Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
5101a7fc
Commit
5101a7fc
authored
Jun 27, 2014
by
Ernest Galbrun
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
replaced tabs by spaces
parent
6a6f24b1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
143 additions
and
102 deletions
+143
-102
tvl1flow.cpp
modules/video/src/tvl1flow.cpp
+143
-102
No files found.
modules/video/src/tvl1flow.cpp
View file @
5101a7fc
...
...
@@ -100,7 +100,7 @@ protected:
double
tau
;
double
lambda
;
double
theta
;
double
gamma
;
double
gamma
;
int
nscales
;
int
warps
;
double
epsilon
;
...
...
@@ -111,7 +111,7 @@ protected:
int
medianFiltering
;
private
:
void
procOneScale
(
const
Mat_
<
float
>&
I0
,
const
Mat_
<
float
>&
I1
,
Mat_
<
float
>&
u1
,
Mat_
<
float
>&
u2
);
void
procOneScale
(
const
Mat_
<
float
>&
I0
,
const
Mat_
<
float
>&
I1
,
Mat_
<
float
>&
u1
,
Mat_
<
float
>&
u2
,
Mat_
<
float
>&
u3
);
bool
procOneScale_ocl
(
const
UMat
&
I0
,
const
UMat
&
I1
,
UMat
&
u1
,
UMat
&
u2
);
...
...
@@ -121,8 +121,8 @@ private:
std
::
vector
<
Mat_
<
float
>
>
I0s
;
std
::
vector
<
Mat_
<
float
>
>
I1s
;
std
::
vector
<
Mat_
<
float
>
>
u1s
;
std
::
vector
<
Mat_
<
float
>
>
u2s
;
std
::
vector
<
Mat_
<
float
>
>
u3s
;
std
::
vector
<
Mat_
<
float
>
>
u2s
;
std
::
vector
<
Mat_
<
float
>
>
u3s
;
Mat_
<
float
>
I1x_buf
;
Mat_
<
float
>
I1y_buf
;
...
...
@@ -138,25 +138,26 @@ private:
Mat_
<
float
>
rho_c_buf
;
Mat_
<
float
>
v1_buf
;
Mat_
<
float
>
v2_buf
;
Mat_
<
float
>
v2_buf
;
Mat_
<
float
>
v3_buf
;
Mat_
<
float
>
p11_buf
;
Mat_
<
float
>
p12_buf
;
Mat_
<
float
>
p21_buf
;
Mat_
<
float
>
p22_buf
;
Mat_
<
float
>
p31_buf
;
Mat_
<
float
>
p32_buf
;
Mat_
<
float
>
p22_buf
;
Mat_
<
float
>
p31_buf
;
Mat_
<
float
>
p32_buf
;
Mat_
<
float
>
div_p1_buf
;
Mat_
<
float
>
div_p2_buf
;
Mat_
<
float
>
div_p3_buf
;
Mat_
<
float
>
div_p2_buf
;
Mat_
<
float
>
div_p3_buf
;
Mat_
<
float
>
u1x_buf
;
Mat_
<
float
>
u1y_buf
;
Mat_
<
float
>
u2x_buf
;
Mat_
<
float
>
u2y_buf
;
Mat_
<
float
>
u3x_buf
;
Mat_
<
float
>
u3y_buf
;
Mat_
<
float
>
u2y_buf
;
Mat_
<
float
>
u3x_buf
;
Mat_
<
float
>
u3y_buf
;
}
dm
;
struct
dataUMat
{
...
...
@@ -350,7 +351,7 @@ OpticalFlowDual_TVL1::OpticalFlowDual_TVL1()
nscales
=
5
;
warps
=
5
;
epsilon
=
0.01
;
gamma
=
1.
;
gamma
=
0.01
;
innerIterations
=
30
;
outerIterations
=
10
;
useInitialFlow
=
false
;
...
...
@@ -375,15 +376,15 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
dm
.
I0s
.
resize
(
nscales
);
dm
.
I1s
.
resize
(
nscales
);
dm
.
u1s
.
resize
(
nscales
);
dm
.
u2s
.
resize
(
nscales
);
dm
.
u3s
.
resize
(
nscales
);
dm
.
u2s
.
resize
(
nscales
);
dm
.
u3s
.
resize
(
nscales
);
I0
.
convertTo
(
dm
.
I0s
[
0
],
dm
.
I0s
[
0
].
depth
(),
I0
.
depth
()
==
CV_8U
?
1.0
:
255.0
);
I1
.
convertTo
(
dm
.
I1s
[
0
],
dm
.
I1s
[
0
].
depth
(),
I1
.
depth
()
==
CV_8U
?
1.0
:
255.0
);
dm
.
u1s
[
0
].
create
(
I0
.
size
());
dm
.
u2s
[
0
].
create
(
I0
.
size
());
dm
.
u3s
[
0
].
create
(
I0
.
size
());
dm
.
u2s
[
0
].
create
(
I0
.
size
());
dm
.
u3s
[
0
].
create
(
I0
.
size
());
if
(
useInitialFlow
)
{
...
...
@@ -405,25 +406,26 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
dm
.
rho_c_buf
.
create
(
I0
.
size
());
dm
.
v1_buf
.
create
(
I0
.
size
());
dm
.
v2_buf
.
create
(
I0
.
size
());
dm
.
v2_buf
.
create
(
I0
.
size
());
dm
.
v3_buf
.
create
(
I0
.
size
());
dm
.
p11_buf
.
create
(
I0
.
size
());
dm
.
p12_buf
.
create
(
I0
.
size
());
dm
.
p21_buf
.
create
(
I0
.
size
());
dm
.
p22_buf
.
create
(
I0
.
size
());
dm
.
p31_buf
.
create
(
I0
.
size
());
dm
.
p32_buf
.
create
(
I0
.
size
());
dm
.
p22_buf
.
create
(
I0
.
size
());
dm
.
p31_buf
.
create
(
I0
.
size
());
dm
.
p32_buf
.
create
(
I0
.
size
());
dm
.
div_p1_buf
.
create
(
I0
.
size
());
dm
.
div_p2_buf
.
create
(
I0
.
size
());
dm
.
div_p3_buf
.
create
(
I0
.
size
());
dm
.
div_p2_buf
.
create
(
I0
.
size
());
dm
.
div_p3_buf
.
create
(
I0
.
size
());
dm
.
u1x_buf
.
create
(
I0
.
size
());
dm
.
u1y_buf
.
create
(
I0
.
size
());
dm
.
u2x_buf
.
create
(
I0
.
size
());
dm
.
u2y_buf
.
create
(
I0
.
size
());
dm
.
u3x_buf
.
create
(
I0
.
size
());
dm
.
u3y_buf
.
create
(
I0
.
size
());
dm
.
u2y_buf
.
create
(
I0
.
size
());
dm
.
u3x_buf
.
create
(
I0
.
size
());
dm
.
u3y_buf
.
create
(
I0
.
size
());
// create the scales
for
(
int
s
=
1
;
s
<
nscales
;
++
s
)
...
...
@@ -448,21 +450,21 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
else
{
dm
.
u1s
[
s
].
create
(
dm
.
I0s
[
s
].
size
());
dm
.
u2s
[
s
].
create
(
dm
.
I0s
[
s
].
size
());
dm
.
u2s
[
s
].
create
(
dm
.
I0s
[
s
].
size
());
}
dm
.
u3s
[
s
].
create
(
dm
.
I0s
[
s
].
size
());
dm
.
u3s
[
s
].
create
(
dm
.
I0s
[
s
].
size
());
}
if
(
!
useInitialFlow
)
{
dm
.
u1s
[
nscales
-
1
].
setTo
(
Scalar
::
all
(
0
));
dm
.
u2s
[
nscales
-
1
].
setTo
(
Scalar
::
all
(
0
));
}
dm
.
u3s
[
nscales
-
1
].
setTo
(
Scalar
::
all
(
0
));
}
dm
.
u3s
[
nscales
-
1
].
setTo
(
Scalar
::
all
(
0
));
// pyramidal structure for computing the optical flow
for
(
int
s
=
nscales
-
1
;
s
>=
0
;
--
s
)
{
// compute the optical flow at the current scale
procOneScale
(
dm
.
I0s
[
s
],
dm
.
I1s
[
s
],
dm
.
u1s
[
s
],
dm
.
u2s
[
s
]);
procOneScale
(
dm
.
I0s
[
s
],
dm
.
I1s
[
s
],
dm
.
u1s
[
s
],
dm
.
u2s
[
s
]
,
dm
.
u3s
[
s
]
);
// if this was the last scale, finish now
if
(
s
==
0
)
...
...
@@ -472,7 +474,7 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
// zoom the optical flow for the next finer scale
resize
(
dm
.
u1s
[
s
],
dm
.
u1s
[
s
-
1
],
dm
.
I0s
[
s
-
1
].
size
());
resize
(
dm
.
u2s
[
s
],
dm
.
u2s
[
s
-
1
],
dm
.
I0s
[
s
-
1
].
size
());
resize
(
dm
.
u2s
[
s
],
dm
.
u2s
[
s
-
1
],
dm
.
I0s
[
s
-
1
].
size
());
resize
(
dm
.
u3s
[
s
],
dm
.
u3s
[
s
-
1
],
dm
.
I0s
[
s
-
1
].
size
());
// scale the optical flow with the appropriate zoom factor (don't scale u3!)
...
...
@@ -888,10 +890,10 @@ void CalcGradRhoBody::operator() (const Range& range) const
// compute the constant part of the rho function
rhoRow
[
x
]
=
(
I1wRow
[
x
]
-
I1wxRow
[
x
]
*
u1Row
[
x
]
-
I1wyRow
[
x
]
*
u2Row
[
x
]
-
I0Row
[
x
]);
//It = I1wRow[x] - I0Row[x]
//(u - u0)*i_X = I1wxRow[x] * u1Row[x]
//(v - v0)*i_Y = I1wyRow[x] * u2Row[x]
// gamma * w = gamma * u3
//It = I1wRow[x] - I0Row[x]
//(u - u0)*i_X = I1wxRow[x] * u1Row[x]
//(v - v0)*i_Y = I1wyRow[x] * u2Row[x]
// gamma * w = gamma * u3
}
}
}
...
...
@@ -931,15 +933,15 @@ struct EstimateVBody : ParallelLoopBody
Mat_
<
float
>
I1wx
;
Mat_
<
float
>
I1wy
;
Mat_
<
float
>
u1
;
Mat_
<
float
>
u2
;
Mat_
<
float
>
u3
;
Mat_
<
float
>
u2
;
Mat_
<
float
>
u3
;
Mat_
<
float
>
grad
;
Mat_
<
float
>
rho_c
;
mutable
Mat_
<
float
>
v1
;
mutable
Mat_
<
float
>
v2
;
mutable
Mat_
<
float
>
v3
;
mutable
Mat_
<
float
>
v2
;
mutable
Mat_
<
float
>
v3
;
float
l_t
;
float
gamma
;
float
gamma
;
};
void
EstimateVBody
::
operator
()
(
const
Range
&
range
)
const
...
...
@@ -949,14 +951,14 @@ void EstimateVBody::operator() (const Range& range) const
const
float
*
I1wxRow
=
I1wx
[
y
];
const
float
*
I1wyRow
=
I1wy
[
y
];
const
float
*
u1Row
=
u1
[
y
];
const
float
*
u2Row
=
u2
[
y
];
const
float
*
u3Row
=
u3
[
y
];
const
float
*
u2Row
=
u2
[
y
];
const
float
*
u3Row
=
u3
[
y
];
const
float
*
gradRow
=
grad
[
y
];
const
float
*
rhoRow
=
rho_c
[
y
];
float
*
v1Row
=
v1
[
y
];
float
*
v2Row
=
v2
[
y
];
float
*
v3Row
=
v3
[
y
];
float
*
v2Row
=
v2
[
y
];
float
*
v3Row
=
v3
[
y
];
for
(
int
x
=
0
;
x
<
I1wx
.
cols
;
++
x
)
{
...
...
@@ -964,37 +966,37 @@ void EstimateVBody::operator() (const Range& range) const
float
d1
=
0.0
f
;
float
d2
=
0.0
f
;
float
d3
=
0.0
f
;
float
d3
=
0.0
f
;
// add d3 for 3 cases
if
(
rho
<
-
l_t
*
gradRow
[
x
])
{
d1
=
l_t
*
I1wxRow
[
x
];
d2
=
l_t
*
I1wyRow
[
x
];
d3
=
l_t
*
gamma
;
d3
=
l_t
*
gamma
;
}
else
if
(
rho
>
l_t
*
gradRow
[
x
])
{
d1
=
-
l_t
*
I1wxRow
[
x
];
d2
=
-
l_t
*
I1wyRow
[
x
];
d3
=
-
l_t
*
gamma
;
d2
=
-
l_t
*
I1wyRow
[
x
];
d3
=
-
l_t
*
gamma
;
}
else
if
(
gradRow
[
x
]
>
std
::
numeric_limits
<
float
>::
epsilon
())
{
float
fi
=
-
rho
/
gradRow
[
x
];
d1
=
fi
*
I1wxRow
[
x
];
d2
=
fi
*
I1wyRow
[
x
];
d3
=
fi
*
gamma
;
d3
=
fi
*
gamma
;
}
v1Row
[
x
]
=
u1Row
[
x
]
+
d1
;
v2Row
[
x
]
=
u2Row
[
x
]
+
d2
;
v3Row
[
x
]
=
u3Row
[
x
]
+
d3
;
v2Row
[
x
]
=
u2Row
[
x
]
+
d2
;
v3Row
[
x
]
=
u3Row
[
x
]
+
d3
;
}
}
}
void
estimateV
(
const
Mat_
<
float
>&
I1wx
,
const
Mat_
<
float
>&
I1wy
,
const
Mat_
<
float
>&
u1
,
const
Mat_
<
float
>&
u2
,
const
Mat_
<
float
>&
u3
,
const
Mat_
<
float
>&
grad
,
const
Mat_
<
float
>&
rho_c
,
Mat_
<
float
>&
v1
,
Mat_
<
float
>&
v2
,
Mat_
<
float
>&
v3
,
float
l_t
,
float
gamma
)
Mat_
<
float
>&
v1
,
Mat_
<
float
>&
v2
,
Mat_
<
float
>&
v3
,
float
l_t
,
float
gamma
)
{
CV_DbgAssert
(
I1wy
.
size
()
==
I1wx
.
size
()
);
CV_DbgAssert
(
u1
.
size
()
==
I1wx
.
size
()
);
...
...
@@ -1011,15 +1013,15 @@ void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<floa
body
.
I1wx
=
I1wx
;
body
.
I1wy
=
I1wy
;
body
.
u1
=
u1
;
body
.
u2
=
u2
;
body
.
u3
=
u3
;
body
.
u2
=
u2
;
body
.
u3
=
u3
;
body
.
grad
=
grad
;
body
.
rho_c
=
rho_c
;
body
.
v1
=
v1
;
body
.
v2
=
v2
;
body
.
v3
=
v3
;
body
.
l_t
=
l_t
;
body
.
gamma
=
gamma
;
body
.
v2
=
v2
;
body
.
v3
=
v3
;
body
.
l_t
=
l_t
;
body
.
gamma
=
gamma
;
parallel_for_
(
Range
(
0
,
I1wx
.
rows
),
body
);
}
...
...
@@ -1027,36 +1029,45 @@ void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<floa
////////////////////////////////////////////////////////////
// estimateU
float
estimateU
(
const
Mat_
<
float
>&
v1
,
const
Mat_
<
float
>&
v2
,
const
Mat_
<
float
>&
div_p1
,
const
Mat_
<
float
>&
div_p2
,
Mat_
<
float
>&
u1
,
Mat_
<
float
>&
u2
,
float
theta
)
float
estimateU
(
const
Mat_
<
float
>&
v1
,
const
Mat_
<
float
>&
v2
,
const
Mat_
<
float
>&
v3
,
const
Mat_
<
float
>&
div_p1
,
const
Mat_
<
float
>&
div_p2
,
const
Mat_
<
float
>&
div_p3
,
Mat_
<
float
>&
u1
,
Mat_
<
float
>&
u2
,
Mat_
<
float
>&
u3
,
float
theta
,
float
gamma
)
{
CV_DbgAssert
(
v2
.
size
()
==
v1
.
size
()
);
CV_DbgAssert
(
v3
.
size
()
==
v1
.
size
()
);
CV_DbgAssert
(
div_p1
.
size
()
==
v1
.
size
()
);
CV_DbgAssert
(
div_p2
.
size
()
==
v1
.
size
()
);
CV_DbgAssert
(
div_p3
.
size
()
==
v1
.
size
()
);
CV_DbgAssert
(
u1
.
size
()
==
v1
.
size
()
);
CV_DbgAssert
(
u2
.
size
()
==
v1
.
size
()
);
CV_DbgAssert
(
u3
.
size
()
==
v1
.
size
()
);
float
error
=
0.0
f
;
for
(
int
y
=
0
;
y
<
v1
.
rows
;
++
y
)
{
const
float
*
v1Row
=
v1
[
y
];
const
float
*
v2Row
=
v2
[
y
];
const
float
*
v2Row
=
v2
[
y
];
const
float
*
v3Row
=
v3
[
y
];
const
float
*
divP1Row
=
div_p1
[
y
];
const
float
*
divP2Row
=
div_p2
[
y
];
const
float
*
divP2Row
=
div_p2
[
y
];
const
float
*
divP3Row
=
div_p3
[
y
];
float
*
u1Row
=
u1
[
y
];
float
*
u2Row
=
u2
[
y
];
float
*
u2Row
=
u2
[
y
];
float
*
u3Row
=
u3
[
y
];
for
(
int
x
=
0
;
x
<
v1
.
cols
;
++
x
)
{
const
float
u1k
=
u1Row
[
x
];
const
float
u2k
=
u2Row
[
x
];
const
float
u2k
=
u2Row
[
x
];
const
float
u3k
=
u3Row
[
x
];
u1Row
[
x
]
=
v1Row
[
x
]
+
theta
*
divP1Row
[
x
];
u2Row
[
x
]
=
v2Row
[
x
]
+
theta
*
divP2Row
[
x
];
//u3
error
+=
(
u1Row
[
x
]
-
u1k
)
*
(
u1Row
[
x
]
-
u1k
)
+
(
u2Row
[
x
]
-
u2k
)
*
(
u2Row
[
x
]
-
u2k
);
u2Row
[
x
]
=
v2Row
[
x
]
+
theta
*
divP2Row
[
x
];
u3Row
[
x
]
=
v3Row
[
x
]
+
theta
*
divP3Row
[
x
];
error
+=
(
u1Row
[
x
]
-
u1k
)
*
(
u1Row
[
x
]
-
u1k
)
+
(
u2Row
[
x
]
-
u2k
)
*
(
u2Row
[
x
]
-
u2k
)
+
(
u3Row
[
x
]
-
u3k
)
*
(
u3Row
[
x
]
-
u3k
);
}
}
...
...
@@ -1073,11 +1084,15 @@ struct EstimateDualVariablesBody : ParallelLoopBody
Mat_
<
float
>
u1x
;
Mat_
<
float
>
u1y
;
Mat_
<
float
>
u2x
;
Mat_
<
float
>
u2y
;
Mat_
<
float
>
u2y
;
Mat_
<
float
>
u3x
;
Mat_
<
float
>
u3y
;
mutable
Mat_
<
float
>
p11
;
mutable
Mat_
<
float
>
p12
;
mutable
Mat_
<
float
>
p21
;
mutable
Mat_
<
float
>
p22
;
mutable
Mat_
<
float
>
p22
;
mutable
Mat_
<
float
>
p31
;
mutable
Mat_
<
float
>
p32
;
float
taut
;
};
...
...
@@ -1088,50 +1103,71 @@ void EstimateDualVariablesBody::operator() (const Range& range) const
const
float
*
u1xRow
=
u1x
[
y
];
const
float
*
u1yRow
=
u1y
[
y
];
const
float
*
u2xRow
=
u2x
[
y
];
const
float
*
u2yRow
=
u2y
[
y
];
const
float
*
u2yRow
=
u2y
[
y
];
const
float
*
u3xRow
=
u3x
[
y
];
const
float
*
u3yRow
=
u3y
[
y
];
float
*
p11Row
=
p11
[
y
];
float
*
p12Row
=
p12
[
y
];
float
*
p21Row
=
p21
[
y
];
float
*
p22Row
=
p22
[
y
];
float
*
p22Row
=
p22
[
y
];
float
*
p31Row
=
p31
[
y
];
float
*
p32Row
=
p32
[
y
];
for
(
int
x
=
0
;
x
<
u1x
.
cols
;
++
x
)
{
const
float
g1
=
static_cast
<
float
>
(
hypot
(
u1xRow
[
x
],
u1yRow
[
x
]));
const
float
g2
=
static_cast
<
float
>
(
hypot
(
u2xRow
[
x
],
u2yRow
[
x
]));
const
float
g2
=
static_cast
<
float
>
(
hypot
(
u2xRow
[
x
],
u2yRow
[
x
]));
const
float
g3
=
static_cast
<
float
>
(
hypot
(
u3xRow
[
x
],
u3yRow
[
x
]));
const
float
ng1
=
1.0
f
+
taut
*
g1
;
const
float
ng2
=
1.0
f
+
taut
*
g2
;
const
float
ng2
=
1.0
f
+
taut
*
g2
;
const
float
ng3
=
1.0
f
+
taut
*
g3
;
p11Row
[
x
]
=
(
p11Row
[
x
]
+
taut
*
u1xRow
[
x
])
/
ng1
;
p12Row
[
x
]
=
(
p12Row
[
x
]
+
taut
*
u1yRow
[
x
])
/
ng1
;
p21Row
[
x
]
=
(
p21Row
[
x
]
+
taut
*
u2xRow
[
x
])
/
ng2
;
p22Row
[
x
]
=
(
p22Row
[
x
]
+
taut
*
u2yRow
[
x
])
/
ng2
;
p22Row
[
x
]
=
(
p22Row
[
x
]
+
taut
*
u2yRow
[
x
])
/
ng2
;
p31Row
[
x
]
=
(
p31Row
[
x
]
+
taut
*
u3xRow
[
x
])
/
ng3
;
p32Row
[
x
]
=
(
p32Row
[
x
]
+
taut
*
u3yRow
[
x
])
/
ng3
;
}
}
}
void
estimateDualVariables
(
const
Mat_
<
float
>&
u1x
,
const
Mat_
<
float
>&
u1y
,
const
Mat_
<
float
>&
u2x
,
const
Mat_
<
float
>&
u2y
,
Mat_
<
float
>&
p11
,
Mat_
<
float
>&
p12
,
Mat_
<
float
>&
p21
,
Mat_
<
float
>&
p22
,
float
taut
)
void
estimateDualVariables
(
const
Mat_
<
float
>&
u1x
,
const
Mat_
<
float
>&
u1y
,
const
Mat_
<
float
>&
u2x
,
const
Mat_
<
float
>&
u2y
,
const
Mat_
<
float
>&
u3x
,
const
Mat_
<
float
>&
u3y
,
Mat_
<
float
>&
p11
,
Mat_
<
float
>&
p12
,
Mat_
<
float
>&
p21
,
Mat_
<
float
>&
p22
,
Mat_
<
float
>&
p31
,
Mat_
<
float
>&
p32
,
float
taut
)
{
CV_DbgAssert
(
u1y
.
size
()
==
u1x
.
size
()
);
CV_DbgAssert
(
u2x
.
size
()
==
u1x
.
size
()
);
CV_DbgAssert
(
u3x
.
size
()
==
u1x
.
size
()
);
CV_DbgAssert
(
u2y
.
size
()
==
u1x
.
size
()
);
CV_DbgAssert
(
u3y
.
size
()
==
u1x
.
size
()
);
CV_DbgAssert
(
p11
.
size
()
==
u1x
.
size
()
);
CV_DbgAssert
(
p12
.
size
()
==
u1x
.
size
()
);
CV_DbgAssert
(
p21
.
size
()
==
u1x
.
size
()
);
CV_DbgAssert
(
p22
.
size
()
==
u1x
.
size
()
);
CV_DbgAssert
(
p31
.
size
()
==
u1x
.
size
()
);
CV_DbgAssert
(
p32
.
size
()
==
u1x
.
size
()
);
EstimateDualVariablesBody
body
;
body
.
u1x
=
u1x
;
body
.
u1y
=
u1y
;
body
.
u2x
=
u2x
;
body
.
u2y
=
u2y
;
body
.
u2y
=
u2y
;
body
.
u3x
=
u3x
;
body
.
u3y
=
u3y
;
body
.
p11
=
p11
;
body
.
p12
=
p12
;
body
.
p21
=
p21
;
body
.
p22
=
p22
;
body
.
p22
=
p22
;
body
.
p31
=
p31
;
body
.
p32
=
p32
;
body
.
taut
=
taut
;
parallel_for_
(
Range
(
0
,
u1x
.
rows
),
body
);
...
...
@@ -1225,7 +1261,7 @@ bool OpticalFlowDual_TVL1::procOneScale_ocl(const UMat& I0, const UMat& I1, UMat
return
true
;
}
void
OpticalFlowDual_TVL1
::
procOneScale
(
const
Mat_
<
float
>&
I0
,
const
Mat_
<
float
>&
I1
,
Mat_
<
float
>&
u1
,
Mat_
<
float
>&
u2
)
void
OpticalFlowDual_TVL1
::
procOneScale
(
const
Mat_
<
float
>&
I0
,
const
Mat_
<
float
>&
I1
,
Mat_
<
float
>&
u1
,
Mat_
<
float
>&
u2
,
Mat_
<
float
>&
u3
)
{
const
float
scaledEpsilon
=
static_cast
<
float
>
(
epsilon
*
epsilon
*
I0
.
size
().
area
());
...
...
@@ -1249,31 +1285,32 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
Mat_
<
float
>
rho_c
=
dm
.
rho_c_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
v1
=
dm
.
v1_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
v2
=
dm
.
v2_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
v2
=
dm
.
v2_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
v3
=
dm
.
v3_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
p11
=
dm
.
p11_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
p12
=
dm
.
p12_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
p21
=
dm
.
p21_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
p22
=
dm
.
p22_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
p31
=
dm
.
p31_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
p32
=
dm
.
p32_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
p22
=
dm
.
p22_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
p31
=
dm
.
p31_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
p32
=
dm
.
p32_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
p11
.
setTo
(
Scalar
::
all
(
0
));
p12
.
setTo
(
Scalar
::
all
(
0
));
p21
.
setTo
(
Scalar
::
all
(
0
));
p22
.
setTo
(
Scalar
::
all
(
0
));
p31
.
setTo
(
Scalar
::
all
(
0
));
p32
.
setTo
(
Scalar
::
all
(
0
));
p22
.
setTo
(
Scalar
::
all
(
0
));
p31
.
setTo
(
Scalar
::
all
(
0
));
p32
.
setTo
(
Scalar
::
all
(
0
));
Mat_
<
float
>
div_p1
=
dm
.
div_p1_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
div_p2
=
dm
.
div_p2_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
div_p3
=
dm
.
div_p2
_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
div_p2
=
dm
.
div_p2_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
div_p3
=
dm
.
div_p3
_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
u1x
=
dm
.
u1x_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
u1y
=
dm
.
u1y_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
u2x
=
dm
.
u2x_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
u2y
=
dm
.
u2y_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
u3x
=
dm
.
u3x_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
u3y
=
dm
.
u3y_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
u2y
=
dm
.
u2y_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
u3x
=
dm
.
u3x_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
Mat_
<
float
>
u3y
=
dm
.
u3y_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
const
float
l_t
=
static_cast
<
float
>
(
lambda
*
theta
);
const
float
taut
=
static_cast
<
float
>
(
tau
/
theta
);
...
...
@@ -1285,7 +1322,7 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
remap
(
I1
,
I1w
,
flowMap1
,
flowMap2
,
INTER_CUBIC
);
remap
(
I1x
,
I1wx
,
flowMap1
,
flowMap2
,
INTER_CUBIC
);
remap
(
I1y
,
I1wy
,
flowMap1
,
flowMap2
,
INTER_CUBIC
);
//calculate I1(x+u0) and its gradient
//calculate I1(x+u0) and its gradient
calcGradRho
(
I0
,
I1w
,
I1wx
,
I1wy
,
u1
,
u2
,
grad
,
rho_c
);
float
error
=
std
::
numeric_limits
<
float
>::
max
();
...
...
@@ -1298,21 +1335,23 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
for
(
int
n_inner
=
0
;
error
>
scaledEpsilon
&&
n_inner
<
innerIterations
;
++
n_inner
)
{
// estimate the values of the variable (v1, v2) (thresholding operator TH)
estimateV
(
I1wx
,
I1wy
,
u1
,
u2
,
grad
,
rho_c
,
v1
,
v2
,
l_t
);
estimateV
(
I1wx
,
I1wy
,
u1
,
u2
,
u3
,
grad
,
rho_c
,
v1
,
v2
,
v3
,
l_t
,
gamma
);
// compute the divergence of the dual variable (p1, p2)
// compute the divergence of the dual variable (p1, p2
, p3
)
divergence
(
p11
,
p12
,
div_p1
);
divergence
(
p21
,
p22
,
div_p2
);
divergence
(
p21
,
p22
,
div_p2
);
divergence
(
p31
,
p32
,
div_p3
);
// estimate the values of the optical flow (u1, u2)
error
=
estimateU
(
v1
,
v2
,
div_p1
,
div_p2
,
u1
,
u2
,
static_cast
<
float
>
(
theta
)
);
error
=
estimateU
(
v1
,
v2
,
v3
,
div_p1
,
div_p2
,
div_p3
,
u1
,
u2
,
u3
,
static_cast
<
float
>
(
theta
),
gamma
);
// compute the gradient of the optical flow (Du1, Du2)
forwardGradient
(
u1
,
u1x
,
u1y
);
forwardGradient
(
u2
,
u2x
,
u2y
);
forwardGradient
(
u2
,
u2x
,
u2y
);
forwardGradient
(
u3
,
u3x
,
u3y
);
// estimate the values of the dual variable (p1, p2)
estimateDualVariables
(
u1x
,
u1y
,
u2x
,
u2y
,
p11
,
p12
,
p21
,
p2
2
,
taut
);
// estimate the values of the dual variable (p1, p2
, p3
)
estimateDualVariables
(
u1x
,
u1y
,
u2x
,
u2y
,
u3x
,
u3y
,
p11
,
p12
,
p21
,
p22
,
p31
,
p3
2
,
taut
);
}
}
}
...
...
@@ -1402,6 +1441,8 @@ CV_INIT_ALGORITHM(OpticalFlowDual_TVL1, "DenseOpticalFlow.DualTVL1",
"inner iterations (between outlier filtering) used in the numerical scheme"
);
obj
.
info
()
->
addParam
(
obj
,
"outerIterations"
,
obj
.
outerIterations
,
false
,
0
,
0
,
"outer iterations (number of inner loops) used in the numerical scheme"
);
obj
.
info
()
->
addParam
(
obj
,
"gamma"
,
obj
.
gamma
,
false
,
0
,
0
,
"coefficient for additional Ali term"
);
obj
.
info
()
->
addParam
(
obj
,
"useInitialFlow"
,
obj
.
useInitialFlow
))
}
// namespace
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment