Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
507f5461
Commit
507f5461
authored
Jul 12, 2012
by
Maria Dimashova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
split file of features2d tests
parent
76fdbeee
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
720 additions
and
582 deletions
+720
-582
test_descriptors_regression.cpp
modules/features2d/test/test_descriptors_regression.cpp
+332
-0
test_detectors_regression.cpp
modules/features2d/test/test_detectors_regression.cpp
+296
-0
test_matchers_algorithmic.cpp
modules/features2d/test/test_matchers_algorithmic.cpp
+0
-582
test_orb.cpp
modules/features2d/test/test_orb.cpp
+92
-0
No files found.
modules/features2d/test/test_descriptors_regression.cpp
0 → 100644
View file @
507f5461
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/highgui/highgui.hpp"
using
namespace
std
;
using
namespace
cv
;
const
string
FEATURES2D_DIR
=
"features2d"
;
const
string
IMAGE_FILENAME
=
"tsukuba.png"
;
const
string
DESCRIPTOR_DIR
=
FEATURES2D_DIR
+
"/descriptor_extractors"
;
/****************************************************************************************\
* Regression tests for descriptor extractors. *
\****************************************************************************************/
static
void
writeMatInBin
(
const
Mat
&
mat
,
const
string
&
filename
)
{
FILE
*
f
=
fopen
(
filename
.
c_str
(),
"wb"
);
if
(
f
)
{
int
type
=
mat
.
type
();
fwrite
(
(
void
*
)
&
mat
.
rows
,
sizeof
(
int
),
1
,
f
);
fwrite
(
(
void
*
)
&
mat
.
cols
,
sizeof
(
int
),
1
,
f
);
fwrite
(
(
void
*
)
&
type
,
sizeof
(
int
),
1
,
f
);
int
dataSize
=
(
int
)(
mat
.
step
*
mat
.
rows
*
mat
.
channels
());
fwrite
(
(
void
*
)
&
dataSize
,
sizeof
(
int
),
1
,
f
);
fwrite
(
(
void
*
)
mat
.
data
,
1
,
dataSize
,
f
);
fclose
(
f
);
}
}
static
Mat
readMatFromBin
(
const
string
&
filename
)
{
FILE
*
f
=
fopen
(
filename
.
c_str
(),
"rb"
);
if
(
f
)
{
int
rows
,
cols
,
type
,
dataSize
;
size_t
elements_read1
=
fread
(
(
void
*
)
&
rows
,
sizeof
(
int
),
1
,
f
);
size_t
elements_read2
=
fread
(
(
void
*
)
&
cols
,
sizeof
(
int
),
1
,
f
);
size_t
elements_read3
=
fread
(
(
void
*
)
&
type
,
sizeof
(
int
),
1
,
f
);
size_t
elements_read4
=
fread
(
(
void
*
)
&
dataSize
,
sizeof
(
int
),
1
,
f
);
CV_Assert
(
elements_read1
==
1
&&
elements_read2
==
1
&&
elements_read3
==
1
&&
elements_read4
==
1
);
uchar
*
data
=
(
uchar
*
)
cvAlloc
(
dataSize
);
size_t
elements_read
=
fread
(
(
void
*
)
data
,
1
,
dataSize
,
f
);
CV_Assert
(
elements_read
==
(
size_t
)(
dataSize
));
fclose
(
f
);
return
Mat
(
rows
,
cols
,
type
,
data
);
}
return
Mat
();
}
template
<
class
Distance
>
class
CV_DescriptorExtractorTest
:
public
cvtest
::
BaseTest
{
public
:
typedef
typename
Distance
::
ValueType
ValueType
;
typedef
typename
Distance
::
ResultType
DistanceType
;
CV_DescriptorExtractorTest
(
const
string
_name
,
DistanceType
_maxDist
,
const
Ptr
<
DescriptorExtractor
>&
_dextractor
,
Distance
d
=
Distance
()
)
:
name
(
_name
),
maxDist
(
_maxDist
),
dextractor
(
_dextractor
),
distance
(
d
)
{}
protected
:
virtual
void
createDescriptorExtractor
()
{}
void
compareDescriptors
(
const
Mat
&
validDescriptors
,
const
Mat
&
calcDescriptors
)
{
if
(
validDescriptors
.
size
!=
calcDescriptors
.
size
||
validDescriptors
.
type
()
!=
calcDescriptors
.
type
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Valid and computed descriptors matrices must have the same size and type.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
CV_Assert
(
DataType
<
ValueType
>::
type
==
validDescriptors
.
type
()
);
int
dimension
=
validDescriptors
.
cols
;
DistanceType
curMaxDist
=
std
::
numeric_limits
<
DistanceType
>::
min
();
for
(
int
y
=
0
;
y
<
validDescriptors
.
rows
;
y
++
)
{
DistanceType
dist
=
distance
(
validDescriptors
.
ptr
<
ValueType
>
(
y
),
calcDescriptors
.
ptr
<
ValueType
>
(
y
),
dimension
);
if
(
dist
>
curMaxDist
)
curMaxDist
=
dist
;
}
stringstream
ss
;
ss
<<
"Max distance between valid and computed descriptors "
<<
curMaxDist
;
if
(
curMaxDist
<
maxDist
)
ss
<<
"."
<<
endl
;
else
{
ss
<<
">"
<<
maxDist
<<
" - bad accuracy!"
<<
endl
;
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
}
ts
->
printf
(
cvtest
::
TS
::
LOG
,
ss
.
str
().
c_str
()
);
}
void
emptyDataTest
()
{
assert
(
!
dextractor
.
empty
()
);
// One image.
Mat
image
;
vector
<
KeyPoint
>
keypoints
;
Mat
descriptors
;
try
{
dextractor
->
compute
(
image
,
keypoints
,
descriptors
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"compute() on empty image and empty keypoints must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
}
image
.
create
(
50
,
50
,
CV_8UC3
);
try
{
dextractor
->
compute
(
image
,
keypoints
,
descriptors
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"compute() on nonempty image and empty keypoints must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
}
// Several images.
vector
<
Mat
>
images
;
vector
<
vector
<
KeyPoint
>
>
keypointsCollection
;
vector
<
Mat
>
descriptorsCollection
;
try
{
dextractor
->
compute
(
images
,
keypointsCollection
,
descriptorsCollection
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"compute() on empty images and empty keypoints collection must not generate exception (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
}
}
void
regressionTest
()
{
assert
(
!
dextractor
.
empty
()
);
// Read the test image.
string
imgFilename
=
string
(
ts
->
get_data_path
())
+
FEATURES2D_DIR
+
"/"
+
IMAGE_FILENAME
;
Mat
img
=
imread
(
imgFilename
);
if
(
img
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Image %s can not be read.
\n
"
,
imgFilename
.
c_str
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
vector
<
KeyPoint
>
keypoints
;
FileStorage
fs
(
string
(
ts
->
get_data_path
())
+
FEATURES2D_DIR
+
"/keypoints.xml.gz"
,
FileStorage
::
READ
);
if
(
fs
.
isOpened
()
)
{
read
(
fs
.
getFirstTopLevelNode
(),
keypoints
);
Mat
calcDescriptors
;
double
t
=
(
double
)
getTickCount
();
dextractor
->
compute
(
img
,
keypoints
,
calcDescriptors
);
t
=
getTickCount
()
-
t
;
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"
\n
Average time of computing one descriptor = %g ms.
\n
"
,
t
/
((
double
)
cvGetTickFrequency
()
*
1000.
)
/
calcDescriptors
.
rows
);
if
(
calcDescriptors
.
rows
!=
(
int
)
keypoints
.
size
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Count of computed descriptors and keypoints count must be equal.
\n
"
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Count of keypoints is %d.
\n
"
,
(
int
)
keypoints
.
size
()
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Count of computed descriptors is %d.
\n
"
,
calcDescriptors
.
rows
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
if
(
calcDescriptors
.
cols
!=
dextractor
->
descriptorSize
()
||
calcDescriptors
.
type
()
!=
dextractor
->
descriptorType
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Incorrect descriptor size or descriptor type.
\n
"
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Expected size is %d.
\n
"
,
dextractor
->
descriptorSize
()
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Calculated size is %d.
\n
"
,
calcDescriptors
.
cols
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Expected type is %d.
\n
"
,
dextractor
->
descriptorType
()
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Calculated type is %d.
\n
"
,
calcDescriptors
.
type
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
// TODO read and write descriptor extractor parameters and check them
Mat
validDescriptors
=
readDescriptors
();
if
(
!
validDescriptors
.
empty
()
)
compareDescriptors
(
validDescriptors
,
calcDescriptors
);
else
{
if
(
!
writeDescriptors
(
calcDescriptors
)
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Descriptors can not be written.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
}
}
else
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Compute and write keypoints.
\n
"
);
fs
.
open
(
string
(
ts
->
get_data_path
())
+
FEATURES2D_DIR
+
"/keypoints.xml.gz"
,
FileStorage
::
WRITE
);
if
(
fs
.
isOpened
()
)
{
ORB
fd
;
fd
.
detect
(
img
,
keypoints
);
write
(
fs
,
"keypoints"
,
keypoints
);
}
else
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"File for writting keypoints can not be opened.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
}
}
void
run
(
int
)
{
createDescriptorExtractor
();
if
(
dextractor
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Descriptor extractor is empty.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
emptyDataTest
();
regressionTest
();
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
}
virtual
Mat
readDescriptors
()
{
Mat
res
=
readMatFromBin
(
string
(
ts
->
get_data_path
())
+
DESCRIPTOR_DIR
+
"/"
+
string
(
name
)
);
return
res
;
}
virtual
bool
writeDescriptors
(
Mat
&
descs
)
{
writeMatInBin
(
descs
,
string
(
ts
->
get_data_path
())
+
DESCRIPTOR_DIR
+
"/"
+
string
(
name
)
);
return
true
;
}
string
name
;
const
DistanceType
maxDist
;
Ptr
<
DescriptorExtractor
>
dextractor
;
Distance
distance
;
private
:
CV_DescriptorExtractorTest
&
operator
=
(
const
CV_DescriptorExtractorTest
&
)
{
return
*
this
;
}
};
/****************************************************************************************\
* Tests registrations *
\****************************************************************************************/
TEST
(
Features2d_DescriptorExtractor_ORB
,
regression
)
{
// TODO adjust the parameters below
CV_DescriptorExtractorTest
<
Hamming
>
test
(
"descriptor-orb"
,
(
CV_DescriptorExtractorTest
<
Hamming
>::
DistanceType
)
12.
f
,
DescriptorExtractor
::
create
(
"ORB"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_DescriptorExtractor_FREAK
,
regression
)
{
// TODO adjust the parameters below
CV_DescriptorExtractorTest
<
Hamming
>
test
(
"descriptor-freak"
,
(
CV_DescriptorExtractorTest
<
Hamming
>::
DistanceType
)
12.
f
,
DescriptorExtractor
::
create
(
"FREAK"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_DescriptorExtractor_BRIEF
,
regression
)
{
CV_DescriptorExtractorTest
<
Hamming
>
test
(
"descriptor-brief"
,
1
,
DescriptorExtractor
::
create
(
"BRIEF"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_DescriptorExtractor_OpponentBRIEF
,
regression
)
{
CV_DescriptorExtractorTest
<
Hamming
>
test
(
"descriptor-opponent-brief"
,
1
,
DescriptorExtractor
::
create
(
"OpponentBRIEF"
)
);
test
.
safe_run
();
}
modules/features2d/test/test_detectors_regression.cpp
0 → 100644
View file @
507f5461
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/highgui/highgui.hpp"
using
namespace
std
;
using
namespace
cv
;
const
string
FEATURES2D_DIR
=
"features2d"
;
const
string
IMAGE_FILENAME
=
"tsukuba.png"
;
const
string
DETECTOR_DIR
=
FEATURES2D_DIR
+
"/feature_detectors"
;
/****************************************************************************************\
* Regression tests for feature detectors comparing keypoints. *
\****************************************************************************************/
class
CV_FeatureDetectorTest
:
public
cvtest
::
BaseTest
{
public
:
CV_FeatureDetectorTest
(
const
string
&
_name
,
const
Ptr
<
FeatureDetector
>&
_fdetector
)
:
name
(
_name
),
fdetector
(
_fdetector
)
{}
protected
:
bool
isSimilarKeypoints
(
const
KeyPoint
&
p1
,
const
KeyPoint
&
p2
);
void
compareKeypointSets
(
const
vector
<
KeyPoint
>&
validKeypoints
,
const
vector
<
KeyPoint
>&
calcKeypoints
);
void
emptyDataTest
();
void
regressionTest
();
// TODO test of detect() with mask
virtual
void
run
(
int
);
string
name
;
Ptr
<
FeatureDetector
>
fdetector
;
};
void
CV_FeatureDetectorTest
::
emptyDataTest
()
{
// One image.
Mat
image
;
vector
<
KeyPoint
>
keypoints
;
try
{
fdetector
->
detect
(
image
,
keypoints
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"detect() on empty image must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
if
(
!
keypoints
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"detect() on empty image must return empty keypoints vector (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
// Several images.
vector
<
Mat
>
images
;
vector
<
vector
<
KeyPoint
>
>
keypointCollection
;
try
{
fdetector
->
detect
(
images
,
keypointCollection
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"detect() on empty image vector must not generate exception (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
}
bool
CV_FeatureDetectorTest
::
isSimilarKeypoints
(
const
KeyPoint
&
p1
,
const
KeyPoint
&
p2
)
{
const
float
maxPtDif
=
1.
f
;
const
float
maxSizeDif
=
1.
f
;
const
float
maxAngleDif
=
2.
f
;
const
float
maxResponseDif
=
0.1
f
;
float
dist
=
(
float
)
norm
(
p1
.
pt
-
p2
.
pt
);
return
(
dist
<
maxPtDif
&&
fabs
(
p1
.
size
-
p2
.
size
)
<
maxSizeDif
&&
abs
(
p1
.
angle
-
p2
.
angle
)
<
maxAngleDif
&&
abs
(
p1
.
response
-
p2
.
response
)
<
maxResponseDif
&&
p1
.
octave
==
p2
.
octave
&&
p1
.
class_id
==
p2
.
class_id
);
}
void
CV_FeatureDetectorTest
::
compareKeypointSets
(
const
vector
<
KeyPoint
>&
validKeypoints
,
const
vector
<
KeyPoint
>&
calcKeypoints
)
{
const
float
maxCountRatioDif
=
0.01
f
;
// Compare counts of validation and calculated keypoints.
float
countRatio
=
(
float
)
validKeypoints
.
size
()
/
(
float
)
calcKeypoints
.
size
();
if
(
countRatio
<
1
-
maxCountRatioDif
||
countRatio
>
1.
f
+
maxCountRatioDif
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Bad keypoints count ratio (validCount = %d, calcCount = %d).
\n
"
,
validKeypoints
.
size
(),
calcKeypoints
.
size
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
int
progress
=
0
,
progressCount
=
(
int
)(
validKeypoints
.
size
()
*
calcKeypoints
.
size
());
int
badPointCount
=
0
,
commonPointCount
=
max
((
int
)
validKeypoints
.
size
(),
(
int
)
calcKeypoints
.
size
());
for
(
size_t
v
=
0
;
v
<
validKeypoints
.
size
();
v
++
)
{
int
nearestIdx
=
-
1
;
float
minDist
=
std
::
numeric_limits
<
float
>::
max
();
for
(
size_t
c
=
0
;
c
<
calcKeypoints
.
size
();
c
++
)
{
progress
=
update_progress
(
progress
,
(
int
)(
v
*
calcKeypoints
.
size
()
+
c
),
progressCount
,
0
);
float
curDist
=
(
float
)
norm
(
calcKeypoints
[
c
].
pt
-
validKeypoints
[
v
].
pt
);
if
(
curDist
<
minDist
)
{
minDist
=
curDist
;
nearestIdx
=
(
int
)
c
;
}
}
assert
(
minDist
>=
0
);
if
(
!
isSimilarKeypoints
(
validKeypoints
[
v
],
calcKeypoints
[
nearestIdx
]
)
)
badPointCount
++
;
}
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"badPointCount = %d; validPointCount = %d; calcPointCount = %d
\n
"
,
badPointCount
,
validKeypoints
.
size
(),
calcKeypoints
.
size
()
);
if
(
badPointCount
>
0.9
*
commonPointCount
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
" - Bad accuracy!
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
ts
->
printf
(
cvtest
::
TS
::
LOG
,
" - OK
\n
"
);
}
void
CV_FeatureDetectorTest
::
regressionTest
()
{
assert
(
!
fdetector
.
empty
()
);
string
imgFilename
=
string
(
ts
->
get_data_path
())
+
FEATURES2D_DIR
+
"/"
+
IMAGE_FILENAME
;
string
resFilename
=
string
(
ts
->
get_data_path
())
+
DETECTOR_DIR
+
"/"
+
string
(
name
)
+
".xml.gz"
;
// Read the test image.
Mat
image
=
imread
(
imgFilename
);
if
(
image
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Image %s can not be read.
\n
"
,
imgFilename
.
c_str
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
FileStorage
fs
(
resFilename
,
FileStorage
::
READ
);
// Compute keypoints.
vector
<
KeyPoint
>
calcKeypoints
;
fdetector
->
detect
(
image
,
calcKeypoints
);
if
(
fs
.
isOpened
()
)
// Compare computed and valid keypoints.
{
// TODO compare saved feature detector params with current ones
// Read validation keypoints set.
vector
<
KeyPoint
>
validKeypoints
;
read
(
fs
[
"keypoints"
],
validKeypoints
);
if
(
validKeypoints
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Keypoints can not be read.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
compareKeypointSets
(
validKeypoints
,
calcKeypoints
);
}
else
// Write detector parameters and computed keypoints as validation data.
{
fs
.
open
(
resFilename
,
FileStorage
::
WRITE
);
if
(
!
fs
.
isOpened
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"File %s can not be opened to write.
\n
"
,
resFilename
.
c_str
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
else
{
fs
<<
"detector_params"
<<
"{"
;
fdetector
->
write
(
fs
);
fs
<<
"}"
;
write
(
fs
,
"keypoints"
,
calcKeypoints
);
}
}
}
void
CV_FeatureDetectorTest
::
run
(
int
/*start_from*/
)
{
if
(
fdetector
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Feature detector is empty.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
emptyDataTest
();
regressionTest
();
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
}
/****************************************************************************************\
* Tests registrations *
\****************************************************************************************/
TEST
(
Features2d_Detector_FAST
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-fast"
,
FeatureDetector
::
create
(
"FAST"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_GFTT
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-gftt"
,
FeatureDetector
::
create
(
"GFTT"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_Harris
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-harris"
,
FeatureDetector
::
create
(
"HARRIS"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_MSER
,
DISABLED_regression
)
{
CV_FeatureDetectorTest
test
(
"detector-mser"
,
FeatureDetector
::
create
(
"MSER"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_STAR
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-star"
,
FeatureDetector
::
create
(
"STAR"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_ORB
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-orb"
,
FeatureDetector
::
create
(
"ORB"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_GridFAST
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-grid-fast"
,
FeatureDetector
::
create
(
"GridFAST"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_PyramidFAST
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-pyramid-fast"
,
FeatureDetector
::
create
(
"PyramidFAST"
)
);
test
.
safe_run
();
}
modules/features2d/test/test_
features2d
.cpp
→
modules/features2d/test/test_
matchers_algorithmic
.cpp
View file @
507f5461
...
...
@@ -46,452 +46,8 @@ using namespace std;
using
namespace
cv
;
const
string
FEATURES2D_DIR
=
"features2d"
;
const
string
DETECTOR_DIR
=
FEATURES2D_DIR
+
"/feature_detectors"
;
const
string
DESCRIPTOR_DIR
=
FEATURES2D_DIR
+
"/descriptor_extractors"
;
const
string
IMAGE_FILENAME
=
"tsukuba.png"
;
/****************************************************************************************\
* Regression tests for feature detectors comparing keypoints. *
\****************************************************************************************/
class
CV_FeatureDetectorTest
:
public
cvtest
::
BaseTest
{
public
:
CV_FeatureDetectorTest
(
const
string
&
_name
,
const
Ptr
<
FeatureDetector
>&
_fdetector
)
:
name
(
_name
),
fdetector
(
_fdetector
)
{}
protected
:
bool
isSimilarKeypoints
(
const
KeyPoint
&
p1
,
const
KeyPoint
&
p2
);
void
compareKeypointSets
(
const
vector
<
KeyPoint
>&
validKeypoints
,
const
vector
<
KeyPoint
>&
calcKeypoints
);
void
emptyDataTest
();
void
regressionTest
();
// TODO test of detect() with mask
virtual
void
run
(
int
);
string
name
;
Ptr
<
FeatureDetector
>
fdetector
;
};
void
CV_FeatureDetectorTest
::
emptyDataTest
()
{
// One image.
Mat
image
;
vector
<
KeyPoint
>
keypoints
;
try
{
fdetector
->
detect
(
image
,
keypoints
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"detect() on empty image must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
if
(
!
keypoints
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"detect() on empty image must return empty keypoints vector (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
// Several images.
vector
<
Mat
>
images
;
vector
<
vector
<
KeyPoint
>
>
keypointCollection
;
try
{
fdetector
->
detect
(
images
,
keypointCollection
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"detect() on empty image vector must not generate exception (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
}
bool
CV_FeatureDetectorTest
::
isSimilarKeypoints
(
const
KeyPoint
&
p1
,
const
KeyPoint
&
p2
)
{
const
float
maxPtDif
=
1.
f
;
const
float
maxSizeDif
=
1.
f
;
const
float
maxAngleDif
=
2.
f
;
const
float
maxResponseDif
=
0.1
f
;
float
dist
=
(
float
)
norm
(
p1
.
pt
-
p2
.
pt
);
return
(
dist
<
maxPtDif
&&
fabs
(
p1
.
size
-
p2
.
size
)
<
maxSizeDif
&&
abs
(
p1
.
angle
-
p2
.
angle
)
<
maxAngleDif
&&
abs
(
p1
.
response
-
p2
.
response
)
<
maxResponseDif
&&
p1
.
octave
==
p2
.
octave
&&
p1
.
class_id
==
p2
.
class_id
);
}
void
CV_FeatureDetectorTest
::
compareKeypointSets
(
const
vector
<
KeyPoint
>&
validKeypoints
,
const
vector
<
KeyPoint
>&
calcKeypoints
)
{
const
float
maxCountRatioDif
=
0.01
f
;
// Compare counts of validation and calculated keypoints.
float
countRatio
=
(
float
)
validKeypoints
.
size
()
/
(
float
)
calcKeypoints
.
size
();
if
(
countRatio
<
1
-
maxCountRatioDif
||
countRatio
>
1.
f
+
maxCountRatioDif
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Bad keypoints count ratio (validCount = %d, calcCount = %d).
\n
"
,
validKeypoints
.
size
(),
calcKeypoints
.
size
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
int
progress
=
0
,
progressCount
=
(
int
)(
validKeypoints
.
size
()
*
calcKeypoints
.
size
());
int
badPointCount
=
0
,
commonPointCount
=
max
((
int
)
validKeypoints
.
size
(),
(
int
)
calcKeypoints
.
size
());
for
(
size_t
v
=
0
;
v
<
validKeypoints
.
size
();
v
++
)
{
int
nearestIdx
=
-
1
;
float
minDist
=
std
::
numeric_limits
<
float
>::
max
();
for
(
size_t
c
=
0
;
c
<
calcKeypoints
.
size
();
c
++
)
{
progress
=
update_progress
(
progress
,
(
int
)(
v
*
calcKeypoints
.
size
()
+
c
),
progressCount
,
0
);
float
curDist
=
(
float
)
norm
(
calcKeypoints
[
c
].
pt
-
validKeypoints
[
v
].
pt
);
if
(
curDist
<
minDist
)
{
minDist
=
curDist
;
nearestIdx
=
(
int
)
c
;
}
}
assert
(
minDist
>=
0
);
if
(
!
isSimilarKeypoints
(
validKeypoints
[
v
],
calcKeypoints
[
nearestIdx
]
)
)
badPointCount
++
;
}
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"badPointCount = %d; validPointCount = %d; calcPointCount = %d
\n
"
,
badPointCount
,
validKeypoints
.
size
(),
calcKeypoints
.
size
()
);
if
(
badPointCount
>
0.9
*
commonPointCount
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
" - Bad accuracy!
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
ts
->
printf
(
cvtest
::
TS
::
LOG
,
" - OK
\n
"
);
}
void
CV_FeatureDetectorTest
::
regressionTest
()
{
assert
(
!
fdetector
.
empty
()
);
string
imgFilename
=
string
(
ts
->
get_data_path
())
+
FEATURES2D_DIR
+
"/"
+
IMAGE_FILENAME
;
string
resFilename
=
string
(
ts
->
get_data_path
())
+
DETECTOR_DIR
+
"/"
+
string
(
name
)
+
".xml.gz"
;
// Read the test image.
Mat
image
=
imread
(
imgFilename
);
if
(
image
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Image %s can not be read.
\n
"
,
imgFilename
.
c_str
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
FileStorage
fs
(
resFilename
,
FileStorage
::
READ
);
// Compute keypoints.
vector
<
KeyPoint
>
calcKeypoints
;
fdetector
->
detect
(
image
,
calcKeypoints
);
if
(
fs
.
isOpened
()
)
// Compare computed and valid keypoints.
{
// TODO compare saved feature detector params with current ones
// Read validation keypoints set.
vector
<
KeyPoint
>
validKeypoints
;
read
(
fs
[
"keypoints"
],
validKeypoints
);
if
(
validKeypoints
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Keypoints can not be read.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
compareKeypointSets
(
validKeypoints
,
calcKeypoints
);
}
else
// Write detector parameters and computed keypoints as validation data.
{
fs
.
open
(
resFilename
,
FileStorage
::
WRITE
);
if
(
!
fs
.
isOpened
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"File %s can not be opened to write.
\n
"
,
resFilename
.
c_str
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
else
{
fs
<<
"detector_params"
<<
"{"
;
fdetector
->
write
(
fs
);
fs
<<
"}"
;
write
(
fs
,
"keypoints"
,
calcKeypoints
);
}
}
}
void
CV_FeatureDetectorTest
::
run
(
int
/*start_from*/
)
{
if
(
fdetector
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Feature detector is empty.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
emptyDataTest
();
regressionTest
();
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
}
/****************************************************************************************\
* Regression tests for descriptor extractors. *
\****************************************************************************************/
static
void
writeMatInBin
(
const
Mat
&
mat
,
const
string
&
filename
)
{
FILE
*
f
=
fopen
(
filename
.
c_str
(),
"wb"
);
if
(
f
)
{
int
type
=
mat
.
type
();
fwrite
(
(
void
*
)
&
mat
.
rows
,
sizeof
(
int
),
1
,
f
);
fwrite
(
(
void
*
)
&
mat
.
cols
,
sizeof
(
int
),
1
,
f
);
fwrite
(
(
void
*
)
&
type
,
sizeof
(
int
),
1
,
f
);
int
dataSize
=
(
int
)(
mat
.
step
*
mat
.
rows
*
mat
.
channels
());
fwrite
(
(
void
*
)
&
dataSize
,
sizeof
(
int
),
1
,
f
);
fwrite
(
(
void
*
)
mat
.
data
,
1
,
dataSize
,
f
);
fclose
(
f
);
}
}
static
Mat
readMatFromBin
(
const
string
&
filename
)
{
FILE
*
f
=
fopen
(
filename
.
c_str
(),
"rb"
);
if
(
f
)
{
int
rows
,
cols
,
type
,
dataSize
;
size_t
elements_read1
=
fread
(
(
void
*
)
&
rows
,
sizeof
(
int
),
1
,
f
);
size_t
elements_read2
=
fread
(
(
void
*
)
&
cols
,
sizeof
(
int
),
1
,
f
);
size_t
elements_read3
=
fread
(
(
void
*
)
&
type
,
sizeof
(
int
),
1
,
f
);
size_t
elements_read4
=
fread
(
(
void
*
)
&
dataSize
,
sizeof
(
int
),
1
,
f
);
CV_Assert
(
elements_read1
==
1
&&
elements_read2
==
1
&&
elements_read3
==
1
&&
elements_read4
==
1
);
uchar
*
data
=
(
uchar
*
)
cvAlloc
(
dataSize
);
size_t
elements_read
=
fread
(
(
void
*
)
data
,
1
,
dataSize
,
f
);
CV_Assert
(
elements_read
==
(
size_t
)(
dataSize
));
fclose
(
f
);
return
Mat
(
rows
,
cols
,
type
,
data
);
}
return
Mat
();
}
template
<
class
Distance
>
class
CV_DescriptorExtractorTest
:
public
cvtest
::
BaseTest
{
public
:
typedef
typename
Distance
::
ValueType
ValueType
;
typedef
typename
Distance
::
ResultType
DistanceType
;
CV_DescriptorExtractorTest
(
const
string
_name
,
DistanceType
_maxDist
,
const
Ptr
<
DescriptorExtractor
>&
_dextractor
,
Distance
d
=
Distance
()
)
:
name
(
_name
),
maxDist
(
_maxDist
),
dextractor
(
_dextractor
),
distance
(
d
)
{}
protected
:
virtual
void
createDescriptorExtractor
()
{}
void
compareDescriptors
(
const
Mat
&
validDescriptors
,
const
Mat
&
calcDescriptors
)
{
if
(
validDescriptors
.
size
!=
calcDescriptors
.
size
||
validDescriptors
.
type
()
!=
calcDescriptors
.
type
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Valid and computed descriptors matrices must have the same size and type.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
CV_Assert
(
DataType
<
ValueType
>::
type
==
validDescriptors
.
type
()
);
int
dimension
=
validDescriptors
.
cols
;
DistanceType
curMaxDist
=
std
::
numeric_limits
<
DistanceType
>::
min
();
for
(
int
y
=
0
;
y
<
validDescriptors
.
rows
;
y
++
)
{
DistanceType
dist
=
distance
(
validDescriptors
.
ptr
<
ValueType
>
(
y
),
calcDescriptors
.
ptr
<
ValueType
>
(
y
),
dimension
);
if
(
dist
>
curMaxDist
)
curMaxDist
=
dist
;
}
stringstream
ss
;
ss
<<
"Max distance between valid and computed descriptors "
<<
curMaxDist
;
if
(
curMaxDist
<
maxDist
)
ss
<<
"."
<<
endl
;
else
{
ss
<<
">"
<<
maxDist
<<
" - bad accuracy!"
<<
endl
;
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
}
ts
->
printf
(
cvtest
::
TS
::
LOG
,
ss
.
str
().
c_str
()
);
}
void
emptyDataTest
()
{
assert
(
!
dextractor
.
empty
()
);
// One image.
Mat
image
;
vector
<
KeyPoint
>
keypoints
;
Mat
descriptors
;
try
{
dextractor
->
compute
(
image
,
keypoints
,
descriptors
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"compute() on empty image and empty keypoints must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
}
image
.
create
(
50
,
50
,
CV_8UC3
);
try
{
dextractor
->
compute
(
image
,
keypoints
,
descriptors
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"compute() on nonempty image and empty keypoints must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
}
// Several images.
vector
<
Mat
>
images
;
vector
<
vector
<
KeyPoint
>
>
keypointsCollection
;
vector
<
Mat
>
descriptorsCollection
;
try
{
dextractor
->
compute
(
images
,
keypointsCollection
,
descriptorsCollection
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"compute() on empty images and empty keypoints collection must not generate exception (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
}
}
void
regressionTest
()
{
assert
(
!
dextractor
.
empty
()
);
// Read the test image.
string
imgFilename
=
string
(
ts
->
get_data_path
())
+
FEATURES2D_DIR
+
"/"
+
IMAGE_FILENAME
;
Mat
img
=
imread
(
imgFilename
);
if
(
img
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Image %s can not be read.
\n
"
,
imgFilename
.
c_str
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
vector
<
KeyPoint
>
keypoints
;
FileStorage
fs
(
string
(
ts
->
get_data_path
())
+
FEATURES2D_DIR
+
"/keypoints.xml.gz"
,
FileStorage
::
READ
);
if
(
fs
.
isOpened
()
)
{
read
(
fs
.
getFirstTopLevelNode
(),
keypoints
);
Mat
calcDescriptors
;
double
t
=
(
double
)
getTickCount
();
dextractor
->
compute
(
img
,
keypoints
,
calcDescriptors
);
t
=
getTickCount
()
-
t
;
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"
\n
Average time of computing one descriptor = %g ms.
\n
"
,
t
/
((
double
)
cvGetTickFrequency
()
*
1000.
)
/
calcDescriptors
.
rows
);
if
(
calcDescriptors
.
rows
!=
(
int
)
keypoints
.
size
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Count of computed descriptors and keypoints count must be equal.
\n
"
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Count of keypoints is %d.
\n
"
,
(
int
)
keypoints
.
size
()
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Count of computed descriptors is %d.
\n
"
,
calcDescriptors
.
rows
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
if
(
calcDescriptors
.
cols
!=
dextractor
->
descriptorSize
()
||
calcDescriptors
.
type
()
!=
dextractor
->
descriptorType
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Incorrect descriptor size or descriptor type.
\n
"
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Expected size is %d.
\n
"
,
dextractor
->
descriptorSize
()
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Calculated size is %d.
\n
"
,
calcDescriptors
.
cols
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Expected type is %d.
\n
"
,
dextractor
->
descriptorType
()
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Calculated type is %d.
\n
"
,
calcDescriptors
.
type
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
// TODO read and write descriptor extractor parameters and check them
Mat
validDescriptors
=
readDescriptors
();
if
(
!
validDescriptors
.
empty
()
)
compareDescriptors
(
validDescriptors
,
calcDescriptors
);
else
{
if
(
!
writeDescriptors
(
calcDescriptors
)
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Descriptors can not be written.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
}
}
else
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Compute and write keypoints.
\n
"
);
fs
.
open
(
string
(
ts
->
get_data_path
())
+
FEATURES2D_DIR
+
"/keypoints.xml.gz"
,
FileStorage
::
WRITE
);
if
(
fs
.
isOpened
()
)
{
ORB
fd
;
fd
.
detect
(
img
,
keypoints
);
write
(
fs
,
"keypoints"
,
keypoints
);
}
else
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"File for writting keypoints can not be opened.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
}
}
void
run
(
int
)
{
createDescriptorExtractor
();
if
(
dextractor
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Descriptor extractor is empty.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
emptyDataTest
();
regressionTest
();
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
}
virtual
Mat
readDescriptors
()
{
Mat
res
=
readMatFromBin
(
string
(
ts
->
get_data_path
())
+
DESCRIPTOR_DIR
+
"/"
+
string
(
name
)
);
return
res
;
}
virtual
bool
writeDescriptors
(
Mat
&
descs
)
{
writeMatInBin
(
descs
,
string
(
ts
->
get_data_path
())
+
DESCRIPTOR_DIR
+
"/"
+
string
(
name
)
);
return
true
;
}
string
name
;
const
DistanceType
maxDist
;
Ptr
<
DescriptorExtractor
>
dextractor
;
Distance
distance
;
private
:
CV_DescriptorExtractorTest
&
operator
=
(
const
CV_DescriptorExtractorTest
&
)
{
return
*
this
;
}
};
/****************************************************************************************\
* Algorithmic tests for descriptor matchers *
\****************************************************************************************/
...
...
@@ -974,95 +530,6 @@ void CV_DescriptorMatcherTest::run( int )
* Tests registrations *
\****************************************************************************************/
/*
* Detectors
*/
TEST
(
Features2d_Detector_FAST
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-fast"
,
FeatureDetector
::
create
(
"FAST"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_GFTT
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-gftt"
,
FeatureDetector
::
create
(
"GFTT"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_Harris
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-harris"
,
FeatureDetector
::
create
(
"HARRIS"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_MSER
,
DISABLED_regression
)
{
CV_FeatureDetectorTest
test
(
"detector-mser"
,
FeatureDetector
::
create
(
"MSER"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_STAR
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-star"
,
FeatureDetector
::
create
(
"STAR"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_ORB
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-orb"
,
FeatureDetector
::
create
(
"ORB"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_GridFAST
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-grid-fast"
,
FeatureDetector
::
create
(
"GridFAST"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_Detector_PyramidFAST
,
regression
)
{
CV_FeatureDetectorTest
test
(
"detector-pyramid-fast"
,
FeatureDetector
::
create
(
"PyramidFAST"
)
);
test
.
safe_run
();
}
/*
* Descriptors
*/
TEST
(
Features2d_DescriptorExtractor_ORB
,
regression
)
{
// TODO adjust the parameters below
CV_DescriptorExtractorTest
<
Hamming
>
test
(
"descriptor-orb"
,
(
CV_DescriptorExtractorTest
<
Hamming
>::
DistanceType
)
12.
f
,
DescriptorExtractor
::
create
(
"ORB"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_DescriptorExtractor_FREAK
,
regression
)
{
// TODO adjust the parameters below
CV_DescriptorExtractorTest
<
Hamming
>
test
(
"descriptor-freak"
,
(
CV_DescriptorExtractorTest
<
Hamming
>::
DistanceType
)
12.
f
,
DescriptorExtractor
::
create
(
"FREAK"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_DescriptorExtractor_BRIEF
,
regression
)
{
CV_DescriptorExtractorTest
<
Hamming
>
test
(
"descriptor-brief"
,
1
,
DescriptorExtractor
::
create
(
"BRIEF"
)
);
test
.
safe_run
();
}
TEST
(
Features2d_DescriptorExtractor_OpponentBRIEF
,
regression
)
{
CV_DescriptorExtractorTest
<
Hamming
>
test
(
"descriptor-opponent-brief"
,
1
,
DescriptorExtractor
::
create
(
"OpponentBRIEF"
)
);
test
.
safe_run
();
}
/*
* Matchers
*/
TEST
(
Features2d_DescriptorMatcher_BruteForce
,
regression
)
{
CV_DescriptorMatcherTest
test
(
"descriptor-matcher-brute-force"
,
new
BFMatcher
(
NORM_L2
),
0.01
f
);
...
...
@@ -1074,51 +541,3 @@ TEST( Features2d_DescriptorMatcher_FlannBased, regression )
CV_DescriptorMatcherTest
test
(
"descriptor-matcher-flann-based"
,
new
FlannBasedMatcher
,
0.04
f
);
test
.
safe_run
();
}
TEST
(
Features2D_ORB
,
_1996
)
{
cv
::
Ptr
<
cv
::
FeatureDetector
>
fd
=
cv
::
FeatureDetector
::
create
(
"ORB"
);
cv
::
Ptr
<
cv
::
DescriptorExtractor
>
de
=
cv
::
DescriptorExtractor
::
create
(
"ORB"
);
Mat
image
=
cv
::
imread
(
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
())
+
"shared/lena.jpg"
);
ASSERT_FALSE
(
image
.
empty
());
Mat
roi
(
image
.
size
(),
CV_8UC1
,
Scalar
(
0
));
Point
poly
[]
=
{
Point
(
100
,
20
),
Point
(
300
,
50
),
Point
(
400
,
200
),
Point
(
10
,
500
)};
fillConvexPoly
(
roi
,
poly
,
int
(
sizeof
(
poly
)
/
sizeof
(
poly
[
0
])),
Scalar
(
255
));
std
::
vector
<
cv
::
KeyPoint
>
keypoints
;
fd
->
detect
(
image
,
keypoints
,
roi
);
cv
::
Mat
descriptors
;
de
->
compute
(
image
,
keypoints
,
descriptors
);
//image.setTo(Scalar(255,255,255), roi);
int
roiViolations
=
0
;
for
(
std
::
vector
<
cv
::
KeyPoint
>::
const_iterator
kp
=
keypoints
.
begin
();
kp
!=
keypoints
.
end
();
++
kp
)
{
int
x
=
cvRound
(
kp
->
pt
.
x
);
int
y
=
cvRound
(
kp
->
pt
.
y
);
ASSERT_LE
(
0
,
x
);
ASSERT_LE
(
0
,
y
);
ASSERT_GT
(
image
.
cols
,
x
);
ASSERT_GT
(
image
.
rows
,
y
);
// if (!roi.at<uchar>(y,x))
// {
// roiViolations++;
// circle(image, kp->pt, 3, Scalar(0,0,255));
// }
}
// if(roiViolations)
// {
// imshow("img", image);
// waitKey();
// }
ASSERT_EQ
(
0
,
roiViolations
);
}
\ No newline at end of file
modules/features2d/test/test_orb.cpp
0 → 100644
View file @
507f5461
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/highgui/highgui.hpp"
using
namespace
cv
;
TEST
(
Features2D_ORB
,
_1996
)
{
Ptr
<
FeatureDetector
>
fd
=
FeatureDetector
::
create
(
"ORB"
);
Ptr
<
DescriptorExtractor
>
de
=
DescriptorExtractor
::
create
(
"ORB"
);
Mat
image
=
imread
(
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
())
+
"shared/lena.jpg"
);
ASSERT_FALSE
(
image
.
empty
());
Mat
roi
(
image
.
size
(),
CV_8UC1
,
Scalar
(
0
));
Point
poly
[]
=
{
Point
(
100
,
20
),
Point
(
300
,
50
),
Point
(
400
,
200
),
Point
(
10
,
500
)};
fillConvexPoly
(
roi
,
poly
,
int
(
sizeof
(
poly
)
/
sizeof
(
poly
[
0
])),
Scalar
(
255
));
std
::
vector
<
KeyPoint
>
keypoints
;
fd
->
detect
(
image
,
keypoints
,
roi
);
Mat
descriptors
;
de
->
compute
(
image
,
keypoints
,
descriptors
);
//image.setTo(Scalar(255,255,255), roi);
int
roiViolations
=
0
;
for
(
std
::
vector
<
KeyPoint
>::
const_iterator
kp
=
keypoints
.
begin
();
kp
!=
keypoints
.
end
();
++
kp
)
{
int
x
=
cvRound
(
kp
->
pt
.
x
);
int
y
=
cvRound
(
kp
->
pt
.
y
);
ASSERT_LE
(
0
,
x
);
ASSERT_LE
(
0
,
y
);
ASSERT_GT
(
image
.
cols
,
x
);
ASSERT_GT
(
image
.
rows
,
y
);
// if (!roi.at<uchar>(y,x))
// {
// roiViolations++;
// circle(image, kp->pt, 3, Scalar(0,0,255));
// }
}
// if(roiViolations)
// {
// imshow("img", image);
// waitKey();
// }
ASSERT_EQ
(
0
,
roiViolations
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment