Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
55af7857
Commit
55af7857
authored
Nov 29, 2013
by
Ilya Lavrenov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added cv::warpPerspective to T-API
parent
90c23067
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
1158 additions
and
9 deletions
+1158
-9
ocl.hpp
modules/core/include/opencv2/core/ocl.hpp
+1
-1
ocl.cpp
modules/core/src/ocl.cpp
+3
-2
imgwarp.cpp
modules/imgproc/src/imgwarp.cpp
+61
-1
warp_affine.cl
modules/imgproc/src/opencl/warp_affine.cl
+761
-0
warp_perspective.cl
modules/imgproc/src/opencl/warp_perspective.cl
+223
-0
test_warp.cpp
modules/imgproc/test/ocl/test_warp.cpp
+109
-5
No files found.
modules/core/include/opencv2/core/ocl.hpp
View file @
55af7857
...
...
@@ -286,7 +286,7 @@ public:
Kernel
();
Kernel
(
const
char
*
kname
,
const
Program
&
prog
);
Kernel
(
const
char
*
kname
,
const
ProgramSource2
&
prog
,
const
String
&
buildopts
,
String
*
errmsg
=
0
);
const
String
&
buildopts
=
String
()
,
String
*
errmsg
=
0
);
~
Kernel
();
Kernel
(
const
Kernel
&
k
);
Kernel
&
operator
=
(
const
Kernel
&
k
);
...
...
modules/core/src/ocl.cpp
View file @
55af7857
...
...
@@ -1893,7 +1893,7 @@ Context2& Context2::getDefault()
// First, try to retrieve existing context of the same type.
// In its turn, Platform::getContext() may call Context2::create()
// if there is no such context.
ctx
.
create
(
Device
::
TYPE_
ACCELERATOR
);
ctx
.
create
(
Device
::
TYPE_
CPU
);
if
(
!
ctx
.
p
)
ctx
.
create
(
Device
::
TYPE_DGPU
);
if
(
!
ctx
.
p
)
...
...
@@ -2041,6 +2041,7 @@ struct Kernel::Impl
cl_int
retval
=
0
;
handle
=
ph
!=
0
?
clCreateKernel
(
ph
,
kname
,
&
retval
)
:
0
;
printf
(
"kernel creation error code: %d
\n
"
,
retval
);
for
(
int
i
=
0
;
i
<
MAX_ARRS
;
i
++
)
u
[
i
]
=
0
;
haveTempDstUMats
=
false
;
...
...
@@ -2218,7 +2219,7 @@ int Kernel::set(int i, const KernelArg& arg)
else
if
(
arg
.
m
->
dims
<=
2
)
{
UMat2D
u2d
(
*
arg
.
m
);
clSetKernelArg
(
p
->
handle
,
(
cl_uint
)
i
,
sizeof
(
h
),
&
h
);
clSetKernelArg
(
p
->
handle
,
(
cl_uint
)
i
,
sizeof
(
h
),
&
h
)
)
;
clSetKernelArg
(
p
->
handle
,
(
cl_uint
)(
i
+
1
),
sizeof
(
u2d
.
step
),
&
u2d
.
step
);
clSetKernelArg
(
p
->
handle
,
(
cl_uint
)(
i
+
2
),
sizeof
(
u2d
.
offset
),
&
u2d
.
offset
);
i
+=
3
;
...
...
modules/imgproc/src/imgwarp.cpp
View file @
55af7857
...
...
@@ -4030,16 +4030,76 @@ private:
};
#endif
static
bool
ocl_warpPerspective
(
InputArray
_src
,
OutputArray
_dst
,
InputArray
_M0
,
Size
dsize
,
int
flags
,
int
borderType
,
const
Scalar
&
borderValue
)
{
int
type
=
_src
.
type
(),
depth
=
CV_MAT_DEPTH
(
type
),
cn
=
CV_MAT_CN
(
type
),
wdepth
=
depth
;
double
doubleSupport
=
ocl
::
Device
::
getDefault
().
doubleFPConfig
()
>
0
;
int
interpolation
=
flags
&
INTER_MAX
;
if
(
interpolation
==
INTER_AREA
)
interpolation
=
INTER_LINEAR
;
if
(
!
(
borderType
==
cv
::
BORDER_CONSTANT
&&
(
interpolation
==
cv
::
INTER_NEAREST
||
interpolation
==
cv
::
INTER_LINEAR
||
interpolation
==
cv
::
INTER_CUBIC
))
||
(
!
doubleSupport
&&
depth
==
CV_64F
)
||
cn
>
4
||
cn
==
3
)
return
false
;
UMat
src
=
_src
.
getUMat
(),
M0
;
_dst
.
create
(
dsize
.
area
()
==
0
?
src
.
size
()
:
dsize
,
src
.
type
()
);
UMat
dst
=
_dst
.
getUMat
();
double
M
[
9
];
Mat
matM
(
3
,
3
,
doubleSupport
?
CV_64F
:
CV_32F
,
M
),
M1
=
_M0
.
getMat
();
CV_Assert
(
(
M1
.
type
()
==
CV_32F
||
M1
.
type
()
==
CV_64F
)
&&
M1
.
rows
==
3
&&
M1
.
cols
==
3
);
M1
.
convertTo
(
matM
,
matM
.
type
());
if
(
!
(
flags
&
WARP_INVERSE_MAP
)
)
invert
(
matM
,
matM
);
matM
.
copyTo
(
M0
);
const
char
*
const
interpolationMap
[
3
]
=
{
"NEAREST"
,
"LINEAR"
,
"CUBIC"
};
ocl
::
Kernel
k
;
if
(
interpolation
==
INTER_NEAREST
)
{
k
.
create
(
"warpPerspective"
,
ocl
::
imgproc
::
warp_perspective_oclsrc
,
format
(
"-D INTER_NEAREST -D T=%s%s"
,
ocl
::
typeToStr
(
type
),
doubleSupport
?
" -D DOUBLE_SUPPORT"
:
""
));
}
else
{
char
cvt
[
2
][
50
];
wdepth
=
std
::
max
(
CV_32S
,
depth
);
k
.
create
(
"warpPerspective"
,
ocl
::
imgproc
::
warp_perspective_oclsrc
,
format
(
"-D INTER_%s -D T=%s -D WT=%s -D depth=%d -D convertToWT=%s -D convertToT=%s%s"
,
interpolationMap
[
interpolation
],
ocl
::
typeToStr
(
type
),
ocl
::
typeToStr
(
CV_MAKE_TYPE
(
wdepth
,
cn
)),
depth
,
ocl
::
convertTypeStr
(
depth
,
wdepth
,
cn
,
cvt
[
0
]),
ocl
::
convertTypeStr
(
wdepth
,
depth
,
cn
,
cvt
[
1
]),
doubleSupport
?
" -D DOUBLE_SUPPORT"
:
""
));
}
k
.
args
(
ocl
::
KernelArg
::
ReadOnly
(
src
),
ocl
::
KernelArg
::
WriteOnly
(
dst
),
ocl
::
KernelArg
::
PtrOnly
(
M0
),
ocl
::
KernelArg
::
Constant
(
Mat
(
1
,
1
,
CV_MAKE_TYPE
(
wdepth
,
cn
),
borderValue
)));
size_t
globalThreads
[
2
]
=
{
dst
.
cols
,
dst
.
rows
};
return
k
.
run
(
2
,
globalThreads
,
NULL
,
false
);
}
}
void
cv
::
warpPerspective
(
InputArray
_src
,
OutputArray
_dst
,
InputArray
_M0
,
Size
dsize
,
int
flags
,
int
borderType
,
const
Scalar
&
borderValue
)
{
CV_Assert
(
_src
.
total
()
>
0
);
if
(
ocl
::
useOpenCL
()
&&
_dst
.
isUMat
()
&&
ocl_warpPerspective
(
_src
,
_dst
,
_M0
,
dsize
,
flags
,
borderType
,
borderValue
))
return
;
Mat
src
=
_src
.
getMat
(),
M0
=
_M0
.
getMat
();
_dst
.
create
(
dsize
.
area
()
==
0
?
src
.
size
()
:
dsize
,
src
.
type
()
);
Mat
dst
=
_dst
.
getMat
();
CV_Assert
(
src
.
cols
>
0
&&
src
.
rows
>
0
);
if
(
dst
.
data
==
src
.
data
)
src
=
src
.
clone
();
...
...
modules/imgproc/src/opencl/warp_affine.cl
0 → 100644
View file @
55af7857
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//
IMPORTANT:
READ
BEFORE
DOWNLOADING,
COPYING,
INSTALLING
OR
USING.
//
//
By
downloading,
copying,
installing
or
using
the
software
you
agree
to
this
license.
//
If
you
do
not
agree
to
this
license,
do
not
download,
install,
//
copy
or
use
the
software.
//
//
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2010-2012,
Institute
Of
Software
Chinese
Academy
Of
Science,
all
rights
reserved.
//
Copyright
(
C
)
2010-2012,
Advanced
Micro
Devices,
Inc.,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
@Authors
//
Zhang
Ying,
zhangying913@gmail.com
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
materials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
as
is
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//M*/
//warpAffine
kernel
//support
data
types:
CV_8UC1,
CV_8UC4,
CV_32FC1,
CV_32FC4,
and
three
interpolation
methods:
NN,
Linear,
Cubic.
#
ifdef
DOUBLE_SUPPORT
#
ifdef
cl_amd_fp64
#
pragma
OPENCL
EXTENSION
cl_amd_fp64:enable
#
elif
defined
(
cl_khr_fp64
)
#
pragma
OPENCL
EXTENSION
cl_khr_fp64:enable
#
endif
typedef
double
F
;
typedef
double4
F4
;
#
define
convert_F4
convert_double4
#
else
typedef
float
F
;
typedef
float4
F4
;
#
define
convert_F4
convert_float4
#
endif
#
define
INTER_BITS
5
#
define
INTER_TAB_SIZE
(
1
<<
INTER_BITS
)
#
define
INTER_SCALE
1.f/INTER_TAB_SIZE
#
define
AB_BITS
max
(
10
,
(
int
)
INTER_BITS
)
#
define
AB_SCALE
(
1
<<
AB_BITS
)
#
define
INTER_REMAP_COEF_BITS
15
#
define
INTER_REMAP_COEF_SCALE
(
1
<<
INTER_REMAP_COEF_BITS
)
inline
void
interpolateCubic
(
float
x,
float*
coeffs
)
{
const
float
A
=
-0.75f
;
coeffs[0]
=
((
A*
(
x
+
1.f
)
-
5.0f*A
)
*
(
x
+
1.f
)
+
8.0f*A
)
*
(
x
+
1.f
)
-
4.0f*A
;
coeffs[1]
=
((
A
+
2.f
)
*x
-
(
A
+
3.f
))
*x*
x
+
1.f
;
coeffs[2]
=
((
A
+
2.f
)
*
(
1.f
-
x
)
-
(
A
+
3.f
))
*
(
1.f
-
x
)
*
(
1.f
-
x
)
+
1.f
;
coeffs[3]
=
1.f
-
coeffs[0]
-
coeffs[1]
-
coeffs[2]
;
}
/**********************************************8UC1*********************************************
***********************************************************************************************
/
__kernel
void
warpAffineNN_C1_D0
(
__global
uchar
const
*
restrict
src,
__global
uchar
*
dst,
int
src_cols,
int
src_rows,
int
dst_cols,
int
dst_rows,
int
srcStep,
int
dstStep,
int
src_offset,
int
dst_offset,
__constant
F
*
M,
int
threadCols
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
threadCols
&&
dy
<
dst_rows
)
{
dx
=
(
dx<<2
)
-
(
dst_offset&3
)
;
int
round_delta
=
(
AB_SCALE>>1
)
;
int4
X,
Y
;
int4
sx,
sy
;
int4
DX
=
(
int4
)(
dx,
dx+1,
dx+2,
dx+3
)
;
DX
=
(
DX
<<
AB_BITS
)
;
F4
M0DX,
M3DX
;
M0DX
=
M[0]
*
convert_F4
(
DX
)
;
M3DX
=
M[3]
*
convert_F4
(
DX
)
;
X
=
convert_int4
(
rint
(
M0DX
))
;
Y
=
convert_int4
(
rint
(
M3DX
))
;
int
tmp1,
tmp2
;
tmp1
=
rint
((
M[1]*dy
+
M[2]
)
*
AB_SCALE
)
;
tmp2
=
rint
((
M[4]*dy
+
M[5]
)
*
AB_SCALE
)
;
X
+=
tmp1
+
round_delta
;
Y
+=
tmp2
+
round_delta
;
sx
=
convert_int4
(
convert_short4
(
X
>>
AB_BITS
))
;
sy
=
convert_int4
(
convert_short4
(
Y
>>
AB_BITS
))
;
__global
uchar4
*
d
=
(
__global
uchar4
*
)(
dst+dst_offset+dy*dstStep+dx
)
;
uchar4
dval
=
*d
;
DX
=
(
int4
)(
dx,
dx+1,
dx+2,
dx+3
)
;
int4
dcon
=
DX
>=
0
&&
DX
<
dst_cols
&&
dy
>=
0
&&
dy
<
dst_rows
;
int4
scon
=
sx
>=
0
&&
sx
<
src_cols
&&
sy
>=
0
&&
sy
<
src_rows
;
int4
spos
=
src_offset
+
sy
*
srcStep
+
sx
;
uchar4
sval
;
sval.s0
=
scon.s0
?
src[spos.s0]
:
0
;
sval.s1
=
scon.s1
?
src[spos.s1]
:
0
;
sval.s2
=
scon.s2
?
src[spos.s2]
:
0
;
sval.s3
=
scon.s3
?
src[spos.s3]
:
0
;
dval
=
convert_uchar4
(
dcon
)
!=
(
uchar4
)(
0
,
0
,
0
,
0
)
?
sval
:
dval
;
*d
=
dval
;
}
}
__kernel
void
warpAffineLinear_C1_D0
(
__global
const
uchar
*
restrict
src,
__global
uchar
*
dst,
int
src_cols,
int
src_rows,
int
dst_cols,
int
dst_rows,
int
srcStep,
int
dstStep,
int
src_offset,
int
dst_offset,
__constant
F
*
M,
int
threadCols
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
threadCols
&&
dy
<
dst_rows
)
{
dx
=
(
dx<<2
)
-
(
dst_offset&3
)
;
int
round_delta
=
((
AB_SCALE
>>
INTER_BITS
)
>>
1
)
;
int4
X,
Y
;
short4
ax,
ay
;
int4
sx,
sy
;
int4
DX
=
(
int4
)(
dx,
dx+1,
dx+2,
dx+3
)
;
DX
=
(
DX
<<
AB_BITS
)
;
F4
M0DX,
M3DX
;
M0DX
=
M[0]
*
convert_F4
(
DX
)
;
M3DX
=
M[3]
*
convert_F4
(
DX
)
;
X
=
convert_int4
(
rint
(
M0DX
))
;
Y
=
convert_int4
(
rint
(
M3DX
))
;
int
tmp1,
tmp2
;
tmp1
=
rint
((
M[1]*dy
+
M[2]
)
*
AB_SCALE
)
;
tmp2
=
rint
((
M[4]*dy
+
M[5]
)
*
AB_SCALE
)
;
X
+=
tmp1
+
round_delta
;
Y
+=
tmp2
+
round_delta
;
X
=
X
>>
(
AB_BITS
-
INTER_BITS
)
;
Y
=
Y
>>
(
AB_BITS
-
INTER_BITS
)
;
sx
=
convert_int4
(
convert_short4
(
X
>>
INTER_BITS
))
;
sy
=
convert_int4
(
convert_short4
(
Y
>>
INTER_BITS
))
;
ax
=
convert_short4
(
X
&
(
INTER_TAB_SIZE-1
))
;
ay
=
convert_short4
(
Y
&
(
INTER_TAB_SIZE-1
))
;
uchar4
v0,
v1,
v2,v3
;
int4
scon0,
scon1,
scon2,
scon3
;
int4
spos0,
spos1,
spos2,
spos3
;
scon0
=
(
sx
>=
0
&&
sx
<
src_cols
&&
sy
>=
0
&&
sy
<
src_rows
)
;
scon1
=
(
sx+1
>=
0
&&
sx+1
<
src_cols
&&
sy
>=
0
&&
sy
<
src_rows
)
;
scon2
=
(
sx
>=
0
&&
sx
<
src_cols
&&
sy+1
>=
0
&&
sy+1
<
src_rows
)
;
scon3
=
(
sx+1
>=
0
&&
sx+1
<
src_cols
&&
sy+1
>=
0
&&
sy+1
<
src_rows
)
;
spos0
=
src_offset
+
sy
*
srcStep
+
sx
;
spos1
=
src_offset
+
sy
*
srcStep
+
sx
+
1
;
spos2
=
src_offset
+
(
sy+1
)
*
srcStep
+
sx
;
spos3
=
src_offset
+
(
sy+1
)
*
srcStep
+
sx
+
1
;
v0.s0
=
scon0.s0
?
src[spos0.s0]
:
0
;
v1.s0
=
scon1.s0
?
src[spos1.s0]
:
0
;
v2.s0
=
scon2.s0
?
src[spos2.s0]
:
0
;
v3.s0
=
scon3.s0
?
src[spos3.s0]
:
0
;
v0.s1
=
scon0.s1
?
src[spos0.s1]
:
0
;
v1.s1
=
scon1.s1
?
src[spos1.s1]
:
0
;
v2.s1
=
scon2.s1
?
src[spos2.s1]
:
0
;
v3.s1
=
scon3.s1
?
src[spos3.s1]
:
0
;
v0.s2
=
scon0.s2
?
src[spos0.s2]
:
0
;
v1.s2
=
scon1.s2
?
src[spos1.s2]
:
0
;
v2.s2
=
scon2.s2
?
src[spos2.s2]
:
0
;
v3.s2
=
scon3.s2
?
src[spos3.s2]
:
0
;
v0.s3
=
scon0.s3
?
src[spos0.s3]
:
0
;
v1.s3
=
scon1.s3
?
src[spos1.s3]
:
0
;
v2.s3
=
scon2.s3
?
src[spos2.s3]
:
0
;
v3.s3
=
scon3.s3
?
src[spos3.s3]
:
0
;
short4
itab0,
itab1,
itab2,
itab3
;
float4
taby,
tabx
;
taby
=
INTER_SCALE
*
convert_float4
(
ay
)
;
tabx
=
INTER_SCALE
*
convert_float4
(
ax
)
;
itab0
=
convert_short4_sat
((
(
1.0f-taby
)
*
(
1.0f-tabx
)
*
(
float4
)
INTER_REMAP_COEF_SCALE
))
;
itab1
=
convert_short4_sat
((
(
1.0f-taby
)
*tabx
*
(
float4
)
INTER_REMAP_COEF_SCALE
))
;
itab2
=
convert_short4_sat
((
taby*
(
1.0f-tabx
)
*
(
float4
)
INTER_REMAP_COEF_SCALE
))
;
itab3
=
convert_short4_sat
((
taby*tabx
*
(
float4
)
INTER_REMAP_COEF_SCALE
))
;
int4
val
;
uchar4
tval
;
val
=
convert_int4
(
v0
)
*
convert_int4
(
itab0
)
+
convert_int4
(
v1
)
*
convert_int4
(
itab1
)
+
convert_int4
(
v2
)
*
convert_int4
(
itab2
)
+
convert_int4
(
v3
)
*
convert_int4
(
itab3
)
;
tval
=
convert_uchar4_sat
(
(
val
+
(
1
<<
(
INTER_REMAP_COEF_BITS-1
)))
>>
INTER_REMAP_COEF_BITS
)
;
__global
uchar4
*
d
=
(
__global
uchar4
*
)(
dst+dst_offset+dy*dstStep+dx
)
;
uchar4
dval
=
*d
;
DX
=
(
int4
)(
dx,
dx+1,
dx+2,
dx+3
)
;
int4
dcon
=
DX
>=
0
&&
DX
<
dst_cols
&&
dy
>=
0
&&
dy
<
dst_rows
;
dval
=
convert_uchar4
(
dcon
!=
0
)
?
tval
:
dval
;
*d
=
dval
;
}
}
__kernel
void
warpAffineCubic_C1_D0
(
__global
uchar
*
src,
__global
uchar
*
dst,
int
src_cols,
int
src_rows,
int
dst_cols,
int
dst_rows,
int
srcStep,
int
dstStep,
int
src_offset,
int
dst_offset,
__constant
F
*
M,
int
threadCols
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
threadCols
&&
dy
<
dst_rows
)
{
int
round_delta
=
((
AB_SCALE>>INTER_BITS
)
>>1
)
;
int
X0
=
rint
(
M[0]
*
dx
*
AB_SCALE
)
;
int
Y0
=
rint
(
M[3]
*
dx
*
AB_SCALE
)
;
X0
+=
rint
((
M[1]*dy
+
M[2]
)
*
AB_SCALE
)
+
round_delta
;
Y0
+=
rint
((
M[4]*dy
+
M[5]
)
*
AB_SCALE
)
+
round_delta
;
int
X
=
X0
>>
(
AB_BITS
-
INTER_BITS
)
;
int
Y
=
Y0
>>
(
AB_BITS
-
INTER_BITS
)
;
short
sx
=
(
short
)(
X
>>
INTER_BITS
)
-
1
;
short
sy
=
(
short
)(
Y
>>
INTER_BITS
)
-
1
;
short
ay
=
(
short
)(
Y
&
(
INTER_TAB_SIZE-1
))
;
short
ax
=
(
short
)(
X
&
(
INTER_TAB_SIZE-1
))
;
uchar
v[16]
;
int
i,
j
;
#
pragma
unroll
4
for
(
i=0
; i<4; i++)
for
(
j=0
; j<4; j++)
{
v[i*4+j]
=
(
sx+j
>=
0
&&
sx+j
<
src_cols
&&
sy+i
>=
0
&&
sy+i
<
src_rows
)
?
src[src_offset+
(
sy+i
)
*
srcStep
+
(
sx+j
)
]
:
0
;
}
short
itab[16]
;
float
tab1y[4],
tab1x[4]
;
float
axx,
ayy
;
ayy
=
1.f/INTER_TAB_SIZE
*
ay
;
axx
=
1.f/INTER_TAB_SIZE
*
ax
;
interpolateCubic
(
ayy,
tab1y
)
;
interpolateCubic
(
axx,
tab1x
)
;
int
isum
=
0
;
#
pragma
unroll
16
for
(
i=0
; i<16; i++ )
{
F
v
=
tab1y[
(
i>>2
)
]
*
tab1x[
(
i&3
)
]
;
isum
+=
itab[i]
=
convert_short_sat
(
rint
(
v
*
INTER_REMAP_COEF_SCALE
)
)
;
}
if
(
isum
!=
INTER_REMAP_COEF_SCALE
)
{
int
k1,
k2
;
int
diff
=
isum
-
INTER_REMAP_COEF_SCALE
;
int
Mk1=2,
Mk2=2,
mk1=2,
mk2=2
;
for
(
k1
=
2
; k1 < 4; k1++ )
for
(
k2
=
2
; k2 < 4; k2++ )
{
if
(
itab[
(
k1<<2
)
+k2]
<
itab[
(
mk1<<2
)
+mk2]
)
mk1
=
k1,
mk2
=
k2
;
else
if
(
itab[
(
k1<<2
)
+k2]
>
itab[
(
Mk1<<2
)
+Mk2]
)
Mk1
=
k1,
Mk2
=
k2
;
}
diff<0
?
(
itab[
(
Mk1<<2
)
+Mk2]=
(
short
)(
itab[
(
Mk1<<2
)
+Mk2]-diff
))
:
(
itab[
(
mk1<<2
)
+mk2]=
(
short
)(
itab[
(
mk1<<2
)
+mk2]-diff
))
;
}
if
(
dx
>=
0
&&
dx
<
dst_cols
&&
dy
>=
0
&&
dy
<
dst_rows
)
{
int
sum=0
;
for
(
i
=0
; i<16; i++ )
{
sum
+=
v[i]
*
itab[i]
;
}
dst[dst_offset+dy*dstStep+dx]
=
convert_uchar_sat
(
(
sum
+
(
1
<<
(
INTER_REMAP_COEF_BITS-1
)))
>>
INTER_REMAP_COEF_BITS
)
;
}
}
}
/**********************************************8UC4*********************************************
***********************************************************************************************
/
__kernel
void
warpAffineNN_C4_D0
(
__global
uchar4
const
*
restrict
src,
__global
uchar4
*
dst,
int
src_cols,
int
src_rows,
int
dst_cols,
int
dst_rows,
int
srcStep,
int
dstStep,
int
src_offset,
int
dst_offset,
__constant
F
*
M,
int
threadCols
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
threadCols
&&
dy
<
dst_rows
)
{
int
round_delta
=
(
AB_SCALE
>>
1
)
;
int
X0
=
rint
(
M[0]
*
dx
*
AB_SCALE
)
;
int
Y0
=
rint
(
M[3]
*
dx
*
AB_SCALE
)
;
X0
+=
rint
((
M[1]*dy
+
M[2]
)
*
AB_SCALE
)
+
round_delta
;
Y0
+=
rint
((
M[4]*dy
+
M[5]
)
*
AB_SCALE
)
+
round_delta
;
int
sx0
=
(
short
)(
X0
>>
AB_BITS
)
;
int
sy0
=
(
short
)(
Y0
>>
AB_BITS
)
;
if
(
dx
>=
0
&&
dx
<
dst_cols
&&
dy
>=
0
&&
dy
<
dst_rows
)
dst[
(
dst_offset>>2
)
+dy*
(
dstStep>>2
)
+dx]=
(
sx0>=0
&&
sx0<src_cols
&&
sy0>=0
&&
sy0<src_rows
)
?
src[
(
src_offset>>2
)
+sy0*
(
srcStep>>2
)
+sx0]
:
(
uchar4
)
0
;
}
}
__kernel
void
warpAffineLinear_C4_D0
(
__global
uchar4
const
*
restrict
src,
__global
uchar4
*
dst,
int
src_cols,
int
src_rows,
int
dst_cols,
int
dst_rows,
int
srcStep,
int
dstStep,
int
src_offset,
int
dst_offset,
__constant
F
*
M,
int
threadCols
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
threadCols
&&
dy
<
dst_rows
)
{
int
round_delta
=
AB_SCALE/INTER_TAB_SIZE/2
;
src_offset
=
(
src_offset>>2
)
;
srcStep
=
(
srcStep>>2
)
;
int
tmp
=
(
dx
<<
AB_BITS
)
;
int
X0
=
rint
(
M[0]
*
tmp
)
;
int
Y0
=
rint
(
M[3]
*
tmp
)
;
X0
+=
rint
((
M[1]*dy
+
M[2]
)
*
AB_SCALE
)
+
round_delta
;
Y0
+=
rint
((
M[4]*dy
+
M[5]
)
*
AB_SCALE
)
+
round_delta
;
X0
=
X0
>>
(
AB_BITS
-
INTER_BITS
)
;
Y0
=
Y0
>>
(
AB_BITS
-
INTER_BITS
)
;
short
sx0
=
(
short
)(
X0
>>
INTER_BITS
)
;
short
sy0
=
(
short
)(
Y0
>>
INTER_BITS
)
;
short
ax0
=
(
short
)(
X0
&
(
INTER_TAB_SIZE-1
))
;
short
ay0
=
(
short
)(
Y0
&
(
INTER_TAB_SIZE-1
))
;
int4
v0,
v1,
v2,
v3
;
v0
=
(
sx0
>=
0
&&
sx0
<
src_cols
&&
sy0
>=
0
&&
sy0
<
src_rows
)
?
convert_int4
(
src[src_offset+sy0
*
srcStep
+
sx0]
)
:
0
;
v1
=
(
sx0+1
>=
0
&&
sx0+1
<
src_cols
&&
sy0
>=
0
&&
sy0
<
src_rows
)
?
convert_int4
(
src[src_offset+sy0
*
srcStep
+
sx0+1]
)
:
0
;
v2
=
(
sx0
>=
0
&&
sx0
<
src_cols
&&
sy0+1
>=
0
&&
sy0+1
<
src_rows
)
?
convert_int4
(
src[src_offset+
(
sy0+1
)
*
srcStep
+
sx0]
)
:
0
;
v3
=
(
sx0+1
>=
0
&&
sx0+1
<
src_cols
&&
sy0+1
>=
0
&&
sy0+1
<
src_rows
)
?
convert_int4
(
src[src_offset+
(
sy0+1
)
*
srcStep
+
sx0+1]
)
:
0
;
int
itab0,
itab1,
itab2,
itab3
;
float
taby,
tabx
;
taby
=
1.f/INTER_TAB_SIZE*ay0
;
tabx
=
1.f/INTER_TAB_SIZE*ax0
;
itab0
=
convert_short_sat
(
rint
(
(
1.0f-taby
)
*
(
1.0f-tabx
)
*
INTER_REMAP_COEF_SCALE
))
;
itab1
=
convert_short_sat
(
rint
(
(
1.0f-taby
)
*tabx
*
INTER_REMAP_COEF_SCALE
))
;
itab2
=
convert_short_sat
(
rint
(
taby*
(
1.0f-tabx
)
*
INTER_REMAP_COEF_SCALE
))
;
itab3
=
convert_short_sat
(
rint
(
taby*tabx
*
INTER_REMAP_COEF_SCALE
))
;
int4
val
;
val
=
v0
*
itab0
+
v1
*
itab1
+
v2
*
itab2
+
v3
*
itab3
;
if
(
dx
>=
0
&&
dx
<
dst_cols
&&
dy
>=
0
&&
dy
<
dst_rows
)
dst[
(
dst_offset>>2
)
+dy*
(
dstStep>>2
)
+dx]
=
convert_uchar4_sat
(
(
val
+
(
1
<<
(
INTER_REMAP_COEF_BITS-1
)))
>>
INTER_REMAP_COEF_BITS
)
;
}
}
__kernel
void
warpAffineCubic_C4_D0
(
__global
uchar4
const
*
restrict
src,
__global
uchar4
*
dst,
int
src_cols,
int
src_rows,
int
dst_cols,
int
dst_rows,
int
srcStep,
int
dstStep,
int
src_offset,
int
dst_offset,
__constant
F
*
M,
int
threadCols
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
threadCols
&&
dy
<
dst_rows
)
{
int
round_delta
=
((
AB_SCALE>>INTER_BITS
)
>>1
)
;
src_offset
=
(
src_offset>>2
)
;
srcStep
=
(
srcStep>>2
)
;
dst_offset
=
(
dst_offset>>2
)
;
dstStep
=
(
dstStep>>2
)
;
int
tmp
=
(
dx
<<
AB_BITS
)
;
int
X0
=
rint
(
M[0]
*
tmp
)
;
int
Y0
=
rint
(
M[3]
*
tmp
)
;
X0
+=
rint
((
M[1]*dy
+
M[2]
)
*
AB_SCALE
)
+
round_delta
;
Y0
+=
rint
((
M[4]*dy
+
M[5]
)
*
AB_SCALE
)
+
round_delta
;
X0
=
X0
>>
(
AB_BITS
-
INTER_BITS
)
;
Y0
=
Y0
>>
(
AB_BITS
-
INTER_BITS
)
;
int
sx
=
(
short
)(
X0
>>
INTER_BITS
)
-
1
;
int
sy
=
(
short
)(
Y0
>>
INTER_BITS
)
-
1
;
int
ay
=
(
short
)(
Y0
&
(
INTER_TAB_SIZE-1
))
;
int
ax
=
(
short
)(
X0
&
(
INTER_TAB_SIZE-1
))
;
uchar4
v[16]
;
int
i,j
;
#
pragma
unroll
4
for
(
i=0
; i<4; i++)
for
(
j=0
; j<4; j++)
{
v[i*4+j]
=
(
sx+j
>=
0
&&
sx+j
<
src_cols
&&
sy+i
>=
0
&&
sy+i
<
src_rows
)
?
(
src[src_offset+
(
sy+i
)
*
srcStep
+
(
sx+j
)
]
)
:
(
uchar4
)
0
;
}
int
itab[16]
;
float
tab1y[4],
tab1x[4]
;
float
axx,
ayy
;
ayy
=
INTER_SCALE
*
ay
;
axx
=
INTER_SCALE
*
ax
;
interpolateCubic
(
ayy,
tab1y
)
;
interpolateCubic
(
axx,
tab1x
)
;
int
isum
=
0
;
#
pragma
unroll
16
for
(
i=0
; i<16; i++ )
{
float
tmp
;
tmp
=
tab1y[
(
i>>2
)
]
*
tab1x[
(
i&3
)
]
*
INTER_REMAP_COEF_SCALE
;
itab[i]
=
rint
(
tmp
)
;
isum
+=
itab[i]
;
}
if
(
isum
!=
INTER_REMAP_COEF_SCALE
)
{
int
k1,
k2
;
int
diff
=
isum
-
INTER_REMAP_COEF_SCALE
;
int
Mk1=2,
Mk2=2,
mk1=2,
mk2=2
;
for
(
k1
=
2
; k1 < 4; k1++ )
for
(
k2
=
2
; k2 < 4; k2++ )
{
if
(
itab[
(
k1<<2
)
+k2]
<
itab[
(
mk1<<2
)
+mk2]
)
mk1
=
k1,
mk2
=
k2
;
else
if
(
itab[
(
k1<<2
)
+k2]
>
itab[
(
Mk1<<2
)
+Mk2]
)
Mk1
=
k1,
Mk2
=
k2
;
}
diff<0
?
(
itab[
(
Mk1<<2
)
+Mk2]=
(
short
)(
itab[
(
Mk1<<2
)
+Mk2]-diff
))
:
(
itab[
(
mk1<<2
)
+mk2]=
(
short
)(
itab[
(
mk1<<2
)
+mk2]-diff
))
;
}
if
(
dx
>=
0
&&
dx
<
dst_cols
&&
dy
>=
0
&&
dy
<
dst_rows
)
{
int4
sum=0
;
for
(
i
=0
; i<16; i++ )
{
sum
+=
convert_int4
(
v[i]
)
*
itab[i]
;
}
dst[dst_offset+dy*dstStep+dx]
=
convert_uchar4_sat
(
(
sum
+
(
1
<<
(
INTER_REMAP_COEF_BITS-1
)))
>>
INTER_REMAP_COEF_BITS
)
;
}
}
}
/**********************************************32FC1********************************************
***********************************************************************************************
/
__kernel
void
warpAffineNN_C1_D5
(
__global
float
*
src,
__global
float
*
dst,
int
src_cols,
int
src_rows,
int
dst_cols,
int
dst_rows,
int
srcStep,
int
dstStep,
int
src_offset,
int
dst_offset,
__constant
F
*
M,
int
threadCols
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
threadCols
&&
dy
<
dst_rows
)
{
int
round_delta
=
AB_SCALE/2
;
int
X0
=
rint
(
M[0]
*
dx
*
AB_SCALE
)
;
int
Y0
=
rint
(
M[3]
*
dx
*
AB_SCALE
)
;
X0
+=
rint
((
M[1]*dy
+
M[2]
)
*
AB_SCALE
)
+
round_delta
;
Y0
+=
rint
((
M[4]*dy
+
M[5]
)
*
AB_SCALE
)
+
round_delta
;
short
sx0
=
(
short
)(
X0
>>
AB_BITS
)
;
short
sy0
=
(
short
)(
Y0
>>
AB_BITS
)
;
if
(
dx
>=
0
&&
dx
<
dst_cols
&&
dy
>=
0
&&
dy
<
dst_rows
)
dst[
(
dst_offset>>2
)
+dy*dstStep+dx]=
(
sx0>=0
&&
sx0<src_cols
&&
sy0>=0
&&
sy0<src_rows
)
?
src[
(
src_offset>>2
)
+sy0*srcStep+sx0]
:
0
;
}
}
__kernel
void
warpAffineLinear_C1_D5
(
__global
float
*
src,
__global
float
*
dst,
int
src_cols,
int
src_rows,
int
dst_cols,
int
dst_rows,
int
srcStep,
int
dstStep,
int
src_offset,
int
dst_offset,
__constant
F
*
M,
int
threadCols
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
threadCols
&&
dy
<
dst_rows
)
{
int
round_delta
=
AB_SCALE/INTER_TAB_SIZE/2
;
src_offset
=
(
src_offset>>2
)
;
int
X0
=
rint
(
M[0]
*
dx
*
AB_SCALE
)
;
int
Y0
=
rint
(
M[3]
*
dx
*
AB_SCALE
)
;
X0
+=
rint
((
M[1]*dy
+
M[2]
)
*
AB_SCALE
)
+
round_delta
;
Y0
+=
rint
((
M[4]*dy
+
M[5]
)
*
AB_SCALE
)
+
round_delta
;
X0
=
X0
>>
(
AB_BITS
-
INTER_BITS
)
;
Y0
=
Y0
>>
(
AB_BITS
-
INTER_BITS
)
;
short
sx0
=
(
short
)(
X0
>>
INTER_BITS
)
;
short
sy0
=
(
short
)(
Y0
>>
INTER_BITS
)
;
short
ax0
=
(
short
)(
X0
&
(
INTER_TAB_SIZE-1
))
;
short
ay0
=
(
short
)(
Y0
&
(
INTER_TAB_SIZE-1
))
;
float
v0,
v1,
v2,
v3
;
v0
=
(
sx0
>=
0
&&
sx0
<
src_cols
&&
sy0
>=
0
&&
sy0
<
src_rows
)
?
src[src_offset+sy0
*
srcStep
+
sx0]
:
0
;
v1
=
(
sx0+1
>=
0
&&
sx0+1
<
src_cols
&&
sy0
>=
0
&&
sy0
<
src_rows
)
?
src[src_offset+sy0
*
srcStep
+
sx0+1]
:
0
;
v2
=
(
sx0
>=
0
&&
sx0
<
src_cols
&&
sy0+1
>=
0
&&
sy0+1
<
src_rows
)
?
src[src_offset+
(
sy0+1
)
*
srcStep
+
sx0]
:
0
;
v3
=
(
sx0+1
>=
0
&&
sx0+1
<
src_cols
&&
sy0+1
>=
0
&&
sy0+1
<
src_rows
)
?
src[src_offset+
(
sy0+1
)
*
srcStep
+
sx0+1]
:
0
;
float
tab[4]
;
float
taby[2],
tabx[2]
;
taby[0]
=
1.0f
-
1.f/INTER_TAB_SIZE*ay0
;
taby[1]
=
1.f/INTER_TAB_SIZE*ay0
;
tabx[0]
=
1.0f
-
1.f/INTER_TAB_SIZE*ax0
;
tabx[1]
=
1.f/INTER_TAB_SIZE*ax0
;
tab[0]
=
taby[0]
*
tabx[0]
;
tab[1]
=
taby[0]
*
tabx[1]
;
tab[2]
=
taby[1]
*
tabx[0]
;
tab[3]
=
taby[1]
*
tabx[1]
;
float
sum
=
0
;
sum
+=
v0
*
tab[0]
+
v1
*
tab[1]
+
v2
*
tab[2]
+
v3
*
tab[3]
;
if
(
dx
>=
0
&&
dx
<
dst_cols
&&
dy
>=
0
&&
dy
<
dst_rows
)
dst[
(
dst_offset>>2
)
+dy*dstStep+dx]
=
sum
;
}
}
__kernel
void
warpAffineCubic_C1_D5
(
__global
float
*
src,
__global
float
*
dst,
int
src_cols,
int
src_rows,
int
dst_cols,
int
dst_rows,
int
srcStep,
int
dstStep,
int
src_offset,
int
dst_offset,
__constant
F
*
M,
int
threadCols
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
threadCols
&&
dy
<
dst_rows
)
{
int
round_delta
=
AB_SCALE/INTER_TAB_SIZE/2
;
src_offset
=
(
src_offset>>2
)
;
dst_offset
=
(
dst_offset>>2
)
;
int
X0
=
rint
(
M[0]
*
dx
*
AB_SCALE
)
;
int
Y0
=
rint
(
M[3]
*
dx
*
AB_SCALE
)
;
X0
+=
rint
((
M[1]*dy
+
M[2]
)
*
AB_SCALE
)
+
round_delta
;
Y0
+=
rint
((
M[4]*dy
+
M[5]
)
*
AB_SCALE
)
+
round_delta
;
X0
=
X0
>>
(
AB_BITS
-
INTER_BITS
)
;
Y0
=
Y0
>>
(
AB_BITS
-
INTER_BITS
)
;
short
sx
=
(
short
)(
X0
>>
INTER_BITS
)
-
1
;
short
sy
=
(
short
)(
Y0
>>
INTER_BITS
)
-
1
;
short
ay
=
(
short
)(
Y0
&
(
INTER_TAB_SIZE-1
))
;
short
ax
=
(
short
)(
X0
&
(
INTER_TAB_SIZE-1
))
;
float
v[16]
;
int
i
;
for
(
i=0
; i<16; i++)
v[i]
=
(
sx+
(
i&3
)
>=
0
&&
sx+
(
i&3
)
<
src_cols
&&
sy+
(
i>>2
)
>=
0
&&
sy+
(
i>>2
)
<
src_rows
)
?
src[src_offset+
(
sy+
(
i>>2
))
*
srcStep
+
(
sx+
(
i&3
))
]
:
0
;
float
tab[16]
;
float
tab1y[4],
tab1x[4]
;
float
axx,
ayy
;
ayy
=
1.f/INTER_TAB_SIZE
*
ay
;
axx
=
1.f/INTER_TAB_SIZE
*
ax
;
interpolateCubic
(
ayy,
tab1y
)
;
interpolateCubic
(
axx,
tab1x
)
;
#
pragma
unroll
4
for
(
i=0
; i<16; i++ )
{
tab[i]
=
tab1y[
(
i>>2
)
]
*
tab1x[
(
i&3
)
]
;
}
if
(
dx
>=
0
&&
dx
<
dst_cols
&&
dy
>=
0
&&
dy
<
dst_rows
)
{
float
sum
=
0
;
#
pragma
unroll
4
for
(
i
=0
; i<16; i++ )
{
sum
+=
v[i]
*
tab[i]
;
}
dst[dst_offset+dy*dstStep+dx]
=
sum
;
}
}
}
/**********************************************32FC4********************************************
***********************************************************************************************
/
__kernel
void
warpAffineNN_C4_D5
(
__global
float4
*
src,
__global
float4
*
dst,
int
src_cols,
int
src_rows,
int
dst_cols,
int
dst_rows,
int
srcStep,
int
dstStep,
int
src_offset,
int
dst_offset,
__constant
F
*
M,
int
threadCols
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
threadCols
&&
dy
<
dst_rows
)
{
int
round_delta
=
AB_SCALE/2
;
int
X0
=
rint
(
M[0]
*
dx
*
AB_SCALE
)
;
int
Y0
=
rint
(
M[3]
*
dx
*
AB_SCALE
)
;
X0
+=
rint
((
M[1]*dy
+
M[2]
)
*
AB_SCALE
)
+
round_delta
;
Y0
+=
rint
((
M[4]*dy
+
M[5]
)
*
AB_SCALE
)
+
round_delta
;
short
sx0
=
(
short
)(
X0
>>
AB_BITS
)
;
short
sy0
=
(
short
)(
Y0
>>
AB_BITS
)
;
if
(
dx
>=
0
&&
dx
<
dst_cols
&&
dy
>=
0
&&
dy
<
dst_rows
)
dst[
(
dst_offset>>4
)
+dy*
(
dstStep>>2
)
+dx]=
(
sx0>=0
&&
sx0<src_cols
&&
sy0>=0
&&
sy0<src_rows
)
?
src[
(
src_offset>>4
)
+sy0*
(
srcStep>>2
)
+sx0]
:
(
float4
)
0
;
}
}
__kernel
void
warpAffineLinear_C4_D5
(
__global
float4
*
src,
__global
float4
*
dst,
int
src_cols,
int
src_rows,
int
dst_cols,
int
dst_rows,
int
srcStep,
int
dstStep,
int
src_offset,
int
dst_offset,
__constant
F
*
M,
int
threadCols
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
threadCols
&&
dy
<
dst_rows
)
{
int
round_delta
=
AB_SCALE/INTER_TAB_SIZE/2
;
src_offset
=
(
src_offset>>4
)
;
dst_offset
=
(
dst_offset>>4
)
;
srcStep
=
(
srcStep>>2
)
;
dstStep
=
(
dstStep>>2
)
;
int
X0
=
rint
(
M[0]
*
dx
*
AB_SCALE
)
;
int
Y0
=
rint
(
M[3]
*
dx
*
AB_SCALE
)
;
X0
+=
rint
((
M[1]*dy
+
M[2]
)
*
AB_SCALE
)
+
round_delta
;
Y0
+=
rint
((
M[4]*dy
+
M[5]
)
*
AB_SCALE
)
+
round_delta
;
X0
=
X0
>>
(
AB_BITS
-
INTER_BITS
)
;
Y0
=
Y0
>>
(
AB_BITS
-
INTER_BITS
)
;
short
sx0
=
(
short
)(
X0
>>
INTER_BITS
)
;
short
sy0
=
(
short
)(
Y0
>>
INTER_BITS
)
;
short
ax0
=
(
short
)(
X0
&
(
INTER_TAB_SIZE-1
))
;
short
ay0
=
(
short
)(
Y0
&
(
INTER_TAB_SIZE-1
))
;
float4
v0,
v1,
v2,
v3
;
v0
=
(
sx0
>=
0
&&
sx0
<
src_cols
&&
sy0
>=
0
&&
sy0
<
src_rows
)
?
src[src_offset+sy0
*
srcStep
+
sx0]
:
(
float4
)
0
;
v1
=
(
sx0+1
>=
0
&&
sx0+1
<
src_cols
&&
sy0
>=
0
&&
sy0
<
src_rows
)
?
src[src_offset+sy0
*
srcStep
+
sx0+1]
:
(
float4
)
0
;
v2
=
(
sx0
>=
0
&&
sx0
<
src_cols
&&
sy0+1
>=
0
&&
sy0+1
<
src_rows
)
?
src[src_offset+
(
sy0+1
)
*
srcStep
+
sx0]
:
(
float4
)
0
;
v3
=
(
sx0+1
>=
0
&&
sx0+1
<
src_cols
&&
sy0+1
>=
0
&&
sy0+1
<
src_rows
)
?
src[src_offset+
(
sy0+1
)
*
srcStep
+
sx0+1]
:
(
float4
)
0
;
float
tab[4]
;
float
taby[2],
tabx[2]
;
taby[0]
=
1.0f
-
1.f/INTER_TAB_SIZE*ay0
;
taby[1]
=
1.f/INTER_TAB_SIZE*ay0
;
tabx[0]
=
1.0f
-
1.f/INTER_TAB_SIZE*ax0
;
tabx[1]
=
1.f/INTER_TAB_SIZE*ax0
;
tab[0]
=
taby[0]
*
tabx[0]
;
tab[1]
=
taby[0]
*
tabx[1]
;
tab[2]
=
taby[1]
*
tabx[0]
;
tab[3]
=
taby[1]
*
tabx[1]
;
float4
sum
=
0
;
sum
+=
v0
*
tab[0]
+
v1
*
tab[1]
+
v2
*
tab[2]
+
v3
*
tab[3]
;
if
(
dx
>=
0
&&
dx
<
dst_cols
&&
dy
>=
0
&&
dy
<
dst_rows
)
dst[dst_offset+dy*dstStep+dx]
=
sum
;
}
}
__kernel
void
warpAffineCubic_C4_D5
(
__global
float4
*
src,
__global
float4
*
dst,
int
src_cols,
int
src_rows,
int
dst_cols,
int
dst_rows,
int
srcStep,
int
dstStep,
int
src_offset,
int
dst_offset,
__constant
F
*
M,
int
threadCols
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
threadCols
&&
dy
<
dst_rows
)
{
int
round_delta
=
AB_SCALE/INTER_TAB_SIZE/2
;
src_offset
=
(
src_offset>>4
)
;
dst_offset
=
(
dst_offset>>4
)
;
srcStep
=
(
srcStep>>2
)
;
dstStep
=
(
dstStep>>2
)
;
int
X0
=
rint
(
M[0]
*
dx
*
AB_SCALE
)
;
int
Y0
=
rint
(
M[3]
*
dx
*
AB_SCALE
)
;
X0
+=
rint
((
M[1]*dy
+
M[2]
)
*
AB_SCALE
)
+
round_delta
;
Y0
+=
rint
((
M[4]*dy
+
M[5]
)
*
AB_SCALE
)
+
round_delta
;
X0
=
X0
>>
(
AB_BITS
-
INTER_BITS
)
;
Y0
=
Y0
>>
(
AB_BITS
-
INTER_BITS
)
;
short
sx
=
(
short
)(
X0
>>
INTER_BITS
)
-
1
;
short
sy
=
(
short
)(
Y0
>>
INTER_BITS
)
-
1
;
short
ay
=
(
short
)(
Y0
&
(
INTER_TAB_SIZE-1
))
;
short
ax
=
(
short
)(
X0
&
(
INTER_TAB_SIZE-1
))
;
float4
v[16]
;
int
i
;
for
(
i=0
; i<16; i++)
v[i]
=
(
sx+
(
i&3
)
>=
0
&&
sx+
(
i&3
)
<
src_cols
&&
sy+
(
i>>2
)
>=
0
&&
sy+
(
i>>2
)
<
src_rows
)
?
src[src_offset+
(
sy+
(
i>>2
))
*
srcStep
+
(
sx+
(
i&3
))
]
:
(
float4
)
0
;
float
tab[16]
;
float
tab1y[4],
tab1x[4]
;
float
axx,
ayy
;
ayy
=
1.f/INTER_TAB_SIZE
*
ay
;
axx
=
1.f/INTER_TAB_SIZE
*
ax
;
interpolateCubic
(
ayy,
tab1y
)
;
interpolateCubic
(
axx,
tab1x
)
;
#
pragma
unroll
4
for
(
i=0
; i<16; i++ )
{
tab[i]
=
tab1y[
(
i>>2
)
]
*
tab1x[
(
i&3
)
]
;
}
if
(
dx
>=
0
&&
dx
<
dst_cols
&&
dy
>=
0
&&
dy
<
dst_rows
)
{
float4
sum
=
0
;
#
pragma
unroll
4
for
(
i
=0
; i<16; i++ )
{
sum
+=
v[i]
*
tab[i]
;
}
dst[dst_offset+dy*dstStep+dx]
=
sum
;
}
}
}
modules/imgproc/src/opencl/warp_perspective.cl
0 → 100644
View file @
55af7857
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//
IMPORTANT:
READ
BEFORE
DOWNLOADING,
COPYING,
INSTALLING
OR
USING.
//
//
By
downloading,
copying,
installing
or
using
the
software
you
agree
to
this
license.
//
If
you
do
not
agree
to
this
license,
do
not
download,
install,
//
copy
or
use
the
software.
//
//
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2010-2012,
Institute
Of
Software
Chinese
Academy
Of
Science,
all
rights
reserved.
//
Copyright
(
C
)
2010-2012,
Advanced
Micro
Devices,
Inc.,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
@Authors
//
Zhang
Ying,
zhangying913@gmail.com
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
materials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
as
is
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//M*/
#
ifdef
DOUBLE_SUPPORT
#
ifdef
cl_amd_fp64
#
pragma
OPENCL
EXTENSION
cl_amd_fp64:enable
#
elif
defined
(
cl_khr_fp64
)
#
pragma
OPENCL
EXTENSION
cl_khr_fp64:enable
#
endif
#
define
CT
double
#
else
#
define
CT
float
#
endif
#
define
INTER_BITS
5
#
define
INTER_TAB_SIZE
(
1
<<
INTER_BITS
)
#
define
INTER_SCALE
1.f
/
INTER_TAB_SIZE
#
define
AB_BITS
max
(
10
,
(
int
)
INTER_BITS
)
#
define
AB_SCALE
(
1
<<
AB_BITS
)
#
define
INTER_REMAP_COEF_BITS
15
#
define
INTER_REMAP_COEF_SCALE
(
1
<<
INTER_REMAP_COEF_BITS
)
#
define
noconvert
#
ifdef
INTER_NEAREST
__kernel
void
warpPerspective
(
__global
const
uchar
*
srcptr,
int
src_step,
int
src_offset,
int
src_rows,
int
src_cols,
__global
uchar
*
dstptr,
int
dst_step,
int
dst_offset,
int
dst_rows,
int
dst_cols,
__constant
CT
*
M,
T
scalar
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
dst_cols
&&
dy
<
dst_rows
)
{
CT
X0
=
M[0]
*
dx
+
M[1]
*
dy
+
M[2]
;
CT
Y0
=
M[3]
*
dx
+
M[4]
*
dy
+
M[5]
;
CT
W
=
M[6]
*
dx
+
M[7]
*
dy
+
M[8]
;
W
=
W
!=
0.0f
?
1.f
/
W
:
0.0f
;
short
sx
=
convert_short_sat_rte
(
X0*W
)
;
short
sy
=
convert_short_sat_rte
(
Y0*W
)
;
int
dst_index
=
mad24
(
dy,
dst_step,
dx
*
(
int
)
sizeof
(
T
)
+
dst_offset
)
;
__global
T
*
dst
=
(
__global
T
*
)(
dstptr
+
dst_index
)
;
if
(
sx
>=
0
&&
sx
<
src_cols
&&
sy
>=
0
&&
sy
<
src_rows
)
{
int
src_index
=
mad24
(
sy,
src_step,
sx
*
(
int
)
sizeof
(
T
)
+
src_offset
)
;
__global
const
T
*
src
=
(
__global
const
T
*
)(
srcptr
+
src_index
)
;
dst[0]
=
src[0]
;
}
else
dst[0]
=
scalar
;
}
}
#
elif
defined
INTER_LINEAR
__kernel
void
warpPerspective
(
__global
const
uchar
*
srcptr,
int
src_step,
int
src_offset,
int
src_rows,
int
src_cols,
__global
uchar
*
dstptr,
int
dst_step,
int
dst_offset,
int
dst_rows,
int
dst_cols,
__constant
CT
*
M,
WT
scalar
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
dst_cols
&&
dy
<
dst_rows
)
{
CT
X0
=
M[0]
*
dx
+
M[1]
*
dy
+
M[2]
;
CT
Y0
=
M[3]
*
dx
+
M[4]
*
dy
+
M[5]
;
CT
W
=
M[6]
*
dx
+
M[7]
*
dy
+
M[8]
;
W
=
W
!=
0.0f
?
INTER_TAB_SIZE
/
W
:
0.0f
;
int
X
=
rint
(
X0
*
W
)
,
Y
=
rint
(
Y0
*
W
)
;
short
sx
=
convert_short_sat
(
X
>>
INTER_BITS
)
;
short
sy
=
convert_short_sat
(
Y
>>
INTER_BITS
)
;
short
ay
=
(
short
)(
Y
&
(
INTER_TAB_SIZE
-
1
))
;
short
ax
=
(
short
)(
X
&
(
INTER_TAB_SIZE
-
1
))
;
WT
v0
=
(
sx
>=
0
&&
sx
<
src_cols
&&
sy
>=
0
&&
sy
<
src_rows
)
?
convertToWT
(
*
(
__global
const
T
*
)(
srcptr
+
mad24
(
sy,
src_step,
src_offset
+
sx
*
(
int
)
sizeof
(
T
))))
:
scalar
;
WT
v1
=
(
sx+1
>=
0
&&
sx+1
<
src_cols
&&
sy
>=
0
&&
sy
<
src_rows
)
?
convertToWT
(
*
(
__global
const
T
*
)(
srcptr
+
mad24
(
sy,
src_step,
src_offset
+
(
sx+1
)
*
(
int
)
sizeof
(
T
))))
:
scalar
;
WT
v2
=
(
sx
>=
0
&&
sx
<
src_cols
&&
sy+1
>=
0
&&
sy+1
<
src_rows
)
?
convertToWT
(
*
(
__global
const
T
*
)(
srcptr
+
mad24
(
sy+1,
src_step,
src_offset
+
sx
*
(
int
)
sizeof
(
T
))))
:
scalar
;
WT
v3
=
(
sx+1
>=
0
&&
sx+1
<
src_cols
&&
sy+1
>=
0
&&
sy+1
<
src_rows
)
?
convertToWT
(
*
(
__global
const
T
*
)(
srcptr
+
mad24
(
sy+1,
src_step,
src_offset
+
(
sx+1
)
*
(
int
)
sizeof
(
T
))))
:
scalar
;
float
taby
=
1.f/INTER_TAB_SIZE*ay
;
float
tabx
=
1.f/INTER_TAB_SIZE*ax
;
int
dst_index
=
mad24
(
dy,
dst_step,
dst_offset
+
dx
*
(
int
)
sizeof
(
T
))
;
__global
T
*
dst
=
(
__global
T
*
)(
dstptr
+
dst_index
)
;
#
if
depth
<=
4
int
itab0
=
convert_short_sat_rte
(
(
1.0f-taby
)
*
(
1.0f-tabx
)
*
INTER_REMAP_COEF_SCALE
)
;
int
itab1
=
convert_short_sat_rte
(
(
1.0f-taby
)
*tabx
*
INTER_REMAP_COEF_SCALE
)
;
int
itab2
=
convert_short_sat_rte
(
taby*
(
1.0f-tabx
)
*
INTER_REMAP_COEF_SCALE
)
;
int
itab3
=
convert_short_sat_rte
(
taby*tabx
*
INTER_REMAP_COEF_SCALE
)
;
WT
val
=
v0
*
itab0
+
v1
*
itab1
+
v2
*
itab2
+
v3
*
itab3
;
dst[0]
=
convertToT
((
val
+
(
1
<<
(
INTER_REMAP_COEF_BITS-1
)))
>>
INTER_REMAP_COEF_BITS
)
;
#
else
float
tabx2
=
1.0f
-
tabx,
taby2
=
1.0f
-
taby
;
WT
val
=
v0
*
tabx2
*
taby2
+
v1
*
tabx
*
taby2
+
v2
*
tabx2
*
taby
+
v3
*
tabx
*
taby
;
dst[0]
=
convertToT
(
val
)
;
#
endif
}
}
#
elif
defined
INTER_CUBIC
inline
void
interpolateCubic
(
float
x,
float*
coeffs
)
{
const
float
A
=
-0.75f
;
coeffs[0]
=
((
A*
(
x
+
1.f
)
-
5.0f*A
)
*
(
x
+
1.f
)
+
8.0f*A
)
*
(
x
+
1.f
)
-
4.0f*A
;
coeffs[1]
=
((
A
+
2.f
)
*x
-
(
A
+
3.f
))
*x*
x
+
1.f
;
coeffs[2]
=
((
A
+
2.f
)
*
(
1.f
-
x
)
-
(
A
+
3.f
))
*
(
1.f
-
x
)
*
(
1.f
-
x
)
+
1.f
;
coeffs[3]
=
1.f
-
coeffs[0]
-
coeffs[1]
-
coeffs[2]
;
}
__kernel
void
warpPerspective
(
__global
const
uchar
*
srcptr,
int
src_step,
int
src_offset,
int
src_rows,
int
src_cols,
__global
uchar
*
dstptr,
int
dst_step,
int
dst_offset,
int
dst_rows,
int
dst_cols,
__constant
CT
*
M,
WT
scalar
)
{
int
dx
=
get_global_id
(
0
)
;
int
dy
=
get_global_id
(
1
)
;
if
(
dx
<
dst_cols
&&
dy
<
dst_rows
)
{
CT
X0
=
M[0]
*
dx
+
M[1]
*
dy
+
M[2]
;
CT
Y0
=
M[3]
*
dx
+
M[4]
*
dy
+
M[5]
;
CT
W
=
M[6]
*
dx
+
M[7]
*
dy
+
M[8]
;
W
=
W
!=
0.0f
?
INTER_TAB_SIZE
/
W
:
0.0f
;
int
X
=
rint
(
X0
*
W
)
,
Y
=
rint
(
Y0
*
W
)
;
short
sx
=
convert_short_sat
(
X
>>
INTER_BITS
)
-
1
;
short
sy
=
convert_short_sat
(
Y
>>
INTER_BITS
)
-
1
;
short
ay
=
(
short
)(
Y
&
(
INTER_TAB_SIZE-1
))
;
short
ax
=
(
short
)(
X
&
(
INTER_TAB_SIZE-1
))
;
WT
v[16]
;
#
pragma
unroll
for
(
int
y
=
0
; y < 4; y++)
#
pragma
unroll
for
(
int
x
=
0
; x < 4; x++)
v[mad24
(
y,
4
,
x
)
]
=
(
sx+x
>=
0
&&
sx+x
<
src_cols
&&
sy+y
>=
0
&&
sy+y
<
src_rows
)
?
convertToWT
(
*
(
__global
const
T
*
)(
srcptr
+
mad24
(
sy+y,
src_step,
src_offset
+
(
sx+x
)
*
(
int
)
sizeof
(
T
))))
:
scalar
;
float
tab1y[4],
tab1x[4]
;
float
ayy
=
INTER_SCALE
*
ay
;
float
axx
=
INTER_SCALE
*
ax
;
interpolateCubic
(
ayy,
tab1y
)
;
interpolateCubic
(
axx,
tab1x
)
;
int
dst_index
=
mad24
(
dy,
dst_step,
dst_offset
+
dx
*
(
int
)
sizeof
(
T
))
;
__global
T
*
dst
=
(
__global
T
*
)(
dstptr
+
dst_index
)
;
WT
sum
=
(
WT
)(
0
)
;
#
if
depth
<=
4
int
itab[16]
;
#
pragma
unroll
for
(
int
i
=
0
; i < 16; i++)
itab[i]
=
rint
(
tab1y[
(
i>>2
)
]
*
tab1x[
(
i&3
)
]
*
INTER_REMAP_COEF_SCALE
)
;
#
pragma
unroll
for
(
int
i
=
0
; i < 16; i++)
sum
+=
v[i]
*
itab[i]
;
dst[0]
=
convertToT
(
(
sum
+
(
1
<<
(
INTER_REMAP_COEF_BITS-1
)))
>>
INTER_REMAP_COEF_BITS
)
;
#
else
#
pragma
unroll
for
(
int
i
=
0
; i < 16; i++)
sum
+=
v[i]
*
tab1y[
(
i>>2
)
]
*
tab1x[
(
i&3
)
]
;
dst[0]
=
convertToT
(
sum
)
;
#
endif
}
}
#
endif
modules/imgproc/test/ocl/test_warp.cpp
View file @
55af7857
...
...
@@ -61,7 +61,99 @@ namespace cvtest {
namespace
ocl
{
/////////////////////////////////////////////////////////////////////////////////////////////////
// resize
// warpAffine & warpPerspective
PARAM_TEST_CASE
(
WarpTestBase
,
MatType
,
Interpolation
,
bool
,
bool
)
{
int
type
,
interpolation
;
Size
dsize
;
bool
useRoi
,
mapInverse
;
TEST_DECLARE_INPUT_PARATEMER
(
src
)
TEST_DECLARE_OUTPUT_PARATEMER
(
dst
)
virtual
void
SetUp
()
{
type
=
GET_PARAM
(
0
);
interpolation
=
GET_PARAM
(
1
);
mapInverse
=
GET_PARAM
(
2
);
useRoi
=
GET_PARAM
(
3
);
if
(
mapInverse
)
interpolation
|=
WARP_INVERSE_MAP
;
}
void
random_roi
()
{
dsize
=
randomSize
(
1
,
MAX_VALUE
);
Size
roiSize
=
randomSize
(
1
,
MAX_VALUE
);
Border
srcBorder
=
randomBorder
(
0
,
useRoi
?
MAX_VALUE
:
0
);
randomSubMat
(
src
,
src_roi
,
roiSize
,
srcBorder
,
type
,
-
MAX_VALUE
,
MAX_VALUE
);
Border
dstBorder
=
randomBorder
(
0
,
useRoi
?
MAX_VALUE
:
0
);
randomSubMat
(
dst
,
dst_roi
,
dsize
,
dstBorder
,
type
,
-
MAX_VALUE
,
MAX_VALUE
);
UMAT_UPLOAD_INPUT_PARAMETER
(
src
)
UMAT_UPLOAD_OUTPUT_PARAMETER
(
dst
)
}
void
Near
(
double
threshold
=
0.0
)
{
EXPECT_MAT_NEAR
(
dst
,
udst
,
threshold
);
EXPECT_MAT_NEAR
(
dst_roi
,
udst_roi
,
threshold
);
}
};
/////warpAffine
typedef
WarpTestBase
WarpAffine
;
OCL_TEST_P
(
WarpAffine
,
Mat
)
{
for
(
int
j
=
0
;
j
<
test_loop_times
;
j
++
)
{
random_roi
();
Mat
M
=
getRotationMatrix2D
(
Point2f
(
src_roi
.
cols
/
2.0
f
,
src_roi
.
rows
/
2.0
f
),
rng
.
uniform
(
-
180.
f
,
180.
f
),
rng
.
uniform
(
0.4
f
,
2.0
f
));
OCL_OFF
(
cv
::
warpAffine
(
src_roi
,
dst_roi
,
M
,
dsize
,
interpolation
));
OCL_ON
(
cv
::
warpAffine
(
usrc_roi
,
udst_roi
,
M
,
dsize
,
interpolation
));
Near
(
1.0
);
}
}
//// warpPerspective
typedef
WarpTestBase
WarpPerspective
;
OCL_TEST_P
(
WarpPerspective
,
Mat
)
{
for
(
int
j
=
0
;
j
<
test_loop_times
;
j
++
)
{
random_roi
();
float
cols
=
static_cast
<
float
>
(
src_roi
.
cols
),
rows
=
static_cast
<
float
>
(
src_roi
.
rows
);
float
cols2
=
cols
/
2.0
f
,
rows2
=
rows
/
2.0
f
;
Point2f
sp
[]
=
{
Point2f
(
0.0
f
,
0.0
f
),
Point2f
(
cols
,
0.0
f
),
Point2f
(
0.0
f
,
rows
),
Point2f
(
cols
,
rows
)
};
Point2f
dp
[]
=
{
Point2f
(
rng
.
uniform
(
0.0
f
,
cols2
),
rng
.
uniform
(
0.0
f
,
rows2
)),
Point2f
(
rng
.
uniform
(
cols2
,
cols
),
rng
.
uniform
(
0.0
f
,
rows2
)),
Point2f
(
rng
.
uniform
(
0.0
f
,
cols2
),
rng
.
uniform
(
rows2
,
rows
)),
Point2f
(
rng
.
uniform
(
cols2
,
cols
),
rng
.
uniform
(
rows2
,
rows
))
};
Mat
M
=
getPerspectiveTransform
(
sp
,
dp
);
OCL_OFF
(
cv
::
warpPerspective
(
src_roi
,
dst_roi
,
M
,
dsize
,
interpolation
));
OCL_ON
(
cv
::
warpPerspective
(
usrc_roi
,
udst_roi
,
M
,
dsize
,
interpolation
));
Near
(
1.0
);
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//// resize
PARAM_TEST_CASE
(
Resize
,
MatType
,
double
,
double
,
Interpolation
,
bool
)
{
...
...
@@ -127,10 +219,22 @@ OCL_TEST_P(Resize, Mat)
/////////////////////////////////////////////////////////////////////////////////////
OCL_INSTANTIATE_TEST_CASE_P
(
ImgprocWarpResize
,
Resize
,
Combine
(
Values
((
MatType
)
CV_8UC1
,
CV_8UC4
,
CV_32FC1
,
CV_32FC4
),
Values
(
0.7
,
0.4
,
2.0
),
Values
(
0.3
,
0.6
,
2.0
),
OCL_INSTANTIATE_TEST_CASE_P
(
ImgprocWarp
,
WarpAffine
,
Combine
(
Values
(
CV_8UC1
,
CV_8UC3
,
CV_8UC4
,
CV_32FC1
,
CV_32FC3
,
CV_32FC4
),
Values
((
Interpolation
)
INTER_NEAREST
,
(
Interpolation
)
INTER_LINEAR
,
(
Interpolation
)
INTER_CUBIC
),
Bool
(),
Bool
()));
OCL_INSTANTIATE_TEST_CASE_P
(
ImgprocWarp
,
WarpPerspective
,
Combine
(
Values
(
CV_8UC1
,
CV_8UC3
,
CV_8UC4
,
CV_32FC1
,
CV_32FC3
,
CV_32FC4
),
Values
((
Interpolation
)
INTER_NEAREST
,
(
Interpolation
)
INTER_LINEAR
,
(
Interpolation
)
INTER_CUBIC
),
Bool
(),
Bool
()));
OCL_INSTANTIATE_TEST_CASE_P
(
ImgprocWarp
,
Resize
,
Combine
(
Values
(
CV_8UC1
,
CV_8UC4
,
CV_16UC2
,
CV_32FC1
,
CV_32FC4
),
Values
(
0.5
,
1.5
,
2.0
),
Values
(
0.5
,
1.5
,
2.0
),
Values
((
Interpolation
)
INTER_NEAREST
,
(
Interpolation
)
INTER_LINEAR
),
Bool
()));
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment