Commit 5894f82f authored by Andrey Pavlenko's avatar Andrey Pavlenko Committed by OpenCV Buildbot

Merge pull request #2202 from ilya-lavrenov:tapi_GFTTDetector

parents b0befeb1 9968197e
......@@ -41,7 +41,7 @@ with an image set. ::
* Group of methods to match descriptors from an image pair.
*/
void match( InputArray queryDescriptors, InputArray trainDescriptors,
vector<DMatch>& matches, InputArray mask=Mat() ) const;
vector<DMatch>& matches, InputArray mask=noArray() ) const;
void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
vector<vector<DMatch> >& matches, int k,
InputArray mask=Mat(), bool compactResult=false ) const;
......@@ -52,7 +52,7 @@ with an image set. ::
* Group of methods to match descriptors from one image to an image set.
*/
void match( InputArray queryDescriptors, vector<DMatch>& matches,
const vector<Mat>& masks=vector<Mat>() );
const vector<Mat>& masks=noArray() );
void knnMatch( InputArray queryDescriptors, vector<vector<DMatch> >& matches,
int k, const vector<Mat>& masks=vector<Mat>(),
bool compactResult=false );
......@@ -131,7 +131,7 @@ DescriptorMatcher::match
----------------------------
Finds the best match for each descriptor from a query set.
.. ocv:function:: void DescriptorMatcher::match( InputArray queryDescriptors, InputArray trainDescriptors, vector<DMatch>& matches, InputArray mask=Mat() ) const
.. ocv:function:: void DescriptorMatcher::match( InputArray queryDescriptors, InputArray trainDescriptors, vector<DMatch>& matches, InputArray mask=noArray() ) const
.. ocv:function:: void DescriptorMatcher::match(InputArray queryDescriptors, vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() )
......@@ -153,7 +153,7 @@ DescriptorMatcher::knnMatch
-------------------------------
Finds the k best matches for each descriptor from a query set.
.. ocv:function:: void DescriptorMatcher::knnMatch(InputArray queryDescriptors, InputArray trainDescriptors, vector<vector<DMatch> >& matches, int k, InputArray mask=Mat(), bool compactResult=false ) const
.. ocv:function:: void DescriptorMatcher::knnMatch(InputArray queryDescriptors, InputArray trainDescriptors, vector<vector<DMatch> >& matches, int k, InputArray mask=noArray(), bool compactResult=false ) const
.. ocv:function:: void DescriptorMatcher::knnMatch( InputArray queryDescriptors, vector<vector<DMatch> >& matches, int k, const vector<Mat>& masks=vector<Mat>(), bool compactResult=false )
......@@ -179,7 +179,7 @@ DescriptorMatcher::radiusMatch
----------------------------------
For each query descriptor, finds the training descriptors not farther than the specified distance.
.. ocv:function:: void DescriptorMatcher::radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors, vector<vector<DMatch> >& matches, float maxDistance, InputArray mask=Mat(), bool compactResult=false ) const
.. ocv:function:: void DescriptorMatcher::radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors, vector<vector<DMatch> >& matches, float maxDistance, InputArray mask=noArray(), bool compactResult=false ) const
.. ocv:function:: void DescriptorMatcher::radiusMatch( InputArray queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance, const vector<Mat>& masks=vector<Mat>(), bool compactResult=false )
......
......@@ -23,12 +23,12 @@ Abstract base class for 2D image feature detectors. ::
public:
virtual ~FeatureDetector();
void detect( const Mat& image, vector<KeyPoint>& keypoints,
const Mat& mask=Mat() ) const;
void detect( InputArray image, vector<KeyPoint>& keypoints,
InputArray mask=noArray() ) const;
void detect( const vector<Mat>& images,
void detect( InputArrayOfArrays images,
vector<vector<KeyPoint> >& keypoints,
const vector<Mat>& masks=vector<Mat>() ) const;
InputArrayOfArrays masks=noArray() ) const;
virtual void read(const FileNode&);
virtual void write(FileStorage&) const;
......@@ -43,9 +43,9 @@ FeatureDetector::detect
---------------------------
Detects keypoints in an image (first variant) or image set (second variant).
.. ocv:function:: void FeatureDetector::detect( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const
.. ocv:function:: void FeatureDetector::detect( InputArray image, vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const
.. ocv:function:: void FeatureDetector::detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const
.. ocv:function:: void FeatureDetector::detect( InputArrayOfArrays images, vector<vector<KeyPoint> >& keypoints, InputArrayOfArrays masks=noArray() ) const
.. ocv:pyfunction:: cv2.FeatureDetector_create.detect(image[, mask]) -> keypoints
......
......@@ -108,7 +108,7 @@ public:
* mask Mask specifying where to look for keypoints (optional). Must be a char
* matrix with non-zero values in the region of interest.
*/
CV_WRAP void detect( const Mat& image, CV_OUT std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
CV_WRAP void detect( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
/*
* Detect keypoints in an image set.
......@@ -116,7 +116,7 @@ public:
* keypoints Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].
* masks Masks for image set. masks[i] is a mask for images[i].
*/
void detect( const std::vector<Mat>& images, std::vector<std::vector<KeyPoint> >& keypoints, const std::vector<Mat>& masks=std::vector<Mat>() ) const;
void detect( InputArrayOfArrays images, std::vector<std::vector<KeyPoint> >& keypoints, InputArrayOfArrays masks=noArray() ) const;
// Return true if detector object is empty
CV_WRAP virtual bool empty() const;
......@@ -125,14 +125,14 @@ public:
CV_WRAP static Ptr<FeatureDetector> create( const String& detectorType );
protected:
virtual void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const = 0;
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const = 0;
/*
* Remove keypoints that are not in the mask.
* Helper function, useful when wrapping a library call for keypoint detection that
* does not support a mask argument.
*/
static void removeInvalidPoints( const Mat& mask, std::vector<KeyPoint>& keypoints );
static void removeInvalidPoints( const Mat & mask, std::vector<KeyPoint>& keypoints );
};
......@@ -253,7 +253,7 @@ public:
protected:
void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const;
void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
void computeKeypointsNoOrientation(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const;
void computeDescriptorsAndOrOrientation(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints,
......@@ -338,7 +338,7 @@ public:
protected:
void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const;
void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
CV_PROP_RW int nfeatures;
CV_PROP_RW double scaleFactor;
......@@ -470,7 +470,7 @@ public:
AlgorithmInfo* info() const;
protected:
void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
int delta;
int minArea;
......@@ -506,7 +506,7 @@ public:
AlgorithmInfo* info() const;
protected:
void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
int maxSize;
int responseThreshold;
......@@ -535,7 +535,7 @@ public:
AlgorithmInfo* info() const;
protected:
virtual void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
int threshold;
bool nonmaxSuppression;
......@@ -551,7 +551,7 @@ public:
AlgorithmInfo* info() const;
protected:
virtual void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
int nfeatures;
double qualityLevel;
......@@ -608,7 +608,7 @@ protected:
double confidence;
};
virtual void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
virtual void findBlobs(const Mat &image, const Mat &binaryImage, std::vector<Center> &centers) const;
Params params;
......@@ -627,7 +627,7 @@ public:
AlgorithmInfo* info() const;
protected:
virtual void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
double initFeatureScale;
int featureScaleLevels;
......@@ -664,7 +664,7 @@ public:
AlgorithmInfo* info() const;
protected:
virtual void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
Ptr<FeatureDetector> detector;
int maxTotalKeypoints;
......@@ -686,7 +686,7 @@ public:
virtual bool empty() const;
protected:
virtual void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
Ptr<FeatureDetector> detector;
int maxLevel;
......@@ -747,7 +747,7 @@ public:
virtual bool empty() const;
protected:
virtual void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
private:
DynamicAdaptedFeatureDetector& operator=(const DynamicAdaptedFeatureDetector&);
......@@ -776,7 +776,7 @@ public:
virtual Ptr<AdjusterAdapter> clone() const;
protected:
virtual void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
int thresh_;
bool nonmax_;
......@@ -799,7 +799,7 @@ public:
virtual Ptr<AdjusterAdapter> clone() const;
protected:
virtual void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
virtual void detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
double thresh_, init_thresh_, min_thresh_, max_thresh_;
};
......@@ -816,7 +816,7 @@ public:
virtual Ptr<AdjusterAdapter> clone() const;
protected:
virtual void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
double thresh_, init_thresh_, min_thresh_, max_thresh_;
};
......@@ -1035,19 +1035,19 @@ public:
*/
// Find one best match for each query descriptor (if mask is empty).
CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors,
CV_OUT std::vector<DMatch>& matches, InputArray mask=Mat() ) const;
CV_OUT std::vector<DMatch>& matches, InputArray mask=noArray() ) const;
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
InputArray mask=Mat(), bool compactResult=false ) const;
InputArray mask=noArray(), bool compactResult=false ) const;
// Find best matches for each query descriptor which have distance less than
// maxDistance (in increasing order of distances).
void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
std::vector<std::vector<DMatch> >& matches, float maxDistance,
InputArray mask=Mat(), bool compactResult=false ) const;
InputArray mask=noArray(), bool compactResult=false ) const;
/*
* Group of methods to match descriptors from one image to image set.
* See description of similar methods for matching image pair above.
......@@ -1102,9 +1102,9 @@ protected:
// that the class object has been trained already. Public match methods call these methods
// after calling train().
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
InputArrayOfArrays masks=std::vector<Mat>(), bool compactResult=false ) = 0;
InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
InputArrayOfArrays masks=std::vector<Mat>(), bool compactResult=false ) = 0;
InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
static bool isPossibleMatch( const Mat& mask, int queryIdx, int trainIdx );
static bool isMaskedOut( const std::vector<Mat>& masks, int queryIdx );
......@@ -1139,15 +1139,9 @@ public:
AlgorithmInfo* info() const;
protected:
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
InputArrayOfArrays masks=std::vector<Mat>(), bool compactResult=false );
InputArrayOfArrays masks=noArray(), bool compactResult=false );
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
InputArrayOfArrays masks=std::vector<Mat>(), bool compactResult=false );
bool ocl_knnMatch(InputArray query, InputArray train, std::vector< std::vector<DMatch> > &matches,
int k, int dstType, bool compactResult=false);
bool ocl_radiusMatch(InputArray query, InputArray train, std::vector< std::vector<DMatch> > &matches,
float maxDistance, int dstType, bool compactResult=false);
bool ocl_match(InputArray query, InputArray train, std::vector< std::vector<DMatch> > &matches, int dstType);
InputArrayOfArrays masks=noArray(), bool compactResult=false );
int normType;
bool crossCheck;
......@@ -1183,9 +1177,9 @@ protected:
std::vector<std::vector<DMatch> >& matches );
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
InputArrayOfArrays masks=std::vector<Mat>(), bool compactResult=false );
InputArrayOfArrays masks=noArray(), bool compactResult=false );
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
InputArrayOfArrays masks=std::vector<Mat>(), bool compactResult=false );
InputArrayOfArrays masks=noArray(), bool compactResult=false );
Ptr<flann::IndexParams> indexParams;
Ptr<flann::SearchParams> searchParams;
......
......@@ -276,7 +276,7 @@ void SimpleBlobDetector::findBlobs(const cv::Mat &image, const cv::Mat &binaryIm
#endif
}
void SimpleBlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, const cv::Mat&) const
void SimpleBlobDetector::detectImpl(InputArray image, std::vector<cv::KeyPoint>& keypoints, InputArray) const
{
//TODO: support mask
keypoints.clear();
......@@ -284,7 +284,7 @@ void SimpleBlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::KeyPoi
if (image.channels() == 3)
cvtColor(image, grayscaleImage, COLOR_BGR2GRAY);
else
grayscaleImage = image;
grayscaleImage = image.getMat();
std::vector < std::vector<Center> > centers;
for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
......@@ -292,20 +292,11 @@ void SimpleBlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::KeyPoi
Mat binarizedImage;
threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);
#ifdef DEBUG_BLOB_DETECTOR
// Mat keypointsImage;
// cvtColor( binarizedImage, keypointsImage, CV_GRAY2RGB );
#endif
std::vector < Center > curCenters;
findBlobs(grayscaleImage, binarizedImage, curCenters);
std::vector < std::vector<Center> > newCenters;
for (size_t i = 0; i < curCenters.size(); i++)
{
#ifdef DEBUG_BLOB_DETECTOR
// circle(keypointsImage, curCenters[i].location, curCenters[i].radius, Scalar(0,0,255),-1);
#endif
bool isNew = true;
for (size_t j = 0; j < centers.size(); j++)
{
......@@ -327,17 +318,9 @@ void SimpleBlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::KeyPoi
}
}
if (isNew)
{
newCenters.push_back(std::vector<Center> (1, curCenters[i]));
//centers.push_back(std::vector<Center> (1, curCenters[i]));
}
}
std::copy(newCenters.begin(), newCenters.end(), std::back_inserter(centers));
#ifdef DEBUG_BLOB_DETECTOR
// imshow("binarized", keypointsImage );
//waitKey();
#endif
}
for (size_t i = 0; i < centers.size(); i++)
......@@ -355,16 +338,4 @@ void SimpleBlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::KeyPoi
KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius));
keypoints.push_back(kpt);
}
#ifdef DEBUG_BLOB_DETECTOR
namedWindow("keypoints", CV_WINDOW_NORMAL);
Mat outImg = image.clone();
for(size_t i=0; i<keypoints.size(); i++)
{
circle(outImg, keypoints[i].pt, keypoints[i].size, Scalar(255, 0, 255), -1);
}
//drawKeypoints(image, keypoints, outImg);
imshow("keypoints", outImg);
waitKey();
#endif
}
......@@ -751,9 +751,9 @@ BRISK::computeKeypointsNoOrientation(InputArray _image, InputArray _mask, std::v
void
BRISK::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
BRISK::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
{
(*this)(image, mask, keypoints);
(*this)(image.getMat(), mask.getMat(), keypoints);
}
void
......@@ -2229,7 +2229,7 @@ BriskLayer::halfsample(const cv::Mat& srcimg, cv::Mat& dstimg)
CV_Assert(srcimg.cols / 2 == dstimg.cols);
CV_Assert(srcimg.rows / 2 == dstimg.rows);
// handle non-SSE case
// handle non-SSE case
resize(srcimg, dstimg, dstimg.size(), 0, 0, INTER_AREA);
}
......
......@@ -51,7 +51,7 @@ namespace cv
FeatureDetector::~FeatureDetector()
{}
void FeatureDetector::detect( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
void FeatureDetector::detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask ) const
{
keypoints.clear();
......@@ -63,11 +63,29 @@ void FeatureDetector::detect( const Mat& image, std::vector<KeyPoint>& keypoints
detectImpl( image, keypoints, mask );
}
void FeatureDetector::detect(const std::vector<Mat>& imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection, const std::vector<Mat>& masks ) const
void FeatureDetector::detect(InputArrayOfArrays _imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection,
InputArrayOfArrays _masks ) const
{
if (_imageCollection.isUMatVector())
{
std::vector<UMat> uimageCollection, umasks;
_imageCollection.getUMatVector(uimageCollection);
_masks.getUMatVector(umasks);
pointCollection.resize( uimageCollection.size() );
for( size_t i = 0; i < uimageCollection.size(); i++ )
detect( uimageCollection[i], pointCollection[i], umasks.empty() ? noArray() : umasks[i] );
return;
}
std::vector<Mat> imageCollection, masks;
_imageCollection.getMatVector(imageCollection);
_masks.getMatVector(masks);
pointCollection.resize( imageCollection.size() );
for( size_t i = 0; i < imageCollection.size(); i++ )
detect( imageCollection[i], pointCollection[i], masks.empty() ? Mat() : masks[i] );
detect( imageCollection[i], pointCollection[i], masks.empty() ? noArray() : masks[i] );
}
/*void FeatureDetector::read( const FileNode& )
......@@ -125,21 +143,37 @@ GFTTDetector::GFTTDetector( int _nfeatures, double _qualityLevel,
{
}
void GFTTDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
void GFTTDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask) const
{
Mat grayImage = image;
if( image.type() != CV_8U ) cvtColor( image, grayImage, COLOR_BGR2GRAY );
std::vector<Point2f> corners;
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, mask,
if (_image.isUMat())
{
UMat ugrayImage;
if( _image.type() != CV_8U )
cvtColor( _image, ugrayImage, COLOR_BGR2GRAY );
else
ugrayImage = _image.getUMat();
goodFeaturesToTrack( ugrayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
blockSize, useHarrisDetector, k );
}
else
{
Mat image = _image.getMat(), grayImage = image;
if( image.type() != CV_8U )
cvtColor( image, grayImage, COLOR_BGR2GRAY );
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
blockSize, useHarrisDetector, k );
}
keypoints.resize(corners.size());
std::vector<Point2f>::const_iterator corner_it = corners.begin();
std::vector<KeyPoint>::iterator keypoint_it = keypoints.begin();
for( ; corner_it != corners.end(); ++corner_it, ++keypoint_it )
{
*keypoint_it = KeyPoint( *corner_it, (float)blockSize );
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
......@@ -157,8 +191,10 @@ DenseFeatureDetector::DenseFeatureDetector( float _initFeatureScale, int _featur
{}
void DenseFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
void DenseFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
{
Mat image = _image.getMat(), mask = _mask.getMat();
float curScale = static_cast<float>(initFeatureScale);
int curStep = initXyStep;
int curBound = initImgBound;
......@@ -271,9 +307,9 @@ public:
};
} // namepace
void GridAdaptedFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
void GridAdaptedFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
{
if (image.empty() || maxTotalKeypoints < gridRows * gridCols)
if (_image.empty() || maxTotalKeypoints < gridRows * gridCols)
{
keypoints.clear();
return;
......@@ -281,6 +317,8 @@ void GridAdaptedFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPo
keypoints.reserve(maxTotalKeypoints);
int maxPerCell = maxTotalKeypoints / (gridRows * gridCols);
Mat image = _image.getMat(), mask = _mask.getMat();
cv::Mutex kptLock;
cv::parallel_for_(cv::Range(0, gridRows * gridCols),
GridAdaptedFeatureDetectorInvoker(detector, image, mask, keypoints, maxPerCell, gridRows, gridCols, &kptLock));
......@@ -298,8 +336,9 @@ bool PyramidAdaptedFeatureDetector::empty() const
return !detector || detector->empty();
}
void PyramidAdaptedFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
void PyramidAdaptedFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
{
Mat image = _image.getMat(), mask = _mask.getMat();
Mat src = image;
Mat src_mask = mask;
......
......@@ -54,8 +54,10 @@ bool DynamicAdaptedFeatureDetector::empty() const
return !adjuster_ || adjuster_->empty();
}
void DynamicAdaptedFeatureDetector::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
void DynamicAdaptedFeatureDetector::detectImpl(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask) const
{
Mat image = _image.getMat(), mask = _mask.getMat();
//for oscillation testing
bool down = false;
bool up = false;
......@@ -98,7 +100,7 @@ FastAdjuster::FastAdjuster( int init_thresh, bool nonmax, int min_thresh, int ma
min_thresh_(min_thresh), max_thresh_(max_thresh)
{}
void FastAdjuster::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
void FastAdjuster::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
{
FastFeatureDetector(thresh_, nonmax_).detect(image, keypoints, mask);
}
......@@ -133,7 +135,7 @@ StarAdjuster::StarAdjuster(double initial_thresh, double min_thresh, double max_
min_thresh_(min_thresh), max_thresh_(max_thresh)
{}
void StarAdjuster::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
void StarAdjuster::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
{
StarFeatureDetector detector_tmp(16, cvRound(thresh_), 10, 8, 3);
detector_tmp.detect(image, keypoints, mask);
......@@ -167,7 +169,7 @@ SurfAdjuster::SurfAdjuster( double initial_thresh, double min_thresh, double max
min_thresh_(min_thresh), max_thresh_(max_thresh)
{}
void SurfAdjuster::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const cv::Mat& mask) const
void SurfAdjuster::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
{
Ptr<FeatureDetector> surf = FeatureDetector::create("SURF");
surf->set("hessianThreshold", thresh_);
......
......@@ -283,10 +283,11 @@ FastFeatureDetector::FastFeatureDetector( int _threshold, bool _nonmaxSuppressio
: threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type((short)_type)
{}
void FastFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
void FastFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
{
Mat grayImage = image;
if( image.type() != CV_8U ) cvtColor( image, grayImage, COLOR_BGR2GRAY );
Mat image = _image.getMat(), mask = _mask.getMat(), grayImage = image;
if( image.type() != CV_8U )
cvtColor( image, grayImage, COLOR_BGR2GRAY );
FAST( grayImage, keypoints, threshold, nonmaxSuppression, type );
KeyPointsFilter::runByPixelsMask( keypoints, mask );
}
......
......@@ -891,21 +891,25 @@ Ptr<DescriptorMatcher> BFMatcher::clone( bool emptyTrainData ) const
return matcher;
}
bool BFMatcher::ocl_match(InputArray query, InputArray _train, std::vector< std::vector<DMatch> > &matches, int dstType)
static bool ocl_match(InputArray query, InputArray _train, std::vector< std::vector<DMatch> > &matches, int dstType)
{
UMat trainIdx, distance;
if(!ocl_matchSingle(query, _train, trainIdx, distance, dstType)) return false;
if(!ocl_matchDownload(trainIdx, distance, matches)) return false;
if (!ocl_matchSingle(query, _train, trainIdx, distance, dstType))
return false;
if (!ocl_matchDownload(trainIdx, distance, matches))
return false;
return true;
}
bool BFMatcher::ocl_knnMatch(InputArray query, InputArray _train, std::vector< std::vector<DMatch> > &matches, int k, int dstType, bool compactResult)
static bool ocl_knnMatch(InputArray query, InputArray _train, std::vector< std::vector<DMatch> > &matches, int k, int dstType, bool compactResult)
{
UMat trainIdx, distance;
if (k != 2)
return false;
if (!ocl_knnMatchSingle(query, _train, trainIdx, distance, dstType)) return false;
if( !ocl_knnMatchDownload(trainIdx, distance, matches, compactResult) ) return false;
if (!ocl_knnMatchSingle(query, _train, trainIdx, distance, dstType))
return false;
if (!ocl_knnMatchDownload(trainIdx, distance, matches, compactResult) )
return false;
return true;
}
......@@ -1033,12 +1037,14 @@ void BFMatcher::knnMatchImpl( InputArray _queryDescriptors, std::vector<std::vec
}
}
bool BFMatcher::ocl_radiusMatch(InputArray query, InputArray _train, std::vector< std::vector<DMatch> > &matches,
static bool ocl_radiusMatch(InputArray query, InputArray _train, std::vector< std::vector<DMatch> > &matches,
float maxDistance, int dstType, bool compactResult)
{
UMat trainIdx, distance, nMatches;
if(!ocl_radiusMatchSingle(query, _train, trainIdx, distance, nMatches, maxDistance, dstType)) return false;
if(!ocl_radiusMatchDownload(trainIdx, distance, nMatches, matches, compactResult)) return false;
if (!ocl_radiusMatchSingle(query, _train, trainIdx, distance, nMatches, maxDistance, dstType))
return false;
if (!ocl_radiusMatchDownload(trainIdx, distance, nMatches, matches, compactResult))
return false;
return true;
}
......@@ -1076,14 +1082,14 @@ void BFMatcher::radiusMatchImpl( InputArray _queryDescriptors, std::vector<std::
_queryDescriptors.type() == CV_32FC1 && _queryDescriptors.offset() == 0 && trainDescOffset == 0 &&
trainDescSize.width == _queryDescriptors.size().width && masks.size() == 1 && masks[0].total() == 0 )
{
if(trainDescCollection.empty())
if (trainDescCollection.empty())
{
if(ocl_radiusMatch(_queryDescriptors, utrainDescCollection[0], matches, maxDistance, normType, compactResult) )
return;
}
else
{
if(ocl_radiusMatch(_queryDescriptors, trainDescCollection[0], matches, maxDistance, normType, compactResult) )
if (ocl_radiusMatch(_queryDescriptors, trainDescCollection[0], matches, maxDistance, normType, compactResult) )
return;
}
}
......
......@@ -1284,8 +1284,9 @@ void MSER::operator()( const Mat& image, std::vector<std::vector<Point> >& dstco
}
void MserFeatureDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
void MserFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
{
Mat image = _image.getMat(), mask = _mask.getMat();
std::vector<std::vector<Point> > msers;
(*this)(image, msers, mask);
......
......@@ -943,9 +943,9 @@ void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>
}
}
void ORB::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
void ORB::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
{
(*this)(image, mask, keypoints, noArray(), false);
(*this)(image.getMat(), mask.getMat(), keypoints, noArray(), false);
}
void ORB::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
......
......@@ -426,9 +426,9 @@ StarDetector::StarDetector(int _maxSize, int _responseThreshold,
{}
void StarDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
void StarDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
{
Mat grayImage = image;
Mat image = _image.getMat(), mask = _mask.getMat(), grayImage = image;
if( image.type() != CV_8U ) cvtColor( image, grayImage, COLOR_BGR2GRAY );
(*this)(grayImage, keypoints);
......
......@@ -87,7 +87,7 @@ public:
std::vector<KeyPoint>& keypoints ) const;
protected:
void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask = Mat() ) const;
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ) const;
void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const;
CV_PROP_RW int nfeatures;
......@@ -143,7 +143,7 @@ public:
protected:
void detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask = Mat() ) const;
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ) const;
void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const;
};
......
......@@ -818,9 +818,9 @@ void SIFT::operator()(InputArray _image, InputArray _mask,
}
}
void SIFT::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
void SIFT::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
{
(*this)(image, mask, keypoints, noArray());
(*this)(image.getMat(), mask.getMat(), keypoints, noArray());
}
void SIFT::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
......
......@@ -979,9 +979,9 @@ void SURF::operator()(InputArray _img, InputArray _mask,
}
void SURF::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
void SURF::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
{
(*this)(image, mask, keypoints, noArray(), false);
(*this)(image.getMat(), mask.getMat(), keypoints, noArray(), false);
}
void SURF::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment