Commit 51530d4d authored by Andrey Pavlenko's avatar Andrey Pavlenko Committed by OpenCV Buildbot

Merge pull request #2543 from apavlenko:24_haar_revert

parents 8541b7bf 3747d264
...@@ -65,15 +65,15 @@ ocl::integral ...@@ -65,15 +65,15 @@ ocl::integral
----------------- -----------------
Computes an integral image. Computes an integral image.
.. ocv:function:: void ocl::integral(const oclMat &src, oclMat &sum, oclMat &sqsum, int sdepth=-1) .. ocv:function:: void ocl::integral(const oclMat &src, oclMat &sum, oclMat &sqsum)
.. ocv:function:: void ocl::integral(const oclMat &src, oclMat &sum, int sdepth=-1) .. ocv:function:: void ocl::integral(const oclMat &src, oclMat &sum)
:param src: Source image. Only ``CV_8UC1`` images are supported for now. :param src: Source image. Only ``CV_8UC1`` images are supported for now.
:param sum: Integral image containing 32-bit unsigned integer or 32-bit floating-point . :param sum: Integral image containing 32-bit unsigned integer values packed into ``CV_32SC1`` .
:param sqsum: Sqsum values is ``CV_32FC1`` or ``CV_64FC1`` type. :param sqsum: Sqsum values is ``CV_32FC1`` type.
.. seealso:: :ocv:func:`integral` .. seealso:: :ocv:func:`integral`
......
...@@ -859,10 +859,10 @@ namespace cv ...@@ -859,10 +859,10 @@ namespace cv
CV_EXPORTS void warpPerspective(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags = INTER_LINEAR); CV_EXPORTS void warpPerspective(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags = INTER_LINEAR);
//! computes the integral image and integral for the squared image //! computes the integral image and integral for the squared image
// sum will support CV_32S, CV_32F, sqsum - support CV32F, CV_64F // sum will have CV_32S type, sqsum - CV32F type
// supports only CV_8UC1 source type // supports only CV_8UC1 source type
CV_EXPORTS void integral(const oclMat &src, oclMat &sum, oclMat &sqsum, int sdepth=-1 ); CV_EXPORTS void integral(const oclMat &src, oclMat &sum, oclMat &sqsum);
CV_EXPORTS void integral(const oclMat &src, oclMat &sum, int sdepth=-1 ); CV_EXPORTS void integral(const oclMat &src, oclMat &sum);
CV_EXPORTS void cornerHarris(const oclMat &src, oclMat &dst, int blockSize, int ksize, double k, int bordertype = cv::BORDER_DEFAULT); CV_EXPORTS void cornerHarris(const oclMat &src, oclMat &dst, int blockSize, int ksize, double k, int bordertype = cv::BORDER_DEFAULT);
CV_EXPORTS void cornerHarris_dxdy(const oclMat &src, oclMat &dst, oclMat &Dx, oclMat &Dy, CV_EXPORTS void cornerHarris_dxdy(const oclMat &src, oclMat &dst, oclMat &Dx, oclMat &Dy,
int blockSize, int ksize, double k, int bordertype = cv::BORDER_DEFAULT); int blockSize, int ksize, double k, int bordertype = cv::BORDER_DEFAULT);
...@@ -936,7 +936,7 @@ namespace cv ...@@ -936,7 +936,7 @@ namespace cv
Size m_maxSize; Size m_maxSize;
vector<CvSize> sizev; vector<CvSize> sizev;
vector<float> scalev; vector<float> scalev;
oclMat gimg1, gsum, gsqsum, gsqsum_t; oclMat gimg1, gsum, gsqsum;
void * buffers; void * buffers;
}; };
......
...@@ -237,7 +237,7 @@ OCL_PERF_TEST_P(CornerHarrisFixture, CornerHarris, ...@@ -237,7 +237,7 @@ OCL_PERF_TEST_P(CornerHarrisFixture, CornerHarris,
typedef tuple<Size, MatDepth> IntegralParams; typedef tuple<Size, MatDepth> IntegralParams;
typedef TestBaseWithParam<IntegralParams> IntegralFixture; typedef TestBaseWithParam<IntegralParams> IntegralFixture;
OCL_PERF_TEST_P(IntegralFixture, Integral1, ::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32S, CV_32F))) OCL_PERF_TEST_P(IntegralFixture, DISABLED_Integral1, ::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32S, CV_32F)))
{ {
const IntegralParams params = GetParam(); const IntegralParams params = GetParam();
const Size srcSize = get<0>(params); const Size srcSize = get<0>(params);
...@@ -250,7 +250,7 @@ OCL_PERF_TEST_P(IntegralFixture, Integral1, ::testing::Combine(OCL_TEST_SIZES, O ...@@ -250,7 +250,7 @@ OCL_PERF_TEST_P(IntegralFixture, Integral1, ::testing::Combine(OCL_TEST_SIZES, O
{ {
ocl::oclMat oclSrc(src), oclDst; ocl::oclMat oclSrc(src), oclDst;
OCL_TEST_CYCLE() cv::ocl::integral(oclSrc, oclDst, sdepth); // OCL_TEST_CYCLE() cv::ocl::integral(oclSrc, oclDst, sdepth);
oclDst.download(dst); oclDst.download(dst);
......
...@@ -109,13 +109,13 @@ OCL_PERF_TEST_P(CV_TM_CCORR_NORMEDFixture, matchTemplate, ...@@ -109,13 +109,13 @@ OCL_PERF_TEST_P(CV_TM_CCORR_NORMEDFixture, matchTemplate,
oclDst.download(dst); oclDst.download(dst);
SANITY_CHECK(dst, 3e-2); SANITY_CHECK(dst, 2e-2);
} }
else if (RUN_PLAIN_IMPL) else if (RUN_PLAIN_IMPL)
{ {
TEST_CYCLE() cv::matchTemplate(src, templ, dst, CV_TM_CCORR_NORMED); TEST_CYCLE() cv::matchTemplate(src, templ, dst, CV_TM_CCORR_NORMED);
SANITY_CHECK(dst, 3e-2); SANITY_CHECK(dst, 2e-2);
} }
else else
OCL_PERF_ELSE OCL_PERF_ELSE
......
...@@ -747,15 +747,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS ...@@ -747,15 +747,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
oclMat gsum(totalheight + 4, gimg.cols + 1, CV_32SC1); oclMat gsum(totalheight + 4, gimg.cols + 1, CV_32SC1);
oclMat gsqsum(totalheight + 4, gimg.cols + 1, CV_32FC1); oclMat gsqsum(totalheight + 4, gimg.cols + 1, CV_32FC1);
int sdepth = 0;
if(Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE))
sdepth = CV_64FC1;
else
sdepth = CV_32FC1;
sdepth = CV_MAT_DEPTH(sdepth);
int type = CV_MAKE_TYPE(sdepth, 1);
oclMat gsqsum_t(totalheight + 4, gimg.cols + 1, type);
cl_mem stagebuffer; cl_mem stagebuffer;
cl_mem nodebuffer; cl_mem nodebuffer;
cl_mem candidatebuffer; cl_mem candidatebuffer;
...@@ -763,7 +754,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS ...@@ -763,7 +754,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
cv::Rect roi, roi2; cv::Rect roi, roi2;
cv::Mat imgroi, imgroisq; cv::Mat imgroi, imgroisq;
cv::ocl::oclMat resizeroi, gimgroi, gimgroisq; cv::ocl::oclMat resizeroi, gimgroi, gimgroisq;
int grp_per_CU = 12; int grp_per_CU = 12;
size_t blocksize = 8; size_t blocksize = 8;
...@@ -783,7 +773,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS ...@@ -783,7 +773,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
roi2 = Rect(0, 0, sz.width - 1, sz.height - 1); roi2 = Rect(0, 0, sz.width - 1, sz.height - 1);
resizeroi = gimg1(roi2); resizeroi = gimg1(roi2);
gimgroi = gsum(roi); gimgroi = gsum(roi);
gimgroisq = gsqsum_t(roi); gimgroisq = gsqsum(roi);
int width = gimgroi.cols - 1 - cascade->orig_window_size.width; int width = gimgroi.cols - 1 - cascade->orig_window_size.width;
int height = gimgroi.rows - 1 - cascade->orig_window_size.height; int height = gimgroi.rows - 1 - cascade->orig_window_size.height;
scaleinfo[i].width_height = (width << 16) | height; scaleinfo[i].width_height = (width << 16) | height;
...@@ -797,13 +787,8 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS ...@@ -797,13 +787,8 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
scaleinfo[i].factor = factor; scaleinfo[i].factor = factor;
cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR); cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR);
cv::ocl::integral(resizeroi, gimgroi, gimgroisq); cv::ocl::integral(resizeroi, gimgroi, gimgroisq);
indexy += sz.height; indexy += sz.height;
} }
if(gsqsum_t.depth() == CV_64F)
gsqsum_t.convertTo(gsqsum, CV_32FC1);
else
gsqsum = gsqsum_t;
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
...@@ -1040,12 +1025,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS ...@@ -1040,12 +1025,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
int n_factors = 0; int n_factors = 0;
oclMat gsum; oclMat gsum;
oclMat gsqsum; oclMat gsqsum;
oclMat gsqsum_t; cv::ocl::integral(gimg, gsum, gsqsum);
cv::ocl::integral(gimg, gsum, gsqsum_t);
if(gsqsum_t.depth() == CV_64F)
gsqsum_t.convertTo(gsqsum, CV_32FC1);
else
gsqsum = gsqsum_t;
CvSize sz; CvSize sz;
vector<CvSize> sizev; vector<CvSize> sizev;
vector<float> scalev; vector<float> scalev;
...@@ -1320,16 +1300,12 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std ...@@ -1320,16 +1300,12 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
roi2 = Rect(0, 0, sz.width - 1, sz.height - 1); roi2 = Rect(0, 0, sz.width - 1, sz.height - 1);
resizeroi = gimg1(roi2); resizeroi = gimg1(roi2);
gimgroi = gsum(roi); gimgroi = gsum(roi);
gimgroisq = gsqsum_t(roi); gimgroisq = gsqsum(roi);
cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR); cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR);
cv::ocl::integral(resizeroi, gimgroi, gimgroisq); cv::ocl::integral(resizeroi, gimgroi, gimgroisq);
indexy += sz.height; indexy += sz.height;
} }
if(gsqsum_t.depth() == CV_64F)
gsqsum_t.convertTo(gsqsum, CV_32FC1);
else
gsqsum = gsqsum_t;
gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade);
stage = (GpuHidHaarStageClassifier *)(gcascade + 1); stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
...@@ -1391,11 +1367,7 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std ...@@ -1391,11 +1367,7 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
} }
else else
{ {
cv::ocl::integral(gimg, gsum, gsqsum_t); cv::ocl::integral(gimg, gsum, gsqsum);
if(gsqsum_t.depth() == CV_64F)
gsqsum_t.convertTo(gsqsum, CV_32FC1);
else
gsqsum = gsqsum_t;
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
...@@ -1621,7 +1593,6 @@ void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs( ...@@ -1621,7 +1593,6 @@ void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs(
gimg1.release(); gimg1.release();
gsum.release(); gsum.release();
gsqsum.release(); gsqsum.release();
gsqsum_t.release();
} }
else if (!(m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE)) else if (!(m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE))
{ {
...@@ -1696,16 +1667,6 @@ void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs( ...@@ -1696,16 +1667,6 @@ void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs(
gsum.create(totalheight + 4, cols + 1, CV_32SC1); gsum.create(totalheight + 4, cols + 1, CV_32SC1);
gsqsum.create(totalheight + 4, cols + 1, CV_32FC1); gsqsum.create(totalheight + 4, cols + 1, CV_32FC1);
int sdepth = 0;
if(Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE))
sdepth = CV_64FC1;
else
sdepth = CV_32FC1;
sdepth = CV_MAT_DEPTH(sdepth);
int type = CV_MAKE_TYPE(sdepth, 1);
gsqsum_t.create(totalheight + 4, cols + 1, type);
scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
for( int i = 0; i < loopcount; i++ ) for( int i = 0; i < loopcount; i++ )
{ {
......
...@@ -898,7 +898,7 @@ namespace cv ...@@ -898,7 +898,7 @@ namespace cv
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
// integral // integral
void integral(const oclMat &src, oclMat &sum, oclMat &sqsum, int sdepth) void integral(const oclMat &src, oclMat &sum, oclMat &sqsum)
{ {
CV_Assert(src.type() == CV_8UC1); CV_Assert(src.type() == CV_8UC1);
if (!src.clCxt->supportsFeature(ocl::FEATURE_CL_DOUBLE) && src.depth() == CV_64F) if (!src.clCxt->supportsFeature(ocl::FEATURE_CL_DOUBLE) && src.depth() == CV_64F)
...@@ -907,11 +907,6 @@ namespace cv ...@@ -907,11 +907,6 @@ namespace cv
return; return;
} }
if( sdepth <= 0 )
sdepth = CV_32S;
sdepth = CV_MAT_DEPTH(sdepth);
int type = CV_MAKE_TYPE(sdepth, 1);
int vlen = 4; int vlen = 4;
int offset = src.offset / vlen; int offset = src.offset / vlen;
int pre_invalid = src.offset % vlen; int pre_invalid = src.offset % vlen;
...@@ -919,26 +914,17 @@ namespace cv ...@@ -919,26 +914,17 @@ namespace cv
oclMat t_sum , t_sqsum; oclMat t_sum , t_sqsum;
int w = src.cols + 1, h = src.rows + 1; int w = src.cols + 1, h = src.rows + 1;
int depth = src.depth() == CV_8U ? CV_32S : CV_64F;
char build_option[250]; int type = CV_MAKE_TYPE(depth, 1);
if(Context::getContext()->supportsFeature(ocl::FEATURE_CL_DOUBLE))
{
t_sqsum.create(src.cols, src.rows, CV_64FC1);
sqsum.create(h, w, CV_64FC1);
sprintf(build_option, "-D TYPE=double -D TYPE4=double4 -D convert_TYPE4=convert_double4");
}
else
{
t_sqsum.create(src.cols, src.rows, CV_32FC1);
sqsum.create(h, w, CV_32FC1);
sprintf(build_option, "-D TYPE=float -D TYPE4=float4 -D convert_TYPE4=convert_float4");
}
t_sum.create(src.cols, src.rows, type); t_sum.create(src.cols, src.rows, type);
sum.create(h, w, type); sum.create(h, w, type);
int sum_offset = sum.offset / sum.elemSize(); t_sqsum.create(src.cols, src.rows, CV_32FC1);
int sqsum_offset = sqsum.offset / sqsum.elemSize(); sqsum.create(h, w, CV_32FC1);
int sum_offset = sum.offset / vlen;
int sqsum_offset = sqsum.offset / vlen;
vector<pair<size_t , const void *> > args; vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
...@@ -950,9 +936,8 @@ namespace cv ...@@ -950,9 +936,8 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sqsum.step));
size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1}; size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_cols", gt, lt, args, -1, sdepth, build_option); openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_cols", gt, lt, args, -1, depth);
args.clear(); args.clear();
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sum.data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
...@@ -962,16 +947,15 @@ namespace cv ...@@ -962,16 +947,15 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.rows )); args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.cols )); args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step )); args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sqsum.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&sum.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sqsum.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&sqsum.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum_offset)); args.push_back( make_pair( sizeof(cl_int) , (void *)&sum_offset));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sqsum_offset)); args.push_back( make_pair( sizeof(cl_int) , (void *)&sqsum_offset));
size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1}; size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_rows", gt2, lt2, args, -1, sdepth, build_option); openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_rows", gt2, lt2, args, -1, depth);
} }
void integral(const oclMat &src, oclMat &sum, int sdepth) void integral(const oclMat &src, oclMat &sum)
{ {
CV_Assert(src.type() == CV_8UC1); CV_Assert(src.type() == CV_8UC1);
int vlen = 4; int vlen = 4;
...@@ -979,13 +963,10 @@ namespace cv ...@@ -979,13 +963,10 @@ namespace cv
int pre_invalid = src.offset % vlen; int pre_invalid = src.offset % vlen;
int vcols = (pre_invalid + src.cols + vlen - 1) / vlen; int vcols = (pre_invalid + src.cols + vlen - 1) / vlen;
if( sdepth <= 0 )
sdepth = CV_32S;
sdepth = CV_MAT_DEPTH(sdepth);
int type = CV_MAKE_TYPE(sdepth, 1);
oclMat t_sum; oclMat t_sum;
int w = src.cols + 1, h = src.rows + 1; int w = src.cols + 1, h = src.rows + 1;
int depth = src.depth() == CV_8U ? CV_32S : CV_32F;
int type = CV_MAKE_TYPE(depth, 1);
t_sum.create(src.cols, src.rows, type); t_sum.create(src.cols, src.rows, type);
sum.create(h, w, type); sum.create(h, w, type);
...@@ -1001,7 +982,7 @@ namespace cv ...@@ -1001,7 +982,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step));
size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1}; size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_cols", gt, lt, args, -1, sdepth); openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_cols", gt, lt, args, -1, depth);
args.clear(); args.clear();
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sum.data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
...@@ -1012,7 +993,7 @@ namespace cv ...@@ -1012,7 +993,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&sum.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum_offset)); args.push_back( make_pair( sizeof(cl_int) , (void *)&sum_offset));
size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1}; size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_rows", gt2, lt2, args, -1, sdepth); openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_rows", gt2, lt2, args, -1, depth);
} }
/////////////////////// corner ////////////////////////////// /////////////////////// corner //////////////////////////////
......
...@@ -245,15 +245,12 @@ namespace cv ...@@ -245,15 +245,12 @@ namespace cv
void matchTemplate_CCORR_NORMED( void matchTemplate_CCORR_NORMED(
const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf) const oclMat &image, const oclMat &templ, oclMat &result, MatchTemplateBuf &buf)
{ {
cv::ocl::oclMat temp;
matchTemplate_CCORR(image, templ, result, buf); matchTemplate_CCORR(image, templ, result, buf);
buf.image_sums.resize(1); buf.image_sums.resize(1);
buf.image_sqsums.resize(1); buf.image_sqsums.resize(1);
integral(image.reshape(1), buf.image_sums[0], temp);
if(temp.depth() == CV_64F) integral(image.reshape(1), buf.image_sums[0], buf.image_sqsums[0]);
temp.convertTo(buf.image_sqsums[0], CV_32FC1);
else
buf.image_sqsums[0] = temp;
unsigned long long templ_sqsum = (unsigned long long)sqrSum(templ.reshape(1))[0]; unsigned long long templ_sqsum = (unsigned long long)sqrSum(templ.reshape(1))[0];
Context *clCxt = image.clCxt; Context *clCxt = image.clCxt;
...@@ -419,12 +416,7 @@ namespace cv ...@@ -419,12 +416,7 @@ namespace cv
{ {
buf.image_sums.resize(1); buf.image_sums.resize(1);
buf.image_sqsums.resize(1); buf.image_sqsums.resize(1);
cv::ocl::oclMat temp; integral(image, buf.image_sums[0], buf.image_sqsums[0]);
integral(image, buf.image_sums[0], temp);
if(temp.depth() == CV_64F)
temp.convertTo(buf.image_sqsums[0], CV_32FC1);
else
buf.image_sqsums[0] = temp;
templ_sum[0] = (float)sum(templ)[0]; templ_sum[0] = (float)sum(templ)[0];
...@@ -460,14 +452,10 @@ namespace cv ...@@ -460,14 +452,10 @@ namespace cv
templ_sum *= scale; templ_sum *= scale;
buf.image_sums.resize(buf.images.size()); buf.image_sums.resize(buf.images.size());
buf.image_sqsums.resize(buf.images.size()); buf.image_sqsums.resize(buf.images.size());
cv::ocl::oclMat temp;
for(int i = 0; i < image.oclchannels(); i ++) for(int i = 0; i < image.oclchannels(); i ++)
{ {
integral(buf.images[i], buf.image_sums[i], temp); integral(buf.images[i], buf.image_sums[i], buf.image_sqsums[i]);
if(temp.depth() == CV_64F)
temp.convertTo(buf.image_sqsums[i], CV_32FC1);
else
buf.image_sqsums[i] = temp;
} }
switch(image.oclchannels()) switch(image.oclchannels())
......
...@@ -62,13 +62,13 @@ typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode ...@@ -62,13 +62,13 @@ typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode
GpuHidHaarTreeNode; GpuHidHaarTreeNode;
//typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
//{ {
// int count __attribute__((aligned (4))); int count __attribute__((aligned (4)));
// GpuHidHaarTreeNode* node __attribute__((aligned (8))); GpuHidHaarTreeNode* node __attribute__((aligned (8)));
// float* alpha __attribute__((aligned (8))); float* alpha __attribute__((aligned (8)));
//} }
//GpuHidHaarClassifier; GpuHidHaarClassifier;
typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
...@@ -84,22 +84,22 @@ typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier ...@@ -84,22 +84,22 @@ typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
GpuHidHaarStageClassifier; GpuHidHaarStageClassifier;
//typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
//{ {
// int count __attribute__((aligned (4))); int count __attribute__((aligned (4)));
// int is_stump_based __attribute__((aligned (4))); int is_stump_based __attribute__((aligned (4)));
// int has_tilted_features __attribute__((aligned (4))); int has_tilted_features __attribute__((aligned (4)));
// int is_tree __attribute__((aligned (4))); int is_tree __attribute__((aligned (4)));
// int pq0 __attribute__((aligned (4))); int pq0 __attribute__((aligned (4)));
// int pq1 __attribute__((aligned (4))); int pq1 __attribute__((aligned (4)));
// int pq2 __attribute__((aligned (4))); int pq2 __attribute__((aligned (4)));
// int pq3 __attribute__((aligned (4))); int pq3 __attribute__((aligned (4)));
// int p0 __attribute__((aligned (4))); int p0 __attribute__((aligned (4)));
// int p1 __attribute__((aligned (4))); int p1 __attribute__((aligned (4)));
// int p2 __attribute__((aligned (4))); int p2 __attribute__((aligned (4)));
// int p3 __attribute__((aligned (4))); int p3 __attribute__((aligned (4)));
// float inv_window_area __attribute__((aligned (4))); float inv_window_area __attribute__((aligned (4)));
//} GpuHidHaarClassifierCascade; } GpuHidHaarClassifierCascade;
#ifdef PACKED_CLASSIFIER #ifdef PACKED_CLASSIFIER
...@@ -196,12 +196,10 @@ __kernel void gpuRunHaarClassifierCascadePacked( ...@@ -196,12 +196,10 @@ __kernel void gpuRunHaarClassifierCascadePacked(
for(int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++ ) for(int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++ )
{// iterate until candidate is valid {// iterate until candidate is valid
float stage_sum = 0.0f; float stage_sum = 0.0f;
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*) int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier)); float stagethreshold = as_float(stageinfo.y);
int lcl_off = (yl*DATA_SIZE_X)+(xl); int lcl_off = (lid_y*DATA_SIZE_X)+(lid_x);
int stagecount = stageinfo->count; for(int nodeloop = 0; nodeloop < stageinfo.x; nodecounter++,nodeloop++ )
float stagethreshold = stageinfo->threshold;
for(int nodeloop = 0; nodeloop < stagecount; nodecounter++,nodeloop++ )
{ {
// simple macro to extract shorts from int // simple macro to extract shorts from int
#define M0(_t) ((_t)&0xFFFF) #define M0(_t) ((_t)&0xFFFF)
...@@ -357,17 +355,14 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa ...@@ -357,17 +355,14 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
variance_norm_factor = variance_norm_factor * correction - mean * mean; variance_norm_factor = variance_norm_factor * correction - mean * mean;
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f; variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;
for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ ) for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ )
{ {
float stage_sum = 0.f; float stage_sum = 0.f;
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*) int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier)); float stagethreshold = as_float(stageinfo.y);
int stagecount = stageinfo->count; for(int nodeloop = 0; nodeloop < stageinfo.x; )
float stagethreshold = stageinfo->threshold;
for(int nodeloop = 0; nodeloop < stagecount; )
{ {
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*) __global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter);
(((__global uchar*)nodeptr) + nodecounter * sizeof(GpuHidHaarTreeNode));
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0])); int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0])); int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
...@@ -423,7 +418,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa ...@@ -423,7 +418,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
#endif #endif
} }
result = (stage_sum >= stagethreshold) ? 1 : 0; result = (stage_sum >= stagethreshold);
} }
if(factor < 2) if(factor < 2)
{ {
...@@ -452,17 +447,14 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa ...@@ -452,17 +447,14 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
lclcount[0]=0; lclcount[0]=0;
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
//int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop); int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*) float stagethreshold = as_float(stageinfo.y);
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
int stagecount = stageinfo->count;
float stagethreshold = stageinfo->threshold;
int perfscale = queuecount > 4 ? 3 : 2; int perfscale = queuecount > 4 ? 3 : 2;
int queuecount_loop = (queuecount + (1<<perfscale)-1) >> perfscale; int queuecount_loop = (queuecount + (1<<perfscale)-1) >> perfscale;
int lcl_compute_win = lcl_sz >> perfscale; int lcl_compute_win = lcl_sz >> perfscale;
int lcl_compute_win_id = (lcl_id >>(6-perfscale)); int lcl_compute_win_id = (lcl_id >>(6-perfscale));
int lcl_loops = (stagecount + lcl_compute_win -1) >> (6-perfscale); int lcl_loops = (stageinfo.x + lcl_compute_win -1) >> (6-perfscale);
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale)); int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
for(int queueloop=0; queueloop<queuecount_loop; queueloop++) for(int queueloop=0; queueloop<queuecount_loop; queueloop++)
{ {
...@@ -477,10 +469,10 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa ...@@ -477,10 +469,10 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
float part_sum = 0.f; float part_sum = 0.f;
const int stump_factor = STUMP_BASED ? 1 : 2; const int stump_factor = STUMP_BASED ? 1 : 2;
int root_offset = 0; int root_offset = 0;
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stagecount;) for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x;)
{ {
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*) __global GpuHidHaarTreeNode* currentnodeptr =
(((__global uchar*)nodeptr) + sizeof(GpuHidHaarTreeNode) * ((nodecounter + tempnodecounter) * stump_factor + root_offset)); nodeptr + (nodecounter + tempnodecounter) * stump_factor + root_offset;
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0])); int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0])); int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
...@@ -557,7 +549,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa ...@@ -557,7 +549,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
queuecount = lclcount[0]; queuecount = lclcount[0];
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
nodecounter += stagecount; nodecounter += stageinfo.x;
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++) }//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
if(lcl_id<queuecount) if(lcl_id<queuecount)
......
...@@ -59,13 +59,13 @@ typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode ...@@ -59,13 +59,13 @@ typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode
int right __attribute__((aligned(4))); int right __attribute__((aligned(4)));
} }
GpuHidHaarTreeNode; GpuHidHaarTreeNode;
//typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier
//{ {
// int count __attribute__((aligned(4))); int count __attribute__((aligned(4)));
// GpuHidHaarTreeNode *node __attribute__((aligned(8))); GpuHidHaarTreeNode *node __attribute__((aligned(8)));
// float *alpha __attribute__((aligned(8))); float *alpha __attribute__((aligned(8)));
//} }
//GpuHidHaarClassifier; GpuHidHaarClassifier;
typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier
{ {
int count __attribute__((aligned(4))); int count __attribute__((aligned(4)));
...@@ -77,29 +77,29 @@ typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier ...@@ -77,29 +77,29 @@ typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier
int reserved3 __attribute__((aligned(8))); int reserved3 __attribute__((aligned(8)));
} }
GpuHidHaarStageClassifier; GpuHidHaarStageClassifier;
//typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade
//{ {
// int count __attribute__((aligned(4))); int count __attribute__((aligned(4)));
// int is_stump_based __attribute__((aligned(4))); int is_stump_based __attribute__((aligned(4)));
// int has_tilted_features __attribute__((aligned(4))); int has_tilted_features __attribute__((aligned(4)));
// int is_tree __attribute__((aligned(4))); int is_tree __attribute__((aligned(4)));
// int pq0 __attribute__((aligned(4))); int pq0 __attribute__((aligned(4)));
// int pq1 __attribute__((aligned(4))); int pq1 __attribute__((aligned(4)));
// int pq2 __attribute__((aligned(4))); int pq2 __attribute__((aligned(4)));
// int pq3 __attribute__((aligned(4))); int pq3 __attribute__((aligned(4)));
// int p0 __attribute__((aligned(4))); int p0 __attribute__((aligned(4)));
// int p1 __attribute__((aligned(4))); int p1 __attribute__((aligned(4)));
// int p2 __attribute__((aligned(4))); int p2 __attribute__((aligned(4)));
// int p3 __attribute__((aligned(4))); int p3 __attribute__((aligned(4)));
// float inv_window_area __attribute__((aligned(4))); float inv_window_area __attribute__((aligned(4)));
//} GpuHidHaarClassifierCascade; } GpuHidHaarClassifierCascade;
__kernel void gpuRunHaarClassifierCascade_scaled2( __kernel void gpuRunHaarClassifierCascade_scaled2(
global GpuHidHaarStageClassifier *stagecascadeptr_, global GpuHidHaarStageClassifier *stagecascadeptr,
global int4 *info, global int4 *info,
global GpuHidHaarTreeNode *nodeptr_, global GpuHidHaarTreeNode *nodeptr,
global const int *restrict sum, global const int *restrict sum,
global const float *restrict sqsum, global const float *restrict sqsum,
global int4 *candidate, global int4 *candidate,
const int rows, const int rows,
const int cols, const int cols,
...@@ -132,7 +132,8 @@ __kernel void gpuRunHaarClassifierCascade_scaled2( ...@@ -132,7 +132,8 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
int max_idx = rows * cols - 1; int max_idx = rows * cols - 1;
for (int scalei = 0; scalei < loopcount; scalei++) for (int scalei = 0; scalei < loopcount; scalei++)
{ {
int4 scaleinfo1 = info[scalei]; int4 scaleinfo1;
scaleinfo1 = info[scalei];
int grpnumperline = (scaleinfo1.y & 0xffff0000) >> 16; int grpnumperline = (scaleinfo1.y & 0xffff0000) >> 16;
int totalgrp = scaleinfo1.y & 0xffff; int totalgrp = scaleinfo1.y & 0xffff;
float factor = as_float(scaleinfo1.w); float factor = as_float(scaleinfo1.w);
...@@ -173,18 +174,15 @@ __kernel void gpuRunHaarClassifierCascade_scaled2( ...@@ -173,18 +174,15 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++) for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++)
{ {
float stage_sum = 0.f; float stage_sum = 0.f;
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*) int stagecount = stagecascadeptr[stageloop].count;
(((__global uchar*)stagecascadeptr_)+stageloop*sizeof(GpuHidHaarStageClassifier));
int stagecount = stageinfo->count;
for (int nodeloop = 0; nodeloop < stagecount;) for (int nodeloop = 0; nodeloop < stagecount;)
{ {
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*) __global GpuHidHaarTreeNode *currentnodeptr = (nodeptr + nodecounter);
(((__global uchar*)nodeptr_) + nodecounter * sizeof(GpuHidHaarTreeNode));
int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0])); int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0])); int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0])); int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4 *)(&(currentnodeptr->weight[0])); float4 w = *(__global float4 *)(&(currentnodeptr->weight[0]));
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0])); float3 alpha3 = *(__global float3 *)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor; float nodethreshold = w.w * variance_norm_factor;
info1.x += p_offset; info1.x += p_offset;
...@@ -206,7 +204,7 @@ __kernel void gpuRunHaarClassifierCascade_scaled2( ...@@ -206,7 +204,7 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)] sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)]
+ sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z; + sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z;
bool passThres = (classsum >= nodethreshold) ? 1 : 0; bool passThres = classsum >= nodethreshold;
#if STUMP_BASED #if STUMP_BASED
stage_sum += passThres ? alpha3.y : alpha3.x; stage_sum += passThres ? alpha3.y : alpha3.x;
...@@ -236,8 +234,7 @@ __kernel void gpuRunHaarClassifierCascade_scaled2( ...@@ -236,8 +234,7 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
} }
#endif #endif
} }
result = (int)(stage_sum >= stagecascadeptr[stageloop].threshold);
result = (stage_sum >= stageinfo->threshold) ? 1 : 0;
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
...@@ -284,14 +281,11 @@ __kernel void gpuRunHaarClassifierCascade_scaled2( ...@@ -284,14 +281,11 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
} }
} }
} }
__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, const int nodenum) __kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, int nodenum)
{ {
const int counter = get_global_id(0); int counter = get_global_id(0);
int tr_x[3], tr_y[3], tr_h[3], tr_w[3], i = 0; int tr_x[3], tr_y[3], tr_h[3], tr_w[3], i = 0;
GpuHidHaarTreeNode t1 = *(__global GpuHidHaarTreeNode*) GpuHidHaarTreeNode t1 = *(orinode + counter);
(((__global uchar*)orinode) + counter * sizeof(GpuHidHaarTreeNode));
__global GpuHidHaarTreeNode* pNew = (__global GpuHidHaarTreeNode*)
(((__global uchar*)newnode) + (counter + nodenum) * sizeof(GpuHidHaarTreeNode));
#pragma unroll #pragma unroll
for (i = 0; i < 3; i++) for (i = 0; i < 3; i++)
...@@ -303,21 +297,22 @@ __kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuH ...@@ -303,21 +297,22 @@ __kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuH
} }
t1.weight[0] = -(t1.weight[1] * tr_h[1] * tr_w[1] + t1.weight[2] * tr_h[2] * tr_w[2]) / (tr_h[0] * tr_w[0]); t1.weight[0] = -(t1.weight[1] * tr_h[1] * tr_w[1] + t1.weight[2] * tr_h[2] * tr_w[2]) / (tr_h[0] * tr_w[0]);
counter += nodenum;
#pragma unroll #pragma unroll
for (i = 0; i < 3; i++) for (i = 0; i < 3; i++)
{ {
pNew->p[i][0] = tr_x[i]; newnode[counter].p[i][0] = tr_x[i];
pNew->p[i][1] = tr_y[i]; newnode[counter].p[i][1] = tr_y[i];
pNew->p[i][2] = tr_x[i] + tr_w[i]; newnode[counter].p[i][2] = tr_x[i] + tr_w[i];
pNew->p[i][3] = tr_y[i] + tr_h[i]; newnode[counter].p[i][3] = tr_y[i] + tr_h[i];
pNew->weight[i] = t1.weight[i] * weight_scale; newnode[counter].weight[i] = t1.weight[i] * weight_scale;
} }
pNew->left = t1.left; newnode[counter].left = t1.left;
pNew->right = t1.right; newnode[counter].right = t1.right;
pNew->threshold = t1.threshold; newnode[counter].threshold = t1.threshold;
pNew->alpha[0] = t1.alpha[0]; newnode[counter].alpha[0] = t1.alpha[0];
pNew->alpha[1] = t1.alpha[1]; newnode[counter].alpha[1] = t1.alpha[1];
pNew->alpha[2] = t1.alpha[2]; newnode[counter].alpha[2] = t1.alpha[2];
} }
This diff is collapsed.
...@@ -295,33 +295,23 @@ OCL_TEST_P(CornerHarris, Mat) ...@@ -295,33 +295,23 @@ OCL_TEST_P(CornerHarris, Mat)
//////////////////////////////////integral///////////////////////////////////////////////// //////////////////////////////////integral/////////////////////////////////////////////////
struct Integral : typedef ImgprocTestBase Integral;
public ImgprocTestBase
{
int sdepth;
virtual void SetUp()
{
type = GET_PARAM(0);
blockSize = GET_PARAM(1);
sdepth = GET_PARAM(2);
useRoi = GET_PARAM(3);
}
};
OCL_TEST_P(Integral, Mat1) OCL_TEST_P(Integral, Mat1)
{ {
for (int j = 0; j < LOOP_TIMES; j++) for (int j = 0; j < LOOP_TIMES; j++)
{ {
random_roi(); random_roi();
ocl::integral(gsrc_roi, gdst_roi, sdepth); ocl::integral(gsrc_roi, gdst_roi);
integral(src_roi, dst_roi, sdepth); integral(src_roi, dst_roi);
Near(); Near();
} }
} }
OCL_TEST_P(Integral, Mat2) // TODO wrong output type
OCL_TEST_P(Integral, DISABLED_Mat2)
{ {
Mat dst1; Mat dst1;
ocl::oclMat gdst1; ocl::oclMat gdst1;
...@@ -330,12 +320,10 @@ OCL_TEST_P(Integral, Mat2) ...@@ -330,12 +320,10 @@ OCL_TEST_P(Integral, Mat2)
{ {
random_roi(); random_roi();
integral(src_roi, dst_roi, dst1, sdepth); integral(src_roi, dst1, dst_roi);
ocl::integral(gsrc_roi, gdst_roi, gdst1, sdepth); ocl::integral(gsrc_roi, gdst1, gdst_roi);
Near(); Near();
if(gdst1.clCxt->supportsFeature(ocl::FEATURE_CL_DOUBLE))
EXPECT_MAT_NEAR(dst1, Mat(gdst1), 0.);
} }
} }
...@@ -575,7 +563,7 @@ INSTANTIATE_TEST_CASE_P(Imgproc, CornerHarris, Combine( ...@@ -575,7 +563,7 @@ INSTANTIATE_TEST_CASE_P(Imgproc, CornerHarris, Combine(
INSTANTIATE_TEST_CASE_P(Imgproc, Integral, Combine( INSTANTIATE_TEST_CASE_P(Imgproc, Integral, Combine(
Values((MatType)CV_8UC1), // TODO does not work with CV_32F, CV_64F Values((MatType)CV_8UC1), // TODO does not work with CV_32F, CV_64F
Values(0), // not used Values(0), // not used
Values((MatType)CV_32SC1, (MatType)CV_32FC1), Values(0), // not used
Bool())); Bool()));
INSTANTIATE_TEST_CASE_P(Imgproc, Threshold, Combine( INSTANTIATE_TEST_CASE_P(Imgproc, Threshold, Combine(
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment