch;
float32x4_t f0l, f0h, f1l, f1h, f2l, f2h;
S = src[0] + i;
f0l = vcvtq_f32_s32( vld1q_s32(S) );
f0h = vcvtq_f32_s32( vld1q_s32(S + 4) );
S = src[1] + i;
S2 = src[-1] + i;
f1l = vcvtq_f32_s32( vld1q_s32(S) );
f1h = vcvtq_f32_s32( vld1q_s32(S + 4) );
f2l = vcvtq_f32_s32( vld1q_s32(S2) );
f2h = vcvtq_f32_s32( vld1q_s32(S2 + 4) );
accl = acch = d4;
accl = vmlaq_lane_f32(accl, f0l, k32, 0);
acch = vmlaq_lane_f32(acch, f0h, k32, 0);
accl = vmlaq_lane_f32(accl, vaddq_f32(f1l, f2l), k32, 1);
acch = vmlaq_lane_f32(acch, vaddq_f32(f1h, f2h), k32, 1);
for( k = 2; k <= ksize2; k++ )
{
S = src[k] + i;
S2 = src[-k] + i;
float32x4_t f3l, f3h, f4l, f4h;
f3l = vcvtq_f32_s32( vld1q_s32(S) );
f3h = vcvtq_f32_s32( vld1q_s32(S + 4) );
f4l = vcvtq_f32_s32( vld1q_s32(S2) );
f4h = vcvtq_f32_s32( vld1q_s32(S2 + 4) );
accl = vmlaq_n_f32(accl, vaddq_f32(f3l, f4l), ky[k]);
acch = vmlaq_n_f32(acch, vaddq_f32(f3h, f4h), ky[k]);
}
int32x4_t s32l, s32h;
s32l = vcvtq_s32_f32(accl);
s32h = vcvtq_s32_f32(acch);
int16x4_t s16l, s16h;
s16l = vqmovn_s32(s32l);
s16h = vqmovn_s32(s32h);
uint8x8_t u8;
u8 = vqmovun_s16(vcombine_s16(s16l, s16h));
vst1_u8((uint8_t *)(dst + i), u8);
}
}
else
{
float32x2_t k32;
k32 = vdup_n_f32(0);
k32 = vld1_lane_f32(ky + 1, k32, 1);
for( ; i <= width - 8; i += 8 )
{
float32x4_t accl, acch;
float32x4_t f1l, f1h, f2l, f2h;
S = src[1] + i;
S2 = src[-1] + i;
f1l = vcvtq_f32_s32( vld1q_s32(S) );
f1h = vcvtq_f32_s32( vld1q_s32(S + 4) );
f2l = vcvtq_f32_s32( vld1q_s32(S2) );
f2h = vcvtq_f32_s32( vld1q_s32(S2 + 4) );
accl = acch = d4;
accl = vmlaq_lane_f32(accl, vsubq_f32(f1l, f2l), k32, 1);
acch = vmlaq_lane_f32(acch, vsubq_f32(f1h, f2h), k32, 1);
for( k = 2; k <= ksize2; k++ )
{
S = src[k] + i;
S2 = src[-k] + i;
float32x4_t f3l, f3h, f4l, f4h;
f3l = vcvtq_f32_s32( vld1q_s32(S) );
f3h = vcvtq_f32_s32( vld1q_s32(S + 4) );
f4l = vcvtq_f32_s32( vld1q_s32(S2) );
f4h = vcvtq_f32_s32( vld1q_s32(S2 + 4) );
accl = vmlaq_n_f32(accl, vsubq_f32(f3l, f4l), ky[k]);
acch = vmlaq_n_f32(acch, vsubq_f32(f3h, f4h), ky[k]);
}
int32x4_t s32l, s32h;
s32l = vcvtq_s32_f32(accl);
s32h = vcvtq_s32_f32(acch);
int16x4_t s16l, s16h;
s16l = vqmovn_s32(s32l);
s16h = vqmovn_s32(s32h);
uint8x8_t u8;
u8 = vqmovun_s16(vcombine_s16(s16l, s16h));
vst1_u8((uint8_t *)(dst + i), u8);
}
}
return i;
}
int symmetryType;
float delta;
Mat kernel;
};
struct SymmColumnSmallVec_32s16s
{
SymmColumnSmallVec_32s16s() { symmetryType=0; }
SymmColumnSmallVec_32s16s(const Mat& _kernel, int _symmetryType, int _bits, double _delta)
{
symmetryType = _symmetryType;
_kernel.convertTo(kernel, CV_32F, 1./(1 << _bits), 0);
delta = (float)(_delta/(1 << _bits));
CV_Assert( (symmetryType & (KERNEL_SYMMETRICAL | KERNEL_ASYMMETRICAL)) != 0 );
}
int operator()(const uchar** _src, uchar* _dst, int width) const
{
//Uncomment the two following lines when runtime support for neon is implemented.
// if( !checkHardwareSupport(CV_CPU_NEON) )
// return 0;
int ksize2 = (kernel.rows + kernel.cols - 1)/2;
const float* ky = kernel.ptr<float>() + ksize2;
int i = 0;
bool symmetrical = (symmetryType & KERNEL_SYMMETRICAL) != 0;
const int** src = (const int**)_src;
const int *S0 = src[-1], *S1 = src[0], *S2 = src[1];
short* dst = (short*)_dst;
float32x4_t df4 = vdupq_n_f32(delta);
int32x4_t d4 = vcvtq_s32_f32(df4);
if( symmetrical )
{
if( ky[0] == 2 && ky[1] == 1 )
{
for( ; i <= width - 4; i += 4 )
{
int32x4_t x0, x1, x2;
x0 = vld1q_s32((int32_t const *)(S0 + i));
x1 = vld1q_s32((int32_t const *)(S1 + i));
x2 = vld1q_s32((int32_t const *)(S2 + i));
int32x4_t y0, y1, y2, y3;
y0 = vaddq_s32(x0, x2);
y1 = vqshlq_n_s32(x1, 1);
y2 = vaddq_s32(y0, y1);
y3 = vaddq_s32(y2, d4);
int16x4_t t;
t = vqmovn_s32(y3);
vst1_s16((int16_t *)(dst + i), t);
}
}
else if( ky[0] == -2 && ky[1] == 1 )
{
for( ; i <= width - 4; i += 4 )
{
int32x4_t x0, x1, x2;
x0 = vld1q_s32((int32_t const *)(S0 + i));
x1 = vld1q_s32((int32_t const *)(S1 + i));
x2 = vld1q_s32((int32_t const *)(S2 + i));
int32x4_t y0, y1, y2, y3;
y0 = vaddq_s32(x0, x2);
y1 = vqshlq_n_s32(x1, 1);
y2 = vsubq_s32(y0, y1);
y3 = vaddq_s32(y2, d4);
int16x4_t t;
t = vqmovn_s32(y3);
vst1_s16((int16_t *)(dst + i), t);
}
}
else if( ky[0] == 10 && ky[1] == 3 )
{
for( ; i <= width - 4; i += 4 )
{
int32x4_t x0, x1, x2, x3;
x0 = vld1q_s32((int32_t const *)(S0 + i));
x1 = vld1q_s32((int32_t const *)(S1 + i));
x2 = vld1q_s32((int32_t const *)(S2 + i));
x3 = vaddq_s32(x0, x2);
int32x4_t y0;
y0 = vmlaq_n_s32(d4, x1, 10);
y0 = vmlaq_n_s32(y0, x3, 3);
int16x4_t t;
t = vqmovn_s32(y0);
vst1_s16((int16_t *)(dst + i), t);
}
}
else
{
float32x2_t k32 = vdup_n_f32(0);
k32 = vld1_lane_f32(ky, k32, 0);
k32 = vld1_lane_f32(ky + 1, k32, 1);
for( ; i <= width - 4; i += 4 )
{
int32x4_t x0, x1, x2, x3, x4;
x0 = vld1q_s32((int32_t const *)(S0 + i));
x1 = vld1q_s32((int32_t const *)(S1 + i));
x2 = vld1q_s32((int32_t const *)(S2 + i));
x3 = vaddq_s32(x0, x2);
float32x4_t s0, s1, s2;
s0 = vcvtq_f32_s32(x1);
s1 = vcvtq_f32_s32(x3);
s2 = vmlaq_lane_f32(df4, s0, k32, 0);
s2 = vmlaq_lane_f32(s2, s1, k32, 1);
x4 = vcvtq_s32_f32(s2);
int16x4_t x5;
x5 = vqmovn_s32(x4);
vst1_s16((int16_t *)(dst + i), x5);
}
}
}
else
{
if( fabs(ky[1]) == 1 && ky[1] == -ky[-1] )
{
if( ky[1] < 0 )
std::swap(S0, S2);
for( ; i <= width - 4; i += 4 )
{
int32x4_t x0, x1;
x0 = vld1q_s32((int32_t const *)(S0 + i));
x1 = vld1q_s32((int32_t const *)(S2 + i));
int32x4_t y0, y1;
y0 = vsubq_s32(x1, x0);
y1 = vqaddq_s32(y0, d4);
int16x4_t t;
t = vqmovn_s32(y1);
vst1_s16((int16_t *)(dst + i), t);
}
}
else
{
float32x2_t k32 = vdup_n_f32(0);
k32 = vld1_lane_f32(ky + 1, k32, 1);
for( ; i <= width - 4; i += 4 )
{
int32x4_t x0, x1, x2, x3;
x0 = vld1q_s32((int32_t const *)(S0 + i));
x1 = vld1q_s32((int32_t const *)(S2 + i));
x2 = vsubq_s32(x1, x0);
float32x4_t s0, s1;
s0 = vcvtq_f32_s32(x2);
s1 = vmlaq_lane_f32(df4, s0, k32, 1);
x3 = vcvtq_s32_f32(s1);
int16x4_t x4;
x4 = vqmovn_s32(x3);
vst1_s16((int16_t *)(dst + i), x4);
}
}
}
return i;
}
int symmetryType;
float delta;
Mat kernel;
};
struct SymmColumnVec_32f16s
{
SymmColumnVec_32f16s() { symmetryType=0; }
SymmColumnVec_32f16s(const Mat& _kernel, int _symmetryType, int, double _delta)
{
symmetryType = _symmetryType;
kernel = _kernel;
delta = (float)_delta;
CV_Assert( (symmetryType & (KERNEL_SYMMETRICAL | KERNEL_ASYMMETRICAL)) != 0 );
//Uncomment the following line when runtime support for neon is implemented.
// neon_supported = checkHardwareSupport(CV_CPU_NEON);
}
int operator()(const uchar** _src, uchar* _dst, int width) const
{
//Uncomment the two following lines when runtime support for neon is implemented.
// if( !neon_supported )
// return 0;
int _ksize = kernel.rows + kernel.cols - 1;
int ksize2 = _ksize / 2;
const float* ky = kernel.ptr<float>() + ksize2;
int i = 0, k;
bool symmetrical = (symmetryType & KERNEL_SYMMETRICAL) != 0;
const float** src = (const float**)_src;
const float *S, *S2;
short* dst = (short*)_dst;
float32x4_t d4 = vdupq_n_f32(delta);
if( symmetrical )
{
if( _ksize == 1 )
return 0;
float32x2_t k32;
k32 = vdup_n_f32(0);
k32 = vld1_lane_f32(ky, k32, 0);
k32 = vld1_lane_f32(ky + 1, k32, 1);
for( ; i <= width - 8; i += 8 )
{
float32x4_t x0l, x0h, x1l, x1h, x2l, x2h;
float32x4_t accl, acch;
S = src[0] + i;
x0l = vld1q_f32(S);
x0h = vld1q_f32(S + 4);
S = src[1] + i;
S2 = src[-1] + i;
x1l = vld1q_f32(S);
x1h = vld1q_f32(S + 4);
x2l = vld1q_f32(S2);
x2h = vld1q_f32(S2 + 4);
accl = acch = d4;
accl = vmlaq_lane_f32(accl, x0l, k32, 0);
acch = vmlaq_lane_f32(acch, x0h, k32, 0);
accl = vmlaq_lane_f32(accl, vaddq_f32(x1l, x2l), k32, 1);
acch = vmlaq_lane_f32(acch, vaddq_f32(x1h, x2h), k32, 1);
for( k = 2; k <= ksize2; k++ )
{
S = src[k] + i;
S2 = src[-k] + i;
float32x4_t x3l, x3h, x4l, x4h;
x3l = vld1q_f32(S);
x3h = vld1q_f32(S + 4);
x4l = vld1q_f32(S2);
x4h = vld1q_f32(S2 + 4);
accl = vmlaq_n_f32(accl, vaddq_f32(x3l, x4l), ky[k]);
acch = vmlaq_n_f32(acch, vaddq_f32(x3h, x4h), ky[k]);
}
int32x4_t s32l, s32h;
s32l = vcvtq_s32_f32(accl);
s32h = vcvtq_s32_f32(acch);
int16x4_t s16l, s16h;
s16l = vqmovn_s32(s32l);
s16h = vqmovn_s32(s32h);
vst1_s16((int16_t *)(dst + i), s16l);
vst1_s16((int16_t *)(dst + i + 4), s16h);
}
}
else
{
float32x2_t k32;
k32 = vdup_n_f32(0);
k32 = vld1_lane_f32(ky + 1, k32, 1);
for( ; i <= width - 8; i += 8 )
{
float32x4_t x1l, x1h, x2l, x2h;
float32x4_t accl, acch;
S = src[1] + i;
S2 = src[-1] + i;
x1l = vld1q_f32(S);
x1h = vld1q_f32(S + 4);
x2l = vld1q_f32(S2);
x2h = vld1q_f32(S2 + 4);
accl = acch = d4;
accl = vmlaq_lane_f32(accl, vsubq_f32(x1l, x2l), k32, 1);
acch = vmlaq_lane_f32(acch, vsubq_f32(x1h, x2h), k32, 1);
for( k = 2; k <= ksize2; k++ )
{
S = src[k] + i;
S2 = src[-k] + i;
float32x4_t x3l, x3h, x4l, x4h;
x3l = vld1q_f32(S);
x3h = vld1q_f32(S + 4);
x4l = vld1q_f32(S2);
x4h = vld1q_f32(S2 + 4);
accl = vmlaq_n_f32(accl, vsubq_f32(x3l, x4l), ky[k]);
acch = vmlaq_n_f32(acch, vsubq_f32(x3h, x4h), ky[k]);
}
int32x4_t s32l, s32h;
s32l = vcvtq_s32_f32(accl);
s32h = vcvtq_s32_f32(acch);
int16x4_t s16l, s16h;
s16l = vqmovn_s32(s32l);
s16h = vqmovn_s32(s32h);
vst1_s16((int16_t *)(dst + i), s16l);
vst1_s16((int16_t *)(dst + i + 4), s16h);
}
}
return i;
}
int symmetryType;
float delta;
Mat kernel;
bool neon_supported;
};
struct SymmRowSmallVec_32f
{
SymmRowSmallVec_32f() {}
SymmRowSmallVec_32f( const Mat& _kernel, int _symmetryType )
{
kernel = _kernel;
symmetryType = _symmetryType;
}
int operator()(const uchar* _src, uchar* _dst, int width, int cn) const
{
//Uncomment the two following lines when runtime support for neon is implemented.
// if( !checkHardwareSupport(CV_CPU_NEON) )
// return 0;
int i = 0, _ksize = kernel.rows + kernel.cols - 1;
float* dst = (float*)_dst;
const float* src = (const float*)_src + (_ksize/2)*cn;
bool symmetrical = (symmetryType & KERNEL_SYMMETRICAL) != 0;
const float* kx = kernel.ptr<float>() + _ksize/2;
width *= cn;
if( symmetrical )
{
if( _ksize == 1 )
return 0;
if( _ksize == 3 )
{
if( kx[0] == 2 && kx[1] == 1 )
return 0;
else if( kx[0] == -2 && kx[1] == 1 )
return 0;
else
{
return 0;
}
}
else if( _ksize == 5 )
{
if( kx[0] == -2 && kx[1] == 0 && kx[2] == 1 )
return 0;
else
{
float32x2_t k0, k1;
k0 = k1 = vdup_n_f32(0);
k0 = vld1_lane_f32(kx + 0, k0, 0);
k0 = vld1_lane_f32(kx + 1, k0, 1);
k1 = vld1_lane_f32(kx + 2, k1, 0);
for( ; i <= width - 4; i += 4, src += 4 )
{
float32x4_t x0, x1, x2, x3, x4;
x0 = vld1q_f32(src);
x1 = vld1q_f32(src - cn);
x2 = vld1q_f32(src + cn);
x3 = vld1q_f32(src - cn*2);
x4 = vld1q_f32(src + cn*2);
float32x4_t y0;
y0 = vmulq_lane_f32(x0, k0, 0);
y0 = vmlaq_lane_f32(y0, vaddq_f32(x1, x2), k0, 1);
y0 = vmlaq_lane_f32(y0, vaddq_f32(x3, x4), k1, 0);
vst1q_f32(dst + i, y0);
}
}
}
}
else
{
if( _ksize == 3 )
{
if( kx[0] == 0 && kx[1] == 1 )
return 0;
else
{
return 0;
}
}
else if( _ksize == 5 )
{
float32x2_t k;
k = vdup_n_f32(0);
k = vld1_lane_f32(kx + 1, k, 0);
k = vld1_lane_f32(kx + 2, k, 1);
for( ; i <= width - 4; i += 4, src += 4 )
{
float32x4_t x0, x1, x2, x3;
x0 = vld1q_f32(src - cn);
x1 = vld1q_f32(src + cn);
x2 = vld1q_f32(src - cn*2);
x3 = vld1q_f32(src + cn*2);
float32x4_t y0;
y0 = vmulq_lane_f32(vsubq_f32(x1, x0), k, 0);
y0 = vmlaq_lane_f32(y0, vsubq_f32(x3, x2), k, 1);
vst1q_f32(dst + i, y0);
}
}
}
return i;
}
Mat kernel;
int symmetryType;
};
typedef RowNoVec RowVec_8u32s;
typedef RowNoVec RowVec_16s32f;
typedef RowNoVec RowVec_32f;
typedef ColumnNoVec SymmColumnVec_32f;
typedef SymmColumnSmallNoVec SymmColumnSmallVec_32f;
typedef FilterNoVec FilterVec_8u;
typedef FilterNoVec FilterVec_8u16s;
typedef FilterNoVec FilterVec_32f;
#else
typedef RowNoVec RowVec_8u32s;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment