Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
4f668e10
Commit
4f668e10
authored
Jan 25, 2019
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #13608 from allnes:dnn_rework
parents
190ad749
97c3bcb1
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
39 additions
and
16 deletions
+39
-16
dnn.cpp
modules/dnn/src/dnn.cpp
+1
-1
op_inf_engine.cpp
modules/dnn/src/op_inf_engine.cpp
+22
-8
op_inf_engine.hpp
modules/dnn/src/op_inf_engine.hpp
+2
-2
test_layers.cpp
modules/dnn/test/test_layers.cpp
+14
-5
No files found.
modules/dnn/src/dnn.cpp
View file @
4f668e10
...
...
@@ -2600,7 +2600,7 @@ Net Net::readFromModelOptimizer(const String& xml, const String& bin)
backendNode
->
net
=
Ptr
<
InfEngineBackendNet
>
(
new
InfEngineBackendNet
(
ieNet
));
for
(
auto
&
it
:
ieNet
.
getOutputsInfo
())
{
Ptr
<
Layer
>
cvLayer
(
new
InfEngineBackendLayer
(
i
t
.
second
));
Ptr
<
Layer
>
cvLayer
(
new
InfEngineBackendLayer
(
i
eNet
));
InferenceEngine
::
CNNLayerPtr
ieLayer
=
ieNet
.
getLayerByName
(
it
.
first
.
c_str
());
CV_Assert
(
ieLayer
);
...
...
modules/dnn/src/op_inf_engine.cpp
View file @
4f668e10
...
...
@@ -718,19 +718,33 @@ Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob)
return
Mat
(
size
,
CV_32F
,
(
void
*
)
blob
->
buffer
());
}
InfEngineBackendLayer
::
InfEngineBackendLayer
(
const
InferenceEngine
::
DataPtr
&
output_
)
{
output
=
output_
;
}
bool
InfEngineBackendLayer
::
getMemoryShapes
(
const
std
::
vector
<
MatShape
>
&
inputs
,
const
int
requiredOutputs
,
std
::
vector
<
MatShape
>
&
outputs
,
std
::
vector
<
MatShape
>
&
internals
)
const
{
std
::
vector
<
size_t
>
dims
=
output
->
dims
;
std
::
vector
<
int
>
shape
(
dims
.
rbegin
(),
dims
.
rend
());
outputs
.
assign
(
1
,
shape
);
InferenceEngine
::
ICNNNetwork
::
InputShapes
inShapes
=
t_net
.
getInputShapes
();
InferenceEngine
::
ICNNNetwork
::
InputShapes
::
iterator
itr
;
bool
equal_flag
=
true
;
size_t
i
=
0
;
for
(
itr
=
inShapes
.
begin
();
itr
!=
inShapes
.
end
();
++
itr
)
{
InferenceEngine
::
SizeVector
currentInShape
(
inputs
[
i
].
begin
(),
inputs
[
i
].
end
());
if
(
itr
->
second
!=
currentInShape
)
{
itr
->
second
=
currentInShape
;
equal_flag
=
false
;
}
i
++
;
}
if
(
!
equal_flag
)
{
InferenceEngine
::
CNNNetwork
curr_t_net
(
t_net
);
curr_t_net
.
reshape
(
inShapes
);
}
std
::
vector
<
size_t
>
dims
=
t_net
.
getOutputsInfo
()[
name
]
->
getDims
();
outputs
.
push_back
(
MatShape
(
dims
.
begin
(),
dims
.
end
()));
return
false
;
}
...
...
modules/dnn/src/op_inf_engine.hpp
View file @
4f668e10
...
...
@@ -260,7 +260,7 @@ InferenceEngine::TBlob<int16_t>::Ptr convertFp16(const InferenceEngine::Blob::Pt
class
InfEngineBackendLayer
:
public
Layer
{
public
:
InfEngineBackendLayer
(
const
InferenceEngine
::
DataPtr
&
output
)
;
InfEngineBackendLayer
(
const
InferenceEngine
::
CNNNetwork
&
t_net_
)
:
t_net
(
t_net_
)
{}
;
virtual
bool
getMemoryShapes
(
const
std
::
vector
<
MatShape
>
&
inputs
,
const
int
requiredOutputs
,
...
...
@@ -273,7 +273,7 @@ public:
virtual
bool
supportBackend
(
int
backendId
)
CV_OVERRIDE
;
private
:
InferenceEngine
::
DataPtr
outpu
t
;
InferenceEngine
::
CNNNetwork
t_ne
t
;
};
#endif // HAVE_INF_ENGINE
...
...
modules/dnn/test/test_layers.cpp
View file @
4f668e10
...
...
@@ -1008,8 +1008,8 @@ INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Convolution_DLDT,
// net.save('/path/to/caffemodel')
//
// 3. Convert using ModelOptimizer.
typedef
testing
::
TestWithParam
<
tuple
<
int
,
int
,
Target
>
>
Test_DLDT_two_inputs
;
TEST_P
(
Test_DLDT_two_inputs
,
as_IR
)
typedef
testing
::
TestWithParam
<
tuple
<
int
,
int
,
Target
,
std
::
vector
<
int
>
>
>
Test_DLDT_two_inputs_3dim
;
TEST_P
(
Test_DLDT_two_inputs
_3dim
,
as_IR
)
{
int
firstInpType
=
get
<
0
>
(
GetParam
());
int
secondInpType
=
get
<
1
>
(
GetParam
());
...
...
@@ -1021,9 +1021,9 @@ TEST_P(Test_DLDT_two_inputs, as_IR)
#endif
Net
net
=
readNet
(
_tf
(
"net_two_inputs.xml"
),
_tf
(
"net_two_inputs.bin"
));
int
inpSize
[]
=
{
1
,
2
,
3
}
;
Mat
firstInp
(
3
,
&
inpSize
[
0
]
,
firstInpType
);
Mat
secondInp
(
3
,
&
inpSize
[
0
]
,
secondInpType
);
std
::
vector
<
int
>
inpSize
=
get
<
3
>
(
GetParam
())
;
Mat
firstInp
(
3
,
inpSize
.
data
()
,
firstInpType
);
Mat
secondInp
(
3
,
inpSize
.
data
()
,
secondInpType
);
randu
(
firstInp
,
0
,
255
);
randu
(
secondInp
,
0
,
255
);
...
...
@@ -1046,6 +1046,15 @@ TEST_P(Test_DLDT_two_inputs, as_IR)
}
}
std
::
vector
<
std
::
vector
<
int
>
>
list_sizes
{
{
1
,
2
,
3
},
{
3
,
2
,
1
},
{
5
,
5
,
5
},
{
13
,
7
,
11
}
};
INSTANTIATE_TEST_CASE_P
(
/*nothing*/
,
Test_DLDT_two_inputs_3dim
,
Combine
(
Values
(
CV_8U
,
CV_32F
),
Values
(
CV_8U
,
CV_32F
),
testing
::
ValuesIn
(
getAvailableTargets
(
DNN_BACKEND_INFERENCE_ENGINE
)),
testing
::
ValuesIn
(
list_sizes
)
));
typedef
testing
::
TestWithParam
<
tuple
<
int
,
int
,
Target
>
>
Test_DLDT_two_inputs
;
TEST_P
(
Test_DLDT_two_inputs
,
as_backend
)
{
static
const
float
kScale
=
0.5
f
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment