Commit 5b868ccd authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #10992 from dkurt:dnn_opencl_tests

parents 687394fa 0f01b40d
...@@ -273,6 +273,9 @@ public: ...@@ -273,6 +273,9 @@ public:
for(int i = 0; i < outCn; i++ ) for(int i = 0; i < outCn; i++ )
biasvec[i] = biasMat.at<float>(i); biasvec[i] = biasMat.at<float>(i);
} }
#ifdef HAVE_OPENCL
convolutionOp.release();
#endif
} }
bool setActivation(const Ptr<ActivationLayer>& layer) bool setActivation(const Ptr<ActivationLayer>& layer)
......
...@@ -267,6 +267,11 @@ public: ...@@ -267,6 +267,11 @@ public:
}; };
#ifdef HAVE_OPENCL #ifdef HAVE_OPENCL
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
{
innerProductOp.release();
}
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, InputArrayOfArrays internals) bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, InputArrayOfArrays internals)
{ {
std::vector<UMat> inputs; std::vector<UMat> inputs;
......
...@@ -96,6 +96,11 @@ public: ...@@ -96,6 +96,11 @@ public:
} }
#ifdef HAVE_OPENCL #ifdef HAVE_OPENCL
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
{
lrnOp.release();
}
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals) bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{ {
std::vector<UMat> inputs; std::vector<UMat> inputs;
......
...@@ -127,6 +127,10 @@ public: ...@@ -127,6 +127,10 @@ public:
} }
getConvPoolPaddings(inp, out, kernel, stride, padMode, Size(1, 1), pad); getConvPoolPaddings(inp, out, kernel, stride, padMode, Size(1, 1), pad);
#ifdef HAVE_OPENCL
poolOp.release();
#endif
} }
virtual bool supportBackend(int backendId) virtual bool supportBackend(int backendId)
......
...@@ -94,6 +94,11 @@ public: ...@@ -94,6 +94,11 @@ public:
} }
#ifdef HAVE_OPENCL #ifdef HAVE_OPENCL
virtual void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
{
softmaxOp.release();
}
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays itns) bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays itns)
{ {
std::vector<UMat> inputs; std::vector<UMat> inputs;
......
...@@ -10,9 +10,6 @@ ...@@ -10,9 +10,6 @@
namespace opencv_test { namespace { namespace opencv_test { namespace {
CV_ENUM(DNNBackend, DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE, DNN_BACKEND_INFERENCE_ENGINE)
CV_ENUM(DNNTarget, DNN_TARGET_CPU, DNN_TARGET_OPENCL)
static void loadNet(const std::string& weights, const std::string& proto, static void loadNet(const std::string& weights, const std::string& proto,
const std::string& framework, Net* net) const std::string& framework, Net* net)
{ {
......
...@@ -42,8 +42,6 @@ ...@@ -42,8 +42,6 @@
#include "test_precomp.hpp" #include "test_precomp.hpp"
#include "npy_blob.hpp" #include "npy_blob.hpp"
#include <opencv2/dnn/shape_utils.hpp> #include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/core/ocl.hpp>
#include <opencv2/ts/ocl_test.hpp>
namespace opencv_test { namespace { namespace opencv_test { namespace {
...@@ -83,10 +81,10 @@ TEST(Test_Caffe, read_googlenet) ...@@ -83,10 +81,10 @@ TEST(Test_Caffe, read_googlenet)
ASSERT_FALSE(net.empty()); ASSERT_FALSE(net.empty());
} }
typedef testing::TestWithParam<bool> Reproducibility_AlexNet; typedef testing::TestWithParam<tuple<bool, DNNTarget> > Reproducibility_AlexNet;
TEST_P(Reproducibility_AlexNet, Accuracy) TEST_P(Reproducibility_AlexNet, Accuracy)
{ {
bool readFromMemory = GetParam(); bool readFromMemory = get<0>(GetParam());
Net net; Net net;
{ {
const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false); const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false);
...@@ -106,42 +104,7 @@ TEST_P(Reproducibility_AlexNet, Accuracy) ...@@ -106,42 +104,7 @@ TEST_P(Reproducibility_AlexNet, Accuracy)
ASSERT_FALSE(net.empty()); ASSERT_FALSE(net.empty());
} }
Mat sample = imread(_tf("grace_hopper_227.png")); net.setPreferableTarget(get<1>(GetParam()));
ASSERT_TRUE(!sample.empty());
net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data");
Mat out = net.forward("prob");
Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy"));
normAssert(ref, out);
}
INSTANTIATE_TEST_CASE_P(Test_Caffe, Reproducibility_AlexNet, testing::Bool());
typedef testing::TestWithParam<bool> Reproducibility_OCL_AlexNet;
OCL_TEST_P(Reproducibility_OCL_AlexNet, Accuracy)
{
bool readFromMemory = GetParam();
Net net;
{
const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false);
const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false);
if (readFromMemory)
{
string dataProto;
ASSERT_TRUE(readFileInMemory(proto, dataProto));
string dataModel;
ASSERT_TRUE(readFileInMemory(model, dataModel));
net = readNetFromCaffe(dataProto.c_str(), dataProto.size(),
dataModel.c_str(), dataModel.size());
}
else
net = readNetFromCaffe(proto, model);
ASSERT_FALSE(net.empty());
}
net.setPreferableBackend(DNN_BACKEND_DEFAULT);
net.setPreferableTarget(DNN_TARGET_OPENCL);
Mat sample = imread(_tf("grace_hopper_227.png")); Mat sample = imread(_tf("grace_hopper_227.png"));
ASSERT_TRUE(!sample.empty()); ASSERT_TRUE(!sample.empty());
...@@ -152,7 +115,7 @@ OCL_TEST_P(Reproducibility_OCL_AlexNet, Accuracy) ...@@ -152,7 +115,7 @@ OCL_TEST_P(Reproducibility_OCL_AlexNet, Accuracy)
normAssert(ref, out); normAssert(ref, out);
} }
OCL_INSTANTIATE_TEST_CASE_P(Test_Caffe, Reproducibility_OCL_AlexNet, testing::Bool()); INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_AlexNet, Combine(testing::Bool(), availableDnnTargets()));
#if !defined(_WIN32) || defined(_WIN64) #if !defined(_WIN32) || defined(_WIN64)
TEST(Reproducibility_FCN, Accuracy) TEST(Reproducibility_FCN, Accuracy)
...@@ -207,43 +170,14 @@ TEST(Reproducibility_SSD, Accuracy) ...@@ -207,43 +170,14 @@ TEST(Reproducibility_SSD, Accuracy)
normAssert(ref, out); normAssert(ref, out);
} }
TEST(Reproducibility_MobileNet_SSD, Accuracy) typedef testing::TestWithParam<DNNTarget> Reproducibility_MobileNet_SSD;
{ TEST_P(Reproducibility_MobileNet_SSD, Accuracy)
const string proto = findDataFile("dnn/MobileNetSSD_deploy.prototxt", false);
const string model = findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false);
Net net = readNetFromCaffe(proto, model);
Mat sample = imread(_tf("street.png"));
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
net.setInput(inp);
Mat out = net.forward();
Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy"));
normAssert(ref, out);
// Check that detections aren't preserved.
inp.setTo(0.0f);
net.setInput(inp);
out = net.forward();
const int numDetections = out.size[2];
ASSERT_NE(numDetections, 0);
for (int i = 0; i < numDetections; ++i)
{
float confidence = out.ptr<float>(0, 0, i)[2];
ASSERT_EQ(confidence, 0);
}
}
OCL_TEST(Reproducibility_MobileNet_SSD, Accuracy)
{ {
const string proto = findDataFile("dnn/MobileNetSSD_deploy.prototxt", false); const string proto = findDataFile("dnn/MobileNetSSD_deploy.prototxt", false);
const string model = findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false); const string model = findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false);
Net net = readNetFromCaffe(proto, model); Net net = readNetFromCaffe(proto, model);
net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(GetParam());
net.setPreferableTarget(DNN_TARGET_OPENCL);
Mat sample = imread(_tf("street.png")); Mat sample = imread(_tf("street.png"));
...@@ -258,38 +192,39 @@ OCL_TEST(Reproducibility_MobileNet_SSD, Accuracy) ...@@ -258,38 +192,39 @@ OCL_TEST(Reproducibility_MobileNet_SSD, Accuracy)
inp.setTo(0.0f); inp.setTo(0.0f);
net.setInput(inp); net.setInput(inp);
out = net.forward(); out = net.forward();
out = out.reshape(1, out.total() / 7);
const int numDetections = out.size[2]; const int numDetections = out.rows;
ASSERT_NE(numDetections, 0); ASSERT_NE(numDetections, 0);
for (int i = 0; i < numDetections; ++i) for (int i = 0; i < numDetections; ++i)
{ {
float confidence = out.ptr<float>(0, 0, i)[2]; float confidence = out.ptr<float>(i)[2];
ASSERT_EQ(confidence, 0); ASSERT_EQ(confidence, 0);
} }
}
TEST(Reproducibility_ResNet50, Accuracy)
{
Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt", false),
findDataFile("dnn/ResNet-50-model.caffemodel", false));
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false);
ASSERT_TRUE(!input.empty());
net.setInput(input); // Check batching mode.
Mat out = net.forward(); ref = ref.reshape(1, numDetections);
inp = blobFromImages(std::vector<Mat>(2, sample), 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
Mat ref = blobFromNPY(_tf("resnet50_prob.npy")); net.setInput(inp);
normAssert(ref, out); Mat outBatch = net.forward();
// Output blob has a shape 1x1x2Nx7 where N is a number of detection for
// a single sample in batch. The first numbers of detection vectors are batch id.
outBatch = outBatch.reshape(1, outBatch.total() / 7);
EXPECT_EQ(outBatch.rows, 2 * numDetections);
normAssert(outBatch.rowRange(0, numDetections), ref);
normAssert(outBatch.rowRange(numDetections, 2 * numDetections).colRange(1, 7), ref.colRange(1, 7));
} }
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_MobileNet_SSD, availableDnnTargets());
OCL_TEST(Reproducibility_ResNet50, Accuracy) typedef testing::TestWithParam<DNNTarget> Reproducibility_ResNet50;
TEST_P(Reproducibility_ResNet50, Accuracy)
{ {
Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt", false), Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt", false),
findDataFile("dnn/ResNet-50-model.caffemodel", false)); findDataFile("dnn/ResNet-50-model.caffemodel", false));
net.setPreferableBackend(DNN_BACKEND_DEFAULT); int targetId = GetParam();
net.setPreferableTarget(DNN_TARGET_OPENCL); net.setPreferableTarget(targetId);
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false); Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false);
ASSERT_TRUE(!input.empty()); ASSERT_TRUE(!input.empty());
...@@ -300,52 +235,46 @@ OCL_TEST(Reproducibility_ResNet50, Accuracy) ...@@ -300,52 +235,46 @@ OCL_TEST(Reproducibility_ResNet50, Accuracy)
Mat ref = blobFromNPY(_tf("resnet50_prob.npy")); Mat ref = blobFromNPY(_tf("resnet50_prob.npy"));
normAssert(ref, out); normAssert(ref, out);
UMat out_umat; if (targetId == DNN_TARGET_OPENCL)
net.forward(out_umat); {
normAssert(ref, out_umat, "out_umat"); UMat out_umat;
net.forward(out_umat);
std::vector<UMat> out_umats; normAssert(ref, out_umat, "out_umat");
net.forward(out_umats);
normAssert(ref, out_umats[0], "out_umat_vector");
}
TEST(Reproducibility_SqueezeNet_v1_1, Accuracy)
{
Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt", false),
findDataFile("dnn/squeezenet_v1.1.caffemodel", false));
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(227,227), Scalar(), false);
ASSERT_TRUE(!input.empty());
net.setInput(input);
Mat out = net.forward();
Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy")); std::vector<UMat> out_umats;
normAssert(ref, out); net.forward(out_umats);
normAssert(ref, out_umats[0], "out_umat_vector");
}
} }
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_ResNet50, availableDnnTargets());
OCL_TEST(Reproducibility_SqueezeNet_v1_1, Accuracy) typedef testing::TestWithParam<DNNTarget> Reproducibility_SqueezeNet_v1_1;
TEST_P(Reproducibility_SqueezeNet_v1_1, Accuracy)
{ {
Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt", false), Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt", false),
findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); findDataFile("dnn/squeezenet_v1.1.caffemodel", false));
net.setPreferableBackend(DNN_BACKEND_DEFAULT); int targetId = GetParam();
net.setPreferableTarget(DNN_TARGET_OPENCL); net.setPreferableTarget(targetId);
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(227,227), Scalar(), false); Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(227,227), Scalar(), false);
ASSERT_TRUE(!input.empty()); ASSERT_TRUE(!input.empty());
// Firstly set a wrong input blob and run the model to receive a wrong output. Mat out;
net.setInput(input * 2.0f); if (targetId == DNN_TARGET_OPENCL)
Mat out = net.forward(); {
// Firstly set a wrong input blob and run the model to receive a wrong output.
// Then set a correct input blob to check CPU->GPU synchronization is working well. // Then set a correct input blob to check CPU->GPU synchronization is working well.
net.setInput(input * 2.0f);
out = net.forward();
}
net.setInput(input); net.setInput(input);
out = net.forward(); out = net.forward();
Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy")); Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy"));
normAssert(ref, out); normAssert(ref, out);
} }
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_SqueezeNet_v1_1, availableDnnTargets());
TEST(Reproducibility_AlexNet_fp16, Accuracy) TEST(Reproducibility_AlexNet_fp16, Accuracy)
{ {
...@@ -456,7 +385,6 @@ TEST(Test_Caffe, multiple_inputs) ...@@ -456,7 +385,6 @@ TEST(Test_Caffe, multiple_inputs)
normAssert(out, first_image + second_image); normAssert(out, first_image + second_image);
} }
CV_ENUM(DNNTarget, DNN_TARGET_CPU, DNN_TARGET_OPENCL)
typedef testing::TestWithParam<tuple<std::string, DNNTarget> > opencv_face_detector; typedef testing::TestWithParam<tuple<std::string, DNNTarget> > opencv_face_detector;
TEST_P(opencv_face_detector, Accuracy) TEST_P(opencv_face_detector, Accuracy)
{ {
......
...@@ -77,6 +77,10 @@ OCL_TEST(Reproducibility_GoogLeNet, Accuracy) ...@@ -77,6 +77,10 @@ OCL_TEST(Reproducibility_GoogLeNet, Accuracy)
net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableBackend(DNN_BACKEND_DEFAULT);
net.setPreferableTarget(DNN_TARGET_OPENCL); net.setPreferableTarget(DNN_TARGET_OPENCL);
// Initialize network for a single image in the batch but test with batch size=2.
net.setInput(blobFromImage(Mat(224, 224, CV_8UC3)));
net.forward();
std::vector<Mat> inpMats; std::vector<Mat> inpMats;
inpMats.push_back( imread(_tf("googlenet_0.png")) ); inpMats.push_back( imread(_tf("googlenet_0.png")) );
inpMats.push_back( imread(_tf("googlenet_1.png")) ); inpMats.push_back( imread(_tf("googlenet_1.png")) );
......
...@@ -44,12 +44,31 @@ ...@@ -44,12 +44,31 @@
#include "opencv2/ts.hpp" #include "opencv2/ts.hpp"
#include "opencv2/ts/ts_perf.hpp" #include "opencv2/ts/ts_perf.hpp"
#include "opencv2/core/utility.hpp" #include "opencv2/core/utility.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/dnn.hpp" #include "opencv2/dnn.hpp"
#include "test_common.hpp" #include "test_common.hpp"
namespace opencv_test { namespace opencv_test {
using namespace cv::dnn; using namespace cv::dnn;
CV_ENUM(DNNBackend, DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE, DNN_BACKEND_INFERENCE_ENGINE)
CV_ENUM(DNNTarget, DNN_TARGET_CPU, DNN_TARGET_OPENCL)
static testing::internal::ParamGenerator<DNNTarget> availableDnnTargets()
{
static std::vector<DNNTarget> targets;
if (targets.empty())
{
targets.push_back(DNN_TARGET_CPU);
#ifdef HAVE_OPENCL
if (cv::ocl::useOpenCL())
targets.push_back(DNN_TARGET_OPENCL);
#endif
}
return testing::ValuesIn(targets);
}
} }
#endif #endif
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment