Commit 529632f8 authored by Alexander Alekhin's avatar Alexander Alekhin

core: cv::eigenNonSymmetric() via EigenvalueDecomposition

parent a9effeeb
......@@ -1913,8 +1913,9 @@ matrix src:
@code
src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
@endcode
@note in the new and the old interfaces different ordering of eigenvalues and eigenvectors
parameters is used.
@note Use cv::eigenNonSymmetric for calculation of real eigenvalues and eigenvectors of non-symmetric matrix.
@param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical
(src ^T^ == src).
@param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored
......@@ -1922,11 +1923,28 @@ in the descending order.
@param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the
eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
eigenvalues.
@sa completeSymm , PCA
@sa eigenNonSymmetric, completeSymm , PCA
*/
CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
OutputArray eigenvectors = noArray());
/** @brief Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
@note Assumes real eigenvalues.
The function calculates eigenvalues and eigenvectors (optional) of the square matrix src:
@code
src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
@endcode
@param src input matrix (CV_32FC1 or CV_64FC1 type).
@param eigenvalues output vector of eigenvalues (type is the same type as src).
@param eigenvectors output matrix of eigenvectors (type is the same type as src). The eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.
@sa eigen
*/
CV_EXPORTS_W void eigenNonSymmetric(InputArray src, OutputArray eigenvalues,
OutputArray eigenvectors);
/** @brief Calculates the covariance matrix of a set of vectors.
The function cv::calcCovarMatrix calculates the covariance matrix and, optionally, the mean vector of
......
......@@ -863,45 +863,49 @@ private:
d = alloc_1d<double> (n);
e = alloc_1d<double> (n);
ort = alloc_1d<double> (n);
// Reduce to Hessenberg form.
orthes();
// Reduce Hessenberg to real Schur form.
hqr2();
// Copy eigenvalues to OpenCV Matrix.
_eigenvalues.create(1, n, CV_64FC1);
for (int i = 0; i < n; i++) {
_eigenvalues.at<double> (0, i) = d[i];
try {
// Reduce to Hessenberg form.
orthes();
// Reduce Hessenberg to real Schur form.
hqr2();
// Copy eigenvalues to OpenCV Matrix.
_eigenvalues.create(1, n, CV_64FC1);
for (int i = 0; i < n; i++) {
_eigenvalues.at<double> (0, i) = d[i];
}
// Copy eigenvectors to OpenCV Matrix.
_eigenvectors.create(n, n, CV_64FC1);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
_eigenvectors.at<double> (i, j) = V[i][j];
// Deallocate the memory by releasing all internal working data.
release();
}
catch (...)
{
release();
throw;
}
// Copy eigenvectors to OpenCV Matrix.
_eigenvectors.create(n, n, CV_64FC1);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
_eigenvectors.at<double> (i, j) = V[i][j];
// Deallocate the memory by releasing all internal working data.
release();
}
public:
EigenvalueDecomposition()
: n(0), cdivr(0), cdivi(0), d(0), e(0), ort(0), V(0), H(0) {}
// Initializes & computes the Eigenvalue Decomposition for a general matrix
// given in src. This function is a port of the EigenvalueSolver in JAMA,
// which has been released to public domain by The MathWorks and the
// National Institute of Standards and Technology (NIST).
EigenvalueDecomposition(InputArray src) {
compute(src);
EigenvalueDecomposition(InputArray src, bool fallbackSymmetric = true) {
compute(src, fallbackSymmetric);
}
// This function computes the Eigenvalue Decomposition for a general matrix
// given in src. This function is a port of the EigenvalueSolver in JAMA,
// which has been released to public domain by The MathWorks and the
// National Institute of Standards and Technology (NIST).
void compute(InputArray src)
void compute(InputArray src, bool fallbackSymmetric)
{
CV_INSTRUMENT_REGION()
if(isSymmetric(src)) {
if(fallbackSymmetric && isSymmetric(src)) {
// Fall back to OpenCV for a symmetric matrix!
cv::eigen(src, _eigenvalues, _eigenvectors);
} else {
......@@ -930,11 +934,60 @@ public:
~EigenvalueDecomposition() {}
// Returns the eigenvalues of the Eigenvalue Decomposition.
Mat eigenvalues() { return _eigenvalues; }
Mat eigenvalues() const { return _eigenvalues; }
// Returns the eigenvectors of the Eigenvalue Decomposition.
Mat eigenvectors() { return _eigenvectors; }
Mat eigenvectors() const { return _eigenvectors; }
};
void eigenNonSymmetric(InputArray _src, OutputArray _evals, OutputArray _evects)
{
CV_INSTRUMENT_REGION()
Mat src = _src.getMat();
int type = src.type();
size_t n = (size_t)src.rows;
CV_Assert(src.rows == src.cols);
CV_Assert(type == CV_32F || type == CV_64F);
Mat src64f;
if (type == CV_32F)
src.convertTo(src64f, CV_32FC1);
else
src64f = src;
EigenvalueDecomposition eigensystem(src64f, false);
// EigenvalueDecomposition returns transposed and non-sorted eigenvalues
std::vector<double> eigenvalues64f;
eigensystem.eigenvalues().copyTo(eigenvalues64f);
CV_Assert(eigenvalues64f.size() == n);
std::vector<int> sort_indexes(n);
cv::sortIdx(eigenvalues64f, sort_indexes, SORT_EVERY_ROW | SORT_DESCENDING);
std::vector<double> sorted_eigenvalues64f(n);
for (size_t i = 0; i < n; i++) sorted_eigenvalues64f[i] = eigenvalues64f[sort_indexes[i]];
Mat(sorted_eigenvalues64f).convertTo(_evals, type);
if( _evects.needed() )
{
Mat eigenvectors64f = eigensystem.eigenvectors().t(); // transpose
CV_Assert((size_t)eigenvectors64f.rows == n);
CV_Assert((size_t)eigenvectors64f.cols == n);
Mat_<double> sorted_eigenvectors64f((int)n, (int)n, CV_64FC1);
for (size_t i = 0; i < n; i++)
{
double* pDst = sorted_eigenvectors64f.ptr<double>((int)i);
double* pSrc = eigenvectors64f.ptr<double>(sort_indexes[(int)i]);
CV_Assert(pSrc != NULL);
memcpy(pDst, pSrc, n * sizeof(double));
}
sorted_eigenvectors64f.convertTo(_evects, type);
}
}
//------------------------------------------------------------------------------
// Linear Discriminant Analysis implementation
......
......@@ -412,3 +412,124 @@ TEST(Core_Eigen, scalar_32) {Core_EigenTest_Scalar_32 test; test.safe_run(); }
TEST(Core_Eigen, scalar_64) {Core_EigenTest_Scalar_64 test; test.safe_run(); }
TEST(Core_Eigen, vector_32) { Core_EigenTest_32 test; test.safe_run(); }
TEST(Core_Eigen, vector_64) { Core_EigenTest_64 test; test.safe_run(); }
template<typename T>
static void testEigen(const Mat_<T>& src, const Mat_<T>& expected_eigenvalues, bool runSymmetric = false)
{
SCOPED_TRACE(runSymmetric ? "cv::eigen" : "cv::eigenNonSymmetric");
int type = traits::Type<T>::value;
const T eps = 1e-6f;
Mat eigenvalues, eigenvectors, eigenvalues0;
if (runSymmetric)
{
cv::eigen(src, eigenvalues0, noArray());
cv::eigen(src, eigenvalues, eigenvectors);
}
else
{
cv::eigenNonSymmetric(src, eigenvalues0, noArray());
cv::eigenNonSymmetric(src, eigenvalues, eigenvectors);
}
#if 0
std::cout << "src = " << src << std::endl;
std::cout << "eigenvalues.t() = " << eigenvalues.t() << std::endl;
std::cout << "eigenvectors = " << eigenvectors << std::endl;
#endif
ASSERT_EQ(type, eigenvalues0.type());
ASSERT_EQ(type, eigenvalues.type());
ASSERT_EQ(type, eigenvectors.type());
ASSERT_EQ(src.rows, eigenvalues.rows);
ASSERT_EQ(eigenvalues.rows, eigenvectors.rows);
ASSERT_EQ(src.rows, eigenvectors.cols);
EXPECT_LT(cvtest::norm(eigenvalues, eigenvalues0, NORM_INF), eps);
// check definition: src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
for (int i = 0; i < src.rows; i++)
{
EXPECT_NEAR(eigenvalues.at<T>(i), expected_eigenvalues(i), eps) << "i=" << i;
Mat lhs = src*eigenvectors.row(i).t();
Mat rhs = eigenvalues.at<T>(i)*eigenvectors.row(i).t();
EXPECT_LT(cvtest::norm(lhs, rhs, NORM_INF), eps)
<< "i=" << i << " eigenvalue=" << eigenvalues.at<T>(i) << std::endl
<< "lhs=" << lhs.t() << std::endl
<< "rhs=" << rhs.t();
}
}
template<typename T>
static void testEigenSymmetric3x3()
{
/*const*/ T values_[] = {
2, -1, 0,
-1, 2, -1,
0, -1, 2
};
Mat_<T> src(3, 3, values_);
/*const*/ T expected_eigenvalues_[] = { 3.414213562373095f, 2, 0.585786437626905f };
Mat_<T> expected_eigenvalues(3, 1, expected_eigenvalues_);
testEigen(src, expected_eigenvalues);
testEigen(src, expected_eigenvalues, true);
}
TEST(Core_EigenSymmetric, float3x3) { testEigenSymmetric3x3<float>(); }
TEST(Core_EigenSymmetric, double3x3) { testEigenSymmetric3x3<double>(); }
template<typename T>
static void testEigenSymmetric5x5()
{
/*const*/ T values_[5*5] = {
5, -1, 0, 2, 1,
-1, 4, -1, 0, 0,
0, -1, 3, 1, -1,
2, 0, 1, 4, 0,
1, 0, -1, 0, 1
};
Mat_<T> src(5, 5, values_);
/*const*/ T expected_eigenvalues_[] = { 7.028919644935684f, 4.406130784616501f, 3.73626552682258f, 1.438067799899037f, 0.390616243726198f };
Mat_<T> expected_eigenvalues(5, 1, expected_eigenvalues_);
testEigen(src, expected_eigenvalues);
testEigen(src, expected_eigenvalues, true);
}
TEST(Core_EigenSymmetric, float5x5) { testEigenSymmetric5x5<float>(); }
TEST(Core_EigenSymmetric, double5x5) { testEigenSymmetric5x5<double>(); }
template<typename T>
static void testEigen2x2()
{
/*const*/ T values_[] = { 4, 1, 6, 3 };
Mat_<T> src(2, 2, values_);
/*const*/ T expected_eigenvalues_[] = { 6, 1 };
Mat_<T> expected_eigenvalues(2, 1, expected_eigenvalues_);
testEigen(src, expected_eigenvalues);
}
TEST(Core_EigenNonSymmetric, float2x2) { testEigen2x2<float>(); }
TEST(Core_EigenNonSymmetric, double2x2) { testEigen2x2<double>(); }
template<typename T>
static void testEigen3x3()
{
/*const*/ T values_[3*3] = {
3,1,0,
0,3,1,
0,0,3
};
Mat_<T> src(3, 3, values_);
/*const*/ T expected_eigenvalues_[] = { 3, 3, 3 };
Mat_<T> expected_eigenvalues(3, 1, expected_eigenvalues_);
testEigen(src, expected_eigenvalues);
}
TEST(Core_EigenNonSymmetric, float3x3) { testEigen3x3<float>(); }
TEST(Core_EigenNonSymmetric, double3x3) { testEigen3x3<double>(); }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment