Commit 5101a7fc authored by Ernest Galbrun's avatar Ernest Galbrun

replaced tabs by spaces

parent 6a6f24b1
...@@ -111,7 +111,7 @@ protected: ...@@ -111,7 +111,7 @@ protected:
int medianFiltering; int medianFiltering;
private: private:
void procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2); void procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2, Mat_<float>& u3);
bool procOneScale_ocl(const UMat& I0, const UMat& I1, UMat& u1, UMat& u2); bool procOneScale_ocl(const UMat& I0, const UMat& I1, UMat& u1, UMat& u2);
...@@ -139,6 +139,7 @@ private: ...@@ -139,6 +139,7 @@ private:
Mat_<float> v1_buf; Mat_<float> v1_buf;
Mat_<float> v2_buf; Mat_<float> v2_buf;
Mat_<float> v3_buf;
Mat_<float> p11_buf; Mat_<float> p11_buf;
Mat_<float> p12_buf; Mat_<float> p12_buf;
...@@ -350,7 +351,7 @@ OpticalFlowDual_TVL1::OpticalFlowDual_TVL1() ...@@ -350,7 +351,7 @@ OpticalFlowDual_TVL1::OpticalFlowDual_TVL1()
nscales = 5; nscales = 5;
warps = 5; warps = 5;
epsilon = 0.01; epsilon = 0.01;
gamma = 1.; gamma = 0.01;
innerIterations = 30; innerIterations = 30;
outerIterations = 10; outerIterations = 10;
useInitialFlow = false; useInitialFlow = false;
...@@ -406,6 +407,7 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray ...@@ -406,6 +407,7 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
dm.v1_buf.create(I0.size()); dm.v1_buf.create(I0.size());
dm.v2_buf.create(I0.size()); dm.v2_buf.create(I0.size());
dm.v3_buf.create(I0.size());
dm.p11_buf.create(I0.size()); dm.p11_buf.create(I0.size());
dm.p12_buf.create(I0.size()); dm.p12_buf.create(I0.size());
...@@ -462,7 +464,7 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray ...@@ -462,7 +464,7 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
for (int s = nscales - 1; s >= 0; --s) for (int s = nscales - 1; s >= 0; --s)
{ {
// compute the optical flow at the current scale // compute the optical flow at the current scale
procOneScale(dm.I0s[s], dm.I1s[s], dm.u1s[s], dm.u2s[s]); procOneScale(dm.I0s[s], dm.I1s[s], dm.u1s[s], dm.u2s[s], dm.u3s[s]);
// if this was the last scale, finish now // if this was the last scale, finish now
if (s == 0) if (s == 0)
...@@ -1027,36 +1029,45 @@ void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<floa ...@@ -1027,36 +1029,45 @@ void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<floa
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// estimateU // estimateU
float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>& div_p1, const Mat_<float>& div_p2, Mat_<float>& u1, Mat_<float>& u2, float theta) float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>& v3,
const Mat_<float>& div_p1, const Mat_<float>& div_p2, const Mat_<float>& div_p3,
Mat_<float>& u1, Mat_<float>& u2, Mat_<float>& u3,
float theta, float gamma)
{ {
CV_DbgAssert( v2.size() == v1.size() ); CV_DbgAssert( v2.size() == v1.size() );
CV_DbgAssert( v3.size() == v1.size() );
CV_DbgAssert( div_p1.size() == v1.size() ); CV_DbgAssert( div_p1.size() == v1.size() );
CV_DbgAssert( div_p2.size() == v1.size() ); CV_DbgAssert( div_p2.size() == v1.size() );
CV_DbgAssert( div_p3.size() == v1.size() );
CV_DbgAssert( u1.size() == v1.size() ); CV_DbgAssert( u1.size() == v1.size() );
CV_DbgAssert( u2.size() == v1.size() ); CV_DbgAssert( u2.size() == v1.size() );
CV_DbgAssert( u3.size() == v1.size() );
float error = 0.0f; float error = 0.0f;
for (int y = 0; y < v1.rows; ++y) for (int y = 0; y < v1.rows; ++y)
{ {
const float* v1Row = v1[y]; const float* v1Row = v1[y];
const float* v2Row = v2[y]; const float* v2Row = v2[y];
const float* v3Row = v3[y];
const float* divP1Row = div_p1[y]; const float* divP1Row = div_p1[y];
const float* divP2Row = div_p2[y]; const float* divP2Row = div_p2[y];
const float* divP3Row = div_p3[y];
float* u1Row = u1[y]; float* u1Row = u1[y];
float* u2Row = u2[y]; float* u2Row = u2[y];
float* u3Row = u3[y];
for (int x = 0; x < v1.cols; ++x) for (int x = 0; x < v1.cols; ++x)
{ {
const float u1k = u1Row[x]; const float u1k = u1Row[x];
const float u2k = u2Row[x]; const float u2k = u2Row[x];
const float u3k = u3Row[x];
u1Row[x] = v1Row[x] + theta * divP1Row[x]; u1Row[x] = v1Row[x] + theta * divP1Row[x];
u2Row[x] = v2Row[x] + theta * divP2Row[x]; u2Row[x] = v2Row[x] + theta * divP2Row[x];
u3Row[x] = v3Row[x] + theta * divP3Row[x];
//u3 error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k) + (u3Row[x] - u3k) * (u3Row[x] - u3k);
error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k);
} }
} }
...@@ -1074,10 +1085,14 @@ struct EstimateDualVariablesBody : ParallelLoopBody ...@@ -1074,10 +1085,14 @@ struct EstimateDualVariablesBody : ParallelLoopBody
Mat_<float> u1y; Mat_<float> u1y;
Mat_<float> u2x; Mat_<float> u2x;
Mat_<float> u2y; Mat_<float> u2y;
Mat_<float> u3x;
Mat_<float> u3y;
mutable Mat_<float> p11; mutable Mat_<float> p11;
mutable Mat_<float> p12; mutable Mat_<float> p12;
mutable Mat_<float> p21; mutable Mat_<float> p21;
mutable Mat_<float> p22; mutable Mat_<float> p22;
mutable Mat_<float> p31;
mutable Mat_<float> p32;
float taut; float taut;
}; };
...@@ -1089,38 +1104,55 @@ void EstimateDualVariablesBody::operator() (const Range& range) const ...@@ -1089,38 +1104,55 @@ void EstimateDualVariablesBody::operator() (const Range& range) const
const float* u1yRow = u1y[y]; const float* u1yRow = u1y[y];
const float* u2xRow = u2x[y]; const float* u2xRow = u2x[y];
const float* u2yRow = u2y[y]; const float* u2yRow = u2y[y];
const float* u3xRow = u3x[y];
const float* u3yRow = u3y[y];
float* p11Row = p11[y]; float* p11Row = p11[y];
float* p12Row = p12[y]; float* p12Row = p12[y];
float* p21Row = p21[y]; float* p21Row = p21[y];
float* p22Row = p22[y]; float* p22Row = p22[y];
float* p31Row = p31[y];
float* p32Row = p32[y];
for (int x = 0; x < u1x.cols; ++x) for (int x = 0; x < u1x.cols; ++x)
{ {
const float g1 = static_cast<float>(hypot(u1xRow[x], u1yRow[x])); const float g1 = static_cast<float>(hypot(u1xRow[x], u1yRow[x]));
const float g2 = static_cast<float>(hypot(u2xRow[x], u2yRow[x])); const float g2 = static_cast<float>(hypot(u2xRow[x], u2yRow[x]));
const float g3 = static_cast<float>(hypot(u3xRow[x], u3yRow[x]));
const float ng1 = 1.0f + taut * g1; const float ng1 = 1.0f + taut * g1;
const float ng2 = 1.0f + taut * g2; const float ng2 = 1.0f + taut * g2;
const float ng3 = 1.0f + taut * g3;
p11Row[x] = (p11Row[x] + taut * u1xRow[x]) / ng1; p11Row[x] = (p11Row[x] + taut * u1xRow[x]) / ng1;
p12Row[x] = (p12Row[x] + taut * u1yRow[x]) / ng1; p12Row[x] = (p12Row[x] + taut * u1yRow[x]) / ng1;
p21Row[x] = (p21Row[x] + taut * u2xRow[x]) / ng2; p21Row[x] = (p21Row[x] + taut * u2xRow[x]) / ng2;
p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2; p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2;
p31Row[x] = (p31Row[x] + taut * u3xRow[x]) / ng3;
p32Row[x] = (p32Row[x] + taut * u3yRow[x]) / ng3;
} }
} }
} }
void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y, const Mat_<float>& u2x, const Mat_<float>& u2y, void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y,
Mat_<float>& p11, Mat_<float>& p12, Mat_<float>& p21, Mat_<float>& p22, float taut) const Mat_<float>& u2x, const Mat_<float>& u2y,
const Mat_<float>& u3x, const Mat_<float>& u3y,
Mat_<float>& p11, Mat_<float>& p12,
Mat_<float>& p21, Mat_<float>& p22,
Mat_<float>& p31, Mat_<float>& p32,
float taut)
{ {
CV_DbgAssert( u1y.size() == u1x.size() ); CV_DbgAssert( u1y.size() == u1x.size() );
CV_DbgAssert( u2x.size() == u1x.size() ); CV_DbgAssert( u2x.size() == u1x.size() );
CV_DbgAssert( u3x.size() == u1x.size() );
CV_DbgAssert( u2y.size() == u1x.size() ); CV_DbgAssert( u2y.size() == u1x.size() );
CV_DbgAssert( u3y.size() == u1x.size() );
CV_DbgAssert( p11.size() == u1x.size() ); CV_DbgAssert( p11.size() == u1x.size() );
CV_DbgAssert( p12.size() == u1x.size() ); CV_DbgAssert( p12.size() == u1x.size() );
CV_DbgAssert( p21.size() == u1x.size() ); CV_DbgAssert( p21.size() == u1x.size() );
CV_DbgAssert( p22.size() == u1x.size() ); CV_DbgAssert( p22.size() == u1x.size() );
CV_DbgAssert( p31.size() == u1x.size() );
CV_DbgAssert( p32.size() == u1x.size() );
EstimateDualVariablesBody body; EstimateDualVariablesBody body;
...@@ -1128,10 +1160,14 @@ void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y, const ...@@ -1128,10 +1160,14 @@ void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y, const
body.u1y = u1y; body.u1y = u1y;
body.u2x = u2x; body.u2x = u2x;
body.u2y = u2y; body.u2y = u2y;
body.u3x = u3x;
body.u3y = u3y;
body.p11 = p11; body.p11 = p11;
body.p12 = p12; body.p12 = p12;
body.p21 = p21; body.p21 = p21;
body.p22 = p22; body.p22 = p22;
body.p31 = p31;
body.p32 = p32;
body.taut = taut; body.taut = taut;
parallel_for_(Range(0, u1x.rows), body); parallel_for_(Range(0, u1x.rows), body);
...@@ -1225,7 +1261,7 @@ bool OpticalFlowDual_TVL1::procOneScale_ocl(const UMat& I0, const UMat& I1, UMat ...@@ -1225,7 +1261,7 @@ bool OpticalFlowDual_TVL1::procOneScale_ocl(const UMat& I0, const UMat& I1, UMat
return true; return true;
} }
void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2) void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2, Mat_<float>& u3)
{ {
const float scaledEpsilon = static_cast<float>(epsilon * epsilon * I0.size().area()); const float scaledEpsilon = static_cast<float>(epsilon * epsilon * I0.size().area());
...@@ -1250,6 +1286,7 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float> ...@@ -1250,6 +1286,7 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
Mat_<float> v1 = dm.v1_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> v1 = dm.v1_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> v2 = dm.v2_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> v2 = dm.v2_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> v3 = dm.v3_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p11 = dm.p11_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> p11 = dm.p11_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> p12 = dm.p12_buf(Rect(0, 0, I0.cols, I0.rows));
...@@ -1266,7 +1303,7 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float> ...@@ -1266,7 +1303,7 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> div_p1 = dm.div_p1_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> div_p2 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> div_p3 = dm.div_p2_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> div_p3 = dm.div_p3_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u1x = dm.u1x_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> u1x = dm.u1x_buf(Rect(0, 0, I0.cols, I0.rows));
Mat_<float> u1y = dm.u1y_buf(Rect(0, 0, I0.cols, I0.rows)); Mat_<float> u1y = dm.u1y_buf(Rect(0, 0, I0.cols, I0.rows));
...@@ -1298,21 +1335,23 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float> ...@@ -1298,21 +1335,23 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
for (int n_inner = 0; error > scaledEpsilon && n_inner < innerIterations; ++n_inner) for (int n_inner = 0; error > scaledEpsilon && n_inner < innerIterations; ++n_inner)
{ {
// estimate the values of the variable (v1, v2) (thresholding operator TH) // estimate the values of the variable (v1, v2) (thresholding operator TH)
estimateV(I1wx, I1wy, u1, u2, grad, rho_c, v1, v2, l_t); estimateV(I1wx, I1wy, u1, u2, u3, grad, rho_c, v1, v2, v3, l_t, gamma);
// compute the divergence of the dual variable (p1, p2) // compute the divergence of the dual variable (p1, p2, p3)
divergence(p11, p12, div_p1); divergence(p11, p12, div_p1);
divergence(p21, p22, div_p2); divergence(p21, p22, div_p2);
divergence(p31, p32, div_p3);
// estimate the values of the optical flow (u1, u2) // estimate the values of the optical flow (u1, u2)
error = estimateU(v1, v2, div_p1, div_p2, u1, u2, static_cast<float>(theta)); error = estimateU(v1, v2, v3, div_p1, div_p2, div_p3, u1, u2, u3, static_cast<float>(theta), gamma);
// compute the gradient of the optical flow (Du1, Du2) // compute the gradient of the optical flow (Du1, Du2)
forwardGradient(u1, u1x, u1y); forwardGradient(u1, u1x, u1y);
forwardGradient(u2, u2x, u2y); forwardGradient(u2, u2x, u2y);
forwardGradient(u3, u3x, u3y);
// estimate the values of the dual variable (p1, p2) // estimate the values of the dual variable (p1, p2, p3)
estimateDualVariables(u1x, u1y, u2x, u2y, p11, p12, p21, p22, taut); estimateDualVariables(u1x, u1y, u2x, u2y, u3x, u3y, p11, p12, p21, p22, p31, p32, taut);
} }
} }
} }
...@@ -1402,6 +1441,8 @@ CV_INIT_ALGORITHM(OpticalFlowDual_TVL1, "DenseOpticalFlow.DualTVL1", ...@@ -1402,6 +1441,8 @@ CV_INIT_ALGORITHM(OpticalFlowDual_TVL1, "DenseOpticalFlow.DualTVL1",
"inner iterations (between outlier filtering) used in the numerical scheme"); "inner iterations (between outlier filtering) used in the numerical scheme");
obj.info()->addParam(obj, "outerIterations", obj.outerIterations, false, 0, 0, obj.info()->addParam(obj, "outerIterations", obj.outerIterations, false, 0, 0,
"outer iterations (number of inner loops) used in the numerical scheme"); "outer iterations (number of inner loops) used in the numerical scheme");
obj.info()->addParam(obj, "gamma", obj.gamma, false, 0, 0,
"coefficient for additional Ali term");
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow)) obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow))
} // namespace } // namespace
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment