Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
532781e8
Commit
532781e8
authored
Mar 11, 2012
by
Maria Dimashova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
initial version of rgbd odometry with sample
parent
52b4536d
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
596 additions
and
0 deletions
+596
-0
contrib.hpp
modules/contrib/include/opencv2/contrib/contrib.hpp
+13
-0
rgbdodometry.cpp
modules/contrib/src/rgbdodometry.cpp
+433
-0
rgbdodometry.cpp
samples/cpp/rgbdodometry.cpp
+150
-0
depth_00000.png
samples/cpp/rgbdodometry/depth_00000.png
+0
-0
depth_00002.png
samples/cpp/rgbdodometry/depth_00002.png
+0
-0
image_00000.png
samples/cpp/rgbdodometry/image_00000.png
+0
-0
image_00002.png
samples/cpp/rgbdodometry/image_00002.png
+0
-0
No files found.
modules/contrib/include/opencv2/contrib/contrib.hpp
View file @
532781e8
...
...
@@ -623,6 +623,19 @@ namespace cv
* 4) convert the colors back to RGB
*/
CV_EXPORTS
void
generateColors
(
std
::
vector
<
Scalar
>&
colors
,
size_t
count
,
size_t
factor
=
100
);
/*
* Estimate the rigid body motion from frame0 to frame1. The method is based on the paper
* "Real-Time Visual Odometry from Dense RGB-D Images", F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011.
*/
CV_EXPORTS
bool
RGBDOdometry
(
cv
::
Mat
&
Rt
,
const
cv
::
Mat
&
image0
,
const
cv
::
Mat
&
depth0
,
const
cv
::
Mat
&
mask0
,
const
cv
::
Mat
&
image1
,
const
cv
::
Mat
&
depth1
,
const
cv
::
Mat
&
mask1
,
const
cv
::
Mat
&
cameraMatrix
,
const
std
::
vector
<
int
>&
iterCounts
,
const
std
::
vector
<
float
>&
minGradientMagnitudes
,
float
minDepth
,
float
maxDepth
,
float
maxDepthDiff
);
}
#include "opencv2/contrib/retina.hpp"
...
...
modules/contrib/src/rgbdodometry.cpp
0 → 100644
View file @
532781e8
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/core/core.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "precomp.hpp"
#include <iostream>
#ifdef HAVE_EIGEN
#include <Eigen/Core>
#include <unsupported/Eigen/MatrixFunctions>
#include <Eigen/Dense>
#endif
using
namespace
cv
;
inline
static
void
computeC
(
double
*
C
,
double
dIdx
,
double
dIdy
,
const
Point3f
&
p3d
,
double
fx
,
double
fy
)
{
double
invz
=
1.
/
p3d
.
z
,
v0
=
dIdx
*
fx
*
invz
,
v1
=
dIdy
*
fy
*
invz
,
v2
=
-
(
v0
*
p3d
.
x
+
v1
*
p3d
.
y
)
*
invz
;
C
[
0
]
=
-
p3d
.
z
*
v1
+
p3d
.
y
*
v2
;
C
[
1
]
=
p3d
.
z
*
v0
-
p3d
.
x
*
v2
;
C
[
2
]
=
-
p3d
.
y
*
v0
+
p3d
.
x
*
v1
;
C
[
3
]
=
v0
;
C
[
4
]
=
v1
;
C
[
5
]
=
v2
;
}
inline
static
void
computeProjectiveMatrix
(
const
Mat
&
ksi
,
Mat
&
Rt
)
{
CV_Assert
(
ksi
.
size
()
==
Size
(
1
,
6
)
&&
ksi
.
type
()
==
CV_64FC1
);
#ifdef HAVE_EIGEN
const
double
*
ksi_ptr
=
reinterpret_cast
<
const
double
*>
(
ksi
.
ptr
(
0
));
Eigen
::
Matrix
<
double
,
4
,
4
>
twist
,
g
;
twist
<<
0.
,
-
ksi_ptr
[
2
],
ksi_ptr
[
1
],
ksi_ptr
[
3
],
ksi_ptr
[
2
],
0.
,
-
ksi_ptr
[
0
],
ksi_ptr
[
4
],
-
ksi_ptr
[
1
],
ksi_ptr
[
0
],
0
,
ksi_ptr
[
5
],
0.
,
0.
,
0.
,
0.
;
g
=
twist
.
exp
();
eigen2cv
(
g
,
Rt
);
#else
// for infinitesimal transformation
Rt
=
Mat
::
eye
(
4
,
4
,
CV_64FC1
);
Mat
R
=
Rt
(
Rect
(
0
,
0
,
3
,
3
));
Mat
rvec
=
ksi
.
rowRange
(
0
,
3
);
Rodrigues
(
rvec
,
R
);
Rt
.
at
<
double
>
(
0
,
3
)
=
ksi
.
at
<
double
>
(
3
);
Rt
.
at
<
double
>
(
1
,
3
)
=
ksi
.
at
<
double
>
(
4
);
Rt
.
at
<
double
>
(
2
,
3
)
=
ksi
.
at
<
double
>
(
5
);
#endif
}
static
void
cvtDepth2Cloud
(
const
Mat
&
depth
,
Mat
&
cloud
,
const
Mat
&
cameraMatrix
)
{
CV_Assert
(
cameraMatrix
.
type
()
==
CV_64FC1
);
const
double
inv_fx
=
1.
f
/
cameraMatrix
.
at
<
double
>
(
0
,
0
);
const
double
inv_fy
=
1.
f
/
cameraMatrix
.
at
<
double
>
(
1
,
1
);
const
double
ox
=
cameraMatrix
.
at
<
double
>
(
0
,
2
);
const
double
oy
=
cameraMatrix
.
at
<
double
>
(
1
,
2
);
cloud
.
create
(
depth
.
size
(),
CV_32FC3
);
for
(
int
y
=
0
;
y
<
cloud
.
rows
;
y
++
)
{
Point3f
*
cloud_ptr
=
reinterpret_cast
<
Point3f
*>
(
cloud
.
ptr
(
y
));
const
float
*
depth_prt
=
reinterpret_cast
<
const
float
*>
(
depth
.
ptr
(
y
));
for
(
int
x
=
0
;
x
<
cloud
.
cols
;
x
++
)
{
float
z
=
depth_prt
[
x
];
cloud_ptr
[
x
].
x
=
(
x
-
ox
)
*
z
*
inv_fx
;
cloud_ptr
[
x
].
y
=
(
y
-
oy
)
*
z
*
inv_fy
;
cloud_ptr
[
x
].
z
=
z
;
}
}
}
static
inline
void
set2shorts
(
int
&
dst
,
int
short_v1
,
int
short_v2
)
{
unsigned
short
*
ptr
=
reinterpret_cast
<
unsigned
short
*>
(
&
dst
);
ptr
[
0
]
=
static_cast
<
unsigned
short
>
(
short_v1
);
ptr
[
1
]
=
static_cast
<
unsigned
short
>
(
short_v2
);
}
static
inline
void
get2shorts
(
int
src
,
int
&
short_v1
,
int
&
short_v2
)
{
unsigned
short
*
ptr
=
reinterpret_cast
<
unsigned
short
*>
(
&
src
);
short_v1
=
ptr
[
0
];
short_v2
=
ptr
[
1
];
}
static
int
computeCorresp
(
const
Mat
&
K
,
const
Mat
&
K_inv
,
const
Mat
&
Rt
,
const
Mat
&
depth0
,
const
Mat
&
depth1
,
const
Mat
&
texturedMask1
,
float
maxDepthDiff
,
Mat
&
corresps
)
{
CV_Assert
(
K
.
type
()
==
CV_64FC1
);
CV_Assert
(
K_inv
.
type
()
==
CV_64FC1
);
CV_Assert
(
Rt
.
type
()
==
CV_64FC1
);
corresps
.
create
(
depth1
.
size
(),
CV_32SC1
);
Mat
R
=
Rt
(
Rect
(
0
,
0
,
3
,
3
)).
clone
();
Mat
KRK_inv
=
K
*
R
*
K_inv
;
const
double
*
KRK_inv_ptr
=
reinterpret_cast
<
const
double
*>
(
KRK_inv
.
ptr
());
Mat
Kt
=
Rt
(
Rect
(
3
,
0
,
1
,
3
)).
clone
();
Kt
=
K
*
Kt
;
const
double
*
Kt_ptr
=
reinterpret_cast
<
const
double
*>
(
Kt
.
ptr
());
Rect
r
(
0
,
0
,
depth1
.
cols
,
depth1
.
rows
);
corresps
=
Scalar
(
-
1
);
int
correspCount
=
0
;
for
(
int
v1
=
0
;
v1
<
depth1
.
rows
;
v1
++
)
{
for
(
int
u1
=
0
;
u1
<
depth1
.
cols
;
u1
++
)
{
float
d1
=
depth1
.
at
<
float
>
(
v1
,
u1
);
if
(
!
cvIsNaN
(
d1
)
&&
texturedMask1
.
at
<
uchar
>
(
v1
,
u1
)
)
{
float
transformed_d1
=
d1
*
(
KRK_inv_ptr
[
6
]
*
u1
+
KRK_inv_ptr
[
7
]
*
v1
+
KRK_inv_ptr
[
8
])
+
Kt_ptr
[
2
];
int
u0
=
cvRound
((
d1
*
(
KRK_inv_ptr
[
0
]
*
u1
+
KRK_inv_ptr
[
1
]
*
v1
+
KRK_inv_ptr
[
2
])
+
Kt_ptr
[
0
])
/
transformed_d1
);
int
v0
=
cvRound
((
d1
*
(
KRK_inv_ptr
[
3
]
*
u1
+
KRK_inv_ptr
[
4
]
*
v1
+
KRK_inv_ptr
[
5
])
+
Kt_ptr
[
1
])
/
transformed_d1
);
if
(
r
.
contains
(
Point
(
u0
,
v0
))
)
{
float
d0
=
depth0
.
at
<
float
>
(
v0
,
u0
);
if
(
!
cvIsNaN
(
d0
)
&&
std
::
abs
(
transformed_d1
-
d0
)
<
maxDepthDiff
)
{
int
c
=
corresps
.
at
<
int
>
(
v0
,
u0
);
if
(
c
!=
-
1
)
{
int
exist_u1
,
exist_v1
;
get2shorts
(
c
,
exist_u1
,
exist_v1
);
float
exist_d1
=
depth1
.
at
<
float
>
(
exist_v1
,
exist_u1
)
*
(
KRK_inv_ptr
[
6
]
*
exist_u1
+
KRK_inv_ptr
[
7
]
*
exist_v1
+
KRK_inv_ptr
[
8
])
+
Kt_ptr
[
2
];
if
(
transformed_d1
>
exist_d1
)
continue
;
}
else
correspCount
++
;
set2shorts
(
corresps
.
at
<
int
>
(
v0
,
u0
),
u1
,
v1
);
}
}
}
}
}
return
correspCount
;
}
static
inline
void
preprocessDepth
(
Mat
depth0
,
Mat
depth1
,
const
Mat
&
validMask0
,
const
Mat
&
validMask1
,
float
minDepth
,
float
maxDepth
)
{
CV_DbgAssert
(
depth0
.
size
()
==
depth1
.
size
()
);
for
(
int
y
=
0
;
y
<
depth0
.
rows
;
y
++
)
{
for
(
int
x
=
0
;
x
<
depth0
.
cols
;
x
++
)
{
float
&
d0
=
depth0
.
at
<
float
>
(
y
,
x
);
if
(
!
cvIsNaN
(
d0
)
&&
(
d0
>
maxDepth
||
d0
<
minDepth
||
d0
<=
0
||
(
!
validMask0
.
empty
()
&&
!
validMask0
.
at
<
uchar
>
(
y
,
x
)))
)
d0
=
NAN
;
float
&
d1
=
depth1
.
at
<
float
>
(
y
,
x
);
if
(
!
cvIsNaN
(
d1
)
&&
(
d1
>
maxDepth
||
d1
<
minDepth
||
d1
<=
0
||
(
!
validMask1
.
empty
()
&&
!
validMask1
.
at
<
uchar
>
(
y
,
x
)))
)
d1
=
NAN
;
}
}
}
static
void
buildPyramids
(
const
Mat
&
image0
,
const
Mat
&
image1
,
const
Mat
&
depth0
,
const
Mat
&
depth1
,
const
Mat
&
cameraMatrix
,
double
sobelScale
,
const
vector
<
float
>&
minGradMagnitudes
,
vector
<
Mat
>&
pyramidImage0
,
vector
<
Mat
>&
pyramidDepth0
,
vector
<
Mat
>&
pyramidImage1
,
vector
<
Mat
>&
pyramidDepth1
,
vector
<
Mat
>&
pyramid_dI_dx1
,
vector
<
Mat
>&
pyramid_dI_dy1
,
vector
<
Mat
>&
pyramidTexturedMask1
,
vector
<
Mat
>&
pyramidCameraMatrix
)
{
const
int
pyramidMaxLevel
=
minGradMagnitudes
.
size
()
-
1
;
buildPyramid
(
image0
,
pyramidImage0
,
pyramidMaxLevel
);
buildPyramid
(
image1
,
pyramidImage1
,
pyramidMaxLevel
);
pyramid_dI_dx1
.
resize
(
pyramidImage1
.
size
()
);
pyramid_dI_dy1
.
resize
(
pyramidImage1
.
size
()
);
pyramidTexturedMask1
.
resize
(
pyramidImage1
.
size
()
);
pyramidCameraMatrix
.
reserve
(
pyramidImage1
.
size
()
);
Mat
cameraMatrix_dbl
;
cameraMatrix
.
convertTo
(
cameraMatrix_dbl
,
CV_64FC1
);
for
(
size_t
i
=
0
;
i
<
pyramidImage1
.
size
();
i
++
)
{
Sobel
(
pyramidImage1
[
i
],
pyramid_dI_dx1
[
i
],
CV_16S
,
1
,
0
);
Sobel
(
pyramidImage1
[
i
],
pyramid_dI_dy1
[
i
],
CV_16S
,
0
,
1
);
const
Mat
&
dx
=
pyramid_dI_dx1
[
i
];
const
Mat
&
dy
=
pyramid_dI_dy1
[
i
];
Mat
texturedMask
(
dx
.
size
(),
CV_8UC1
,
Scalar
(
0
)
);
const
float
minScalesGradMagnitude2
=
(
minGradMagnitudes
[
i
]
*
minGradMagnitudes
[
i
])
/
(
sobelScale
*
sobelScale
);
for
(
int
y
=
0
;
y
<
dx
.
rows
;
y
++
)
{
for
(
int
x
=
0
;
x
<
dx
.
cols
;
x
++
)
{
float
m2
=
dx
.
at
<
short
int
>
(
y
,
x
)
*
dx
.
at
<
short
int
>
(
y
,
x
)
+
dy
.
at
<
short
int
>
(
y
,
x
)
*
dy
.
at
<
short
int
>
(
y
,
x
);
if
(
m2
>=
minScalesGradMagnitude2
)
texturedMask
.
at
<
uchar
>
(
y
,
x
)
=
255
;
}
}
pyramidTexturedMask1
[
i
]
=
texturedMask
;
Mat
levelCameraMatrix
=
i
==
0
?
cameraMatrix_dbl
:
0.5
f
*
pyramidCameraMatrix
[
i
-
1
];
levelCameraMatrix
.
at
<
double
>
(
2
,
2
)
=
1.
;
pyramidCameraMatrix
.
push_back
(
levelCameraMatrix
);
}
buildPyramid
(
depth0
,
pyramidDepth0
,
pyramidMaxLevel
);
buildPyramid
(
depth1
,
pyramidDepth1
,
pyramidMaxLevel
);
}
static
bool
solveSystem
(
const
Mat
&
C
,
const
Mat
&
dI_dt
,
double
detThreshold
,
Mat
&
Rt
)
{
Mat
ksi
;
#ifdef HAVE_EIGEN
Eigen
::
Matrix
<
double
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>
eC
,
eCt
,
edI_dt
;
cv2eigen
(
C
,
eC
);
cv2eigen
(
dI_dt
,
edI_dt
);
eCt
=
eC
.
transpose
();
Eigen
::
Matrix
<
double
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>
A
,
B
,
eksi
;
A
=
eCt
*
eC
;
double
det
=
A
.
determinant
();
if
(
fabs
(
det
)
<
detThreshold
||
cvIsNaN
(
det
)
||
cvIsInf
(
det
)
)
return
false
;
B
=
-
eCt
*
edI_dt
;
eksi
=
A
.
ldlt
().
solve
(
B
);
eigen2cv
(
eksi
,
ksi
);
#else
Mat
A
=
C
.
t
()
*
C
;
double
det
=
cv
::
determinant
(
A
);
if
(
fabs
(
det
)
<
detThreshold
||
cvIsNaN
(
det
)
||
cvIsInf
(
det
)
)
return
false
;
Mat
B
=
-
C
.
t
()
*
dI_dt
;
cv
::
solve
(
A
,
B
,
ksi
,
DECOMP_CHOLESKY
);
#endif
computeProjectiveMatrix
(
ksi
,
Rt
);
return
true
;
}
bool
cv
::
RGBDOdometry
(
cv
::
Mat
&
Rt
,
const
cv
::
Mat
&
image0
,
const
cv
::
Mat
&
_depth0
,
const
cv
::
Mat
&
validMask0
,
const
cv
::
Mat
&
image1
,
const
cv
::
Mat
&
_depth1
,
const
cv
::
Mat
&
validMask1
,
const
cv
::
Mat
&
cameraMatrix
,
const
std
::
vector
<
int
>&
iterCounts
,
const
std
::
vector
<
float
>&
minGradientMagnitudes
,
float
minDepth
,
float
maxDepth
,
float
maxDepthDiff
)
{
const
double
sobelScale
=
1.
/
8
;
Mat
depth0
=
_depth0
.
clone
(),
depth1
=
_depth1
.
clone
();
// check RGB-D input data
CV_Assert
(
!
image0
.
empty
()
);
CV_Assert
(
image0
.
type
()
==
CV_8UC1
);
CV_Assert
(
depth0
.
type
()
==
CV_32FC1
&&
depth0
.
size
()
==
image0
.
size
()
);
CV_Assert
(
image1
.
size
()
==
image0
.
size
()
);
CV_Assert
(
image1
.
type
()
==
CV_8UC1
);
CV_Assert
(
depth1
.
type
()
==
CV_32FC1
&&
depth1
.
size
()
==
image0
.
size
()
);
// check masks
CV_Assert
(
validMask0
.
empty
()
||
(
validMask0
.
type
()
==
CV_8UC1
&&
validMask0
.
size
()
==
image0
.
size
())
);
CV_Assert
(
validMask1
.
empty
()
||
(
validMask1
.
type
()
==
CV_8UC1
&&
validMask1
.
size
()
==
image0
.
size
())
);
// check camera params
CV_Assert
(
cameraMatrix
.
type
()
==
CV_32FC1
&&
cameraMatrix
.
size
()
==
Size
(
3
,
3
)
);
// other checks
CV_Assert
(
!
iterCounts
.
empty
()
);
CV_Assert
(
minGradientMagnitudes
.
size
()
==
iterCounts
.
size
()
);
preprocessDepth
(
depth0
,
depth1
,
validMask0
,
validMask1
,
minDepth
,
maxDepth
);
vector
<
Mat
>
pyramidImage0
,
pyramidDepth0
,
pyramidImage1
,
pyramidDepth1
,
pyramid_dI_dx1
,
pyramid_dI_dy1
,
pyramidTexturedMask1
,
pyramidCameraMatrix
;
buildPyramids
(
image0
,
image1
,
depth0
,
depth1
,
cameraMatrix
,
sobelScale
,
minGradientMagnitudes
,
pyramidImage0
,
pyramidDepth0
,
pyramidImage1
,
pyramidDepth1
,
pyramid_dI_dx1
,
pyramid_dI_dy1
,
pyramidTexturedMask1
,
pyramidCameraMatrix
);
Mat
resultRt
=
Mat
::
eye
(
4
,
4
,
CV_64FC1
);
for
(
int
level
=
iterCounts
.
size
()
-
1
;
level
>=
0
;
level
--
)
{
const
Mat
&
levelCameraMatrix
=
pyramidCameraMatrix
[
level
];
const
Mat
&
levelImage0
=
pyramidImage0
[
level
];
const
Mat
&
levelDepth0
=
pyramidDepth0
[
level
];
Mat
levelCloud0
;
cvtDepth2Cloud
(
pyramidDepth0
[
level
],
levelCloud0
,
levelCameraMatrix
);
const
Mat
&
levelImage1
=
pyramidImage1
[
level
];
const
Mat
&
levelDepth1
=
pyramidDepth1
[
level
];
const
Mat
&
level_dI_dx1
=
pyramid_dI_dx1
[
level
];
const
Mat
&
level_dI_dy1
=
pyramid_dI_dy1
[
level
];
CV_Assert
(
level_dI_dx1
.
type
()
==
CV_16S
);
CV_Assert
(
level_dI_dy1
.
type
()
==
CV_16S
);
Mat
corresp
(
levelImage0
.
size
(),
levelImage0
.
type
(),
CV_32SC1
);
// Run transformation search on current level iteratively.
for
(
int
iter
=
0
;
iter
<
iterCounts
[
level
];
iter
++
)
{
int
correspCount
=
computeCorresp
(
levelCameraMatrix
,
levelCameraMatrix
.
inv
(),
resultRt
.
inv
(
DECOMP_SVD
),
levelDepth0
,
levelDepth1
,
pyramidTexturedMask1
[
level
],
maxDepthDiff
,
corresp
);
if
(
correspCount
==
0
)
break
;
Mat
C
(
correspCount
,
6
,
CV_64FC1
);
Mat
dI_dt
(
correspCount
,
1
,
CV_64FC1
);
const
double
fx
=
levelCameraMatrix
.
at
<
double
>
(
0
,
0
);
const
double
fy
=
levelCameraMatrix
.
at
<
double
>
(
1
,
1
);
int
pointCount
=
0
;
for
(
int
v0
=
0
;
v0
<
corresp
.
rows
;
v0
++
)
{
for
(
int
u0
=
0
;
u0
<
corresp
.
cols
;
u0
++
)
{
if
(
corresp
.
at
<
int
>
(
v0
,
u0
)
!=
-
1
)
{
int
u1
,
v1
;
get2shorts
(
corresp
.
at
<
int
>
(
v0
,
u0
),
u1
,
v1
);
computeC
(
(
double
*
)
C
.
ptr
(
pointCount
),
sobelScale
*
level_dI_dx1
.
at
<
short
int
>
(
v1
,
u1
),
sobelScale
*
level_dI_dy1
.
at
<
short
int
>
(
v1
,
u1
),
levelCloud0
.
at
<
Point3f
>
(
v0
,
u0
),
fx
,
fy
);
dI_dt
.
at
<
double
>
(
pointCount
)
=
static_cast
<
double
>
(
levelImage1
.
at
<
uchar
>
(
v1
,
u1
))
-
static_cast
<
double
>
(
levelImage0
.
at
<
uchar
>
(
v0
,
u0
));
pointCount
++
;
}
}
}
const
double
detThreshold
=
1.e-6
;
Mat
currRt
;
bool
solutionExist
=
solveSystem
(
C
,
dI_dt
,
detThreshold
,
currRt
);
if
(
!
solutionExist
)
break
;
resultRt
=
currRt
*
resultRt
;
}
}
Rt
=
resultRt
;
return
!
Rt
.
empty
();
}
samples/cpp/rgbdodometry.cpp
0 → 100644
View file @
532781e8
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <cstdio>
#include <iostream>
#include <ctime>
using
namespace
cv
;
using
namespace
std
;
static
void
cvtDepth2Cloud
(
const
Mat
&
depth
,
Mat
&
cloud
,
const
Mat
&
cameraMatrix
)
{
const
float
inv_fx
=
1.
f
/
cameraMatrix
.
at
<
float
>
(
0
,
0
);
const
float
inv_fy
=
1.
f
/
cameraMatrix
.
at
<
float
>
(
1
,
1
);
const
float
ox
=
cameraMatrix
.
at
<
float
>
(
0
,
2
);
const
float
oy
=
cameraMatrix
.
at
<
float
>
(
1
,
2
);
cloud
.
create
(
depth
.
size
(),
CV_32FC3
);
for
(
int
y
=
0
;
y
<
cloud
.
rows
;
y
++
)
{
Point3f
*
cloud_ptr
=
(
Point3f
*
)
cloud
.
ptr
(
y
);
const
float
*
depth_prt
=
(
const
float
*
)
depth
.
ptr
(
y
);
for
(
int
x
=
0
;
x
<
cloud
.
cols
;
x
++
)
{
float
z
=
depth_prt
[
x
];
cloud_ptr
[
x
].
x
=
(
x
-
ox
)
*
z
*
inv_fx
;
cloud_ptr
[
x
].
y
=
(
y
-
oy
)
*
z
*
inv_fy
;
cloud_ptr
[
x
].
z
=
z
;
}
}
}
template
<
class
ImageElemType
>
static
void
warpImage
(
const
Mat
&
image
,
const
Mat
&
depth
,
const
Mat
&
Rt
,
const
Mat
&
cameraMatrix
,
const
Mat
&
distCoeff
,
Mat
&
warpedImage
)
{
const
Rect
rect
=
Rect
(
0
,
0
,
image
.
cols
,
image
.
rows
);
vector
<
Point2f
>
points2d
;
Mat
cloud
,
transformedCloud
;
cvtDepth2Cloud
(
depth
,
cloud
,
cameraMatrix
);
perspectiveTransform
(
cloud
,
transformedCloud
,
Rt
);
projectPoints
(
transformedCloud
.
reshape
(
3
,
1
),
Mat
::
eye
(
3
,
3
,
CV_64FC1
),
Mat
::
zeros
(
3
,
1
,
CV_64FC1
),
cameraMatrix
,
distCoeff
,
points2d
);
Mat
pointsPositions
(
points2d
);
pointsPositions
=
pointsPositions
.
reshape
(
2
,
image
.
rows
);
warpedImage
.
create
(
image
.
size
(),
image
.
type
()
);
warpedImage
=
Scalar
::
all
(
0
);
Mat
zBuffer
(
image
.
size
(),
CV_32FC1
,
FLT_MAX
);
for
(
int
y
=
0
;
y
<
image
.
rows
;
y
++
)
{
for
(
int
x
=
0
;
x
<
image
.
cols
;
x
++
)
{
const
Point3f
p3d
=
transformedCloud
.
at
<
Point3f
>
(
y
,
x
);
const
Point
p2d
=
pointsPositions
.
at
<
Point2f
>
(
y
,
x
);
if
(
!
cvIsNaN
(
cloud
.
at
<
Point3f
>
(
y
,
x
).
z
)
&&
cloud
.
at
<
Point3f
>
(
y
,
x
).
z
>
0
&&
rect
.
contains
(
p2d
)
&&
zBuffer
.
at
<
float
>
(
p2d
)
>
p3d
.
z
)
{
warpedImage
.
at
<
ImageElemType
>
(
p2d
)
=
image
.
at
<
ImageElemType
>
(
y
,
x
);
zBuffer
.
at
<
float
>
(
p2d
)
=
p3d
.
z
;
}
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
float
vals
[]
=
{
525.
,
0.
,
3.1950000000000000e+02
,
0.
,
525.
,
2.3950000000000000e+02
,
0.
,
0.
,
1.
};
const
Mat
cameraMatrix
=
Mat
(
3
,
3
,
CV_32FC1
,
vals
);
const
Mat
distCoeff
(
1
,
5
,
CV_32FC1
,
Scalar
(
0
));
if
(
argc
!=
5
)
{
cout
<<
"Format: image0 depth0 image1 depth1"
<<
endl
;
cout
<<
"Depth file must be 16U image stored depth in mm."
<<
endl
;
return
-
1
;
}
Mat
colorImage0
=
imread
(
argv
[
1
]
);
Mat
depth0
=
imread
(
argv
[
2
],
-
1
);
Mat
colorImage1
=
imread
(
argv
[
3
]
);
Mat
depth1
=
imread
(
argv
[
4
],
-
1
);
if
(
colorImage0
.
empty
()
||
depth0
.
empty
()
||
colorImage1
.
empty
()
||
depth1
.
empty
()
)
{
cout
<<
"Data (rgb or depth images) is empty."
;
return
-
1
;
}
Mat
grayImage0
,
grayImage1
,
depthFlt0
,
depthFlt1
/*in meters*/
;
cvtColor
(
colorImage0
,
grayImage0
,
CV_BGR2GRAY
);
cvtColor
(
colorImage1
,
grayImage1
,
CV_BGR2GRAY
);
depth0
.
convertTo
(
depthFlt0
,
CV_32FC1
,
1.
/
1000
);
depth1
.
convertTo
(
depthFlt1
,
CV_32FC1
,
1.
/
1000
);
TickMeter
tm
;
Mat
Rt
;
vector
<
int
>
iterCounts
(
4
);
iterCounts
[
0
]
=
7
;
iterCounts
[
1
]
=
7
;
iterCounts
[
2
]
=
7
;
iterCounts
[
3
]
=
10
;
vector
<
float
>
minGradMagnitudes
(
4
);
minGradMagnitudes
[
0
]
=
12
;
minGradMagnitudes
[
1
]
=
5
;
minGradMagnitudes
[
2
]
=
3
;
minGradMagnitudes
[
3
]
=
1
;
const
float
minDepth
=
0
;
//in meters
const
float
maxDepth
=
3
;
//in meters
const
float
maxDepthDiff
=
0.07
;
//in meters
tm
.
start
();
bool
isFound
=
cv
::
RGBDOdometry
(
Rt
,
grayImage0
,
depthFlt0
,
Mat
(),
grayImage1
,
depthFlt1
,
Mat
(),
cameraMatrix
,
iterCounts
,
minGradMagnitudes
,
minDepth
,
maxDepth
,
maxDepthDiff
);
tm
.
stop
();
cout
<<
"Rt = "
<<
Rt
<<
endl
;
cout
<<
"Time = "
<<
tm
.
getTimeSec
()
<<
" sec."
<<
endl
;
if
(
!
isFound
)
{
cout
<<
"Rigid body motion cann't be estimated for given RGBD data."
<<
endl
;
return
-
1
;
}
Mat
warpedImage0
;
warpImage
<
Point3_
<
uchar
>
>
(
colorImage0
,
depthFlt0
,
Rt
,
cameraMatrix
,
distCoeff
,
warpedImage0
);
imshow
(
"im0"
,
colorImage0
);
imshow
(
"warped_im0"
,
warpedImage0
);
imshow
(
"im1"
,
colorImage1
);
waitKey
();
return
0
;
}
samples/cpp/rgbdodometry/depth_00000.png
0 → 100644
View file @
532781e8
102 KB
samples/cpp/rgbdodometry/depth_00002.png
0 → 100644
View file @
532781e8
99.5 KB
samples/cpp/rgbdodometry/image_00000.png
0 → 100644
View file @
532781e8
455 KB
samples/cpp/rgbdodometry/image_00002.png
0 → 100644
View file @
532781e8
433 KB
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment