Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
4d9d7e6d
Commit
4d9d7e6d
authored
Aug 27, 2014
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #3160 from akarsakov:ocl_dft_double_support
parents
2811d408
a89ff402
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
199 additions
and
172 deletions
+199
-172
dxt.cpp
modules/core/src/dxt.cpp
+56
-38
fft.cl
modules/core/src/opencl/fft.cl
+136
-128
test_dft.cpp
modules/core/test/ocl/test_dft.cpp
+7
-6
No files found.
modules/core/src/dxt.cpp
View file @
4d9d7e6d
...
...
@@ -1802,11 +1802,14 @@ private:
String
buildOptions
;
int
thread_count
;
int
dft_size
;
int
dft_depth
;
bool
status
;
public
:
OCL_FftPlan
(
int
_size
)
:
dft_size
(
_size
),
status
(
true
)
OCL_FftPlan
(
int
_size
,
int
_depth
)
:
dft_size
(
_size
),
dft_depth
(
_depth
),
status
(
true
)
{
CV_Assert
(
dft_depth
==
CV_32F
||
dft_depth
==
CV_64F
);
int
min_radix
;
std
::
vector
<
int
>
radixes
,
blocks
;
ocl_getRadixes
(
dft_size
,
radixes
,
blocks
,
min_radix
);
...
...
@@ -1832,31 +1835,15 @@ public:
n
*=
radix
;
}
twiddles
.
create
(
1
,
twiddle_size
,
CV_32FC2
);
Mat
tw
=
twiddles
.
getMat
(
ACCESS_WRITE
);
float
*
ptr
=
tw
.
ptr
<
float
>
();
int
ptr_index
=
0
;
n
=
1
;
for
(
size_t
i
=
0
;
i
<
radixes
.
size
();
i
++
)
{
int
radix
=
radixes
[
i
];
n
*=
radix
;
for
(
int
j
=
1
;
j
<
radix
;
j
++
)
{
double
theta
=
-
CV_2PI
*
j
/
n
;
for
(
int
k
=
0
;
k
<
(
n
/
radix
);
k
++
)
{
ptr
[
ptr_index
++
]
=
(
float
)
cos
(
k
*
theta
);
ptr
[
ptr_index
++
]
=
(
float
)
sin
(
k
*
theta
);
}
}
}
twiddles
.
create
(
1
,
twiddle_size
,
CV_MAKE_TYPE
(
dft_depth
,
2
));
if
(
dft_depth
==
CV_32F
)
fillRadixTable
<
float
>
(
twiddles
,
radixes
);
else
fillRadixTable
<
double
>
(
twiddles
,
radixes
);
buildOptions
=
format
(
"-D LOCAL_SIZE=%d -D kercn=%d -D RADIX_PROCESS=%s"
,
dft_size
,
min_radix
,
radix_processing
.
c_str
());
buildOptions
=
format
(
"-D LOCAL_SIZE=%d -D kercn=%d -D FT=%s -D CT=%s%s -D RADIX_PROCESS=%s"
,
dft_size
,
min_radix
,
ocl
::
typeToStr
(
dft_depth
),
ocl
::
typeToStr
(
CV_MAKE_TYPE
(
dft_depth
,
2
)),
dft_depth
==
CV_64F
?
" -D DOUBLE_SUPPORT"
:
""
,
radix_processing
.
c_str
());
}
bool
enqueueTransform
(
InputArray
_src
,
OutputArray
_dst
,
int
num_dfts
,
int
flags
,
int
fftType
,
bool
rows
=
true
)
const
...
...
@@ -1913,7 +1900,7 @@ public:
if
(
k
.
empty
())
return
false
;
k
.
args
(
ocl
::
KernelArg
::
ReadOnly
(
src
),
ocl
::
KernelArg
::
WriteOnly
(
dst
),
ocl
::
KernelArg
::
PtrReadOnly
(
twiddles
),
thread_count
,
num_dfts
);
k
.
args
(
ocl
::
KernelArg
::
ReadOnly
(
src
),
ocl
::
KernelArg
::
WriteOnly
(
dst
),
ocl
::
KernelArg
::
ReadOnlyNoSize
(
twiddles
),
thread_count
,
num_dfts
);
return
k
.
run
(
2
,
globalsize
,
localsize
,
false
);
}
...
...
@@ -1986,6 +1973,32 @@ private:
min_radix
=
min
(
min_radix
,
block
*
radix
);
}
}
template
<
typename
T
>
static
void
fillRadixTable
(
UMat
twiddles
,
const
std
::
vector
<
int
>&
radixes
)
{
Mat
tw
=
twiddles
.
getMat
(
ACCESS_WRITE
);
T
*
ptr
=
tw
.
ptr
<
T
>
();
int
ptr_index
=
0
;
int
n
=
1
;
for
(
size_t
i
=
0
;
i
<
radixes
.
size
();
i
++
)
{
int
radix
=
radixes
[
i
];
n
*=
radix
;
for
(
int
j
=
1
;
j
<
radix
;
j
++
)
{
double
theta
=
-
CV_2PI
*
j
/
n
;
for
(
int
k
=
0
;
k
<
(
n
/
radix
);
k
++
)
{
ptr
[
ptr_index
++
]
=
(
T
)
cos
(
k
*
theta
);
ptr
[
ptr_index
++
]
=
(
T
)
sin
(
k
*
theta
);
}
}
}
}
};
class
OCL_FftPlanCache
...
...
@@ -1997,17 +2010,18 @@ public:
return
planCache
;
}
Ptr
<
OCL_FftPlan
>
getFftPlan
(
int
dft_size
)
Ptr
<
OCL_FftPlan
>
getFftPlan
(
int
dft_size
,
int
depth
)
{
std
::
map
<
int
,
Ptr
<
OCL_FftPlan
>
>::
iterator
f
=
planStorage
.
find
(
dft_size
);
int
key
=
(
dft_size
<<
16
)
|
(
depth
&
0xFFFF
);
std
::
map
<
int
,
Ptr
<
OCL_FftPlan
>
>::
iterator
f
=
planStorage
.
find
(
key
);
if
(
f
!=
planStorage
.
end
())
{
return
f
->
second
;
}
else
{
Ptr
<
OCL_FftPlan
>
newPlan
=
Ptr
<
OCL_FftPlan
>
(
new
OCL_FftPlan
(
dft_size
));
planStorage
[
dft_size
]
=
newPlan
;
Ptr
<
OCL_FftPlan
>
newPlan
=
Ptr
<
OCL_FftPlan
>
(
new
OCL_FftPlan
(
dft_size
,
depth
));
planStorage
[
key
]
=
newPlan
;
return
newPlan
;
}
}
...
...
@@ -2027,21 +2041,25 @@ protected:
static
bool
ocl_dft_rows
(
InputArray
_src
,
OutputArray
_dst
,
int
nonzero_rows
,
int
flags
,
int
fftType
)
{
Ptr
<
OCL_FftPlan
>
plan
=
OCL_FftPlanCache
::
getInstance
().
getFftPlan
(
_src
.
cols
());
int
type
=
_src
.
type
(),
depth
=
CV_MAT_DEPTH
(
type
);
Ptr
<
OCL_FftPlan
>
plan
=
OCL_FftPlanCache
::
getInstance
().
getFftPlan
(
_src
.
cols
(),
depth
);
return
plan
->
enqueueTransform
(
_src
,
_dst
,
nonzero_rows
,
flags
,
fftType
,
true
);
}
static
bool
ocl_dft_cols
(
InputArray
_src
,
OutputArray
_dst
,
int
nonzero_cols
,
int
flags
,
int
fftType
)
{
Ptr
<
OCL_FftPlan
>
plan
=
OCL_FftPlanCache
::
getInstance
().
getFftPlan
(
_src
.
rows
());
int
type
=
_src
.
type
(),
depth
=
CV_MAT_DEPTH
(
type
);
Ptr
<
OCL_FftPlan
>
plan
=
OCL_FftPlanCache
::
getInstance
().
getFftPlan
(
_src
.
rows
(),
depth
);
return
plan
->
enqueueTransform
(
_src
,
_dst
,
nonzero_cols
,
flags
,
fftType
,
false
);
}
static
bool
ocl_dft
(
InputArray
_src
,
OutputArray
_dst
,
int
flags
,
int
nonzero_rows
)
{
int
type
=
_src
.
type
(),
cn
=
CV_MAT_CN
(
type
);
int
type
=
_src
.
type
(),
cn
=
CV_MAT_CN
(
type
)
,
depth
=
CV_MAT_DEPTH
(
type
)
;
Size
ssize
=
_src
.
size
();
if
(
!
(
type
==
CV_32FC1
||
type
==
CV_32FC2
)
)
bool
doubleSupport
=
ocl
::
Device
::
getDefault
().
doubleFPConfig
()
>
0
;
if
(
!
((
cn
==
1
||
cn
==
2
)
&&
(
depth
==
CV_32F
||
(
depth
==
CV_64F
&&
doubleSupport
)))
)
return
false
;
// if is not a multiplication of prime numbers { 2, 3, 5 }
...
...
@@ -2082,7 +2100,7 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
if
(
fftType
==
C2C
||
fftType
==
R2C
)
{
// complex output
_dst
.
create
(
src
.
size
(),
CV_
32FC2
);
_dst
.
create
(
src
.
size
(),
CV_
MAKETYPE
(
depth
,
2
)
);
output
=
_dst
.
getUMat
();
}
else
...
...
@@ -2090,13 +2108,13 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
// real output
if
(
is1d
)
{
_dst
.
create
(
src
.
size
(),
CV_
32FC1
);
_dst
.
create
(
src
.
size
(),
CV_
MAKETYPE
(
depth
,
1
)
);
output
=
_dst
.
getUMat
();
}
else
{
_dst
.
create
(
src
.
size
(),
CV_
32FC1
);
output
.
create
(
src
.
size
(),
CV_
32FC2
);
_dst
.
create
(
src
.
size
(),
CV_
MAKETYPE
(
depth
,
1
)
);
output
.
create
(
src
.
size
(),
CV_
MAKETYPE
(
depth
,
2
)
);
}
}
...
...
modules/core/src/opencl/fft.cl
View file @
4d9d7e6d
...
...
@@ -12,22 +12,30 @@
#
define
fft5_4
-1.538841768587f
#
define
fft5_5
0.363271264002f
#
ifdef
DOUBLE_SUPPORT
#
ifdef
cl_amd_fp64
#
pragma
OPENCL
EXTENSION
cl_amd_fp64:enable
#
elif
defined
(
cl_khr_fp64
)
#
pragma
OPENCL
EXTENSION
cl_khr_fp64:enable
#
endif
#
endif
__attribute__
((
always_inline
))
float2
mul_float2
(
float2
a,
float2
b
)
{
return
(
float2
)(
fma
(
a.x,
b.x,
-a.y
*
b.y
)
,
fma
(
a.x,
b.y,
a.y
*
b.x
))
;
CT
mul_complex
(
CT
a,
CT
b
)
{
return
(
CT
)(
fma
(
a.x,
b.x,
-a.y
*
b.y
)
,
fma
(
a.x,
b.y,
a.y
*
b.x
))
;
}
__attribute__
((
always_inline
))
float2
twiddle
(
float2
a
)
{
return
(
float2
)(
a.y,
-a.x
)
;
CT
twiddle
(
CT
a
)
{
return
(
CT
)(
a.y,
-a.x
)
;
}
__attribute__
((
always_inline
))
void
butterfly2
(
float2
a0,
float2
a1,
__local
float2*
smem,
__global
const
float2
*
twiddles,
void
butterfly2
(
CT
a0,
CT
a1,
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x,
const
int
block_size
)
{
const
int
k
=
x
&
(
block_size
-
1
)
;
a1
=
mul_
float2
(
twiddles[k],
a1
)
;
a1
=
mul_
complex
(
twiddles[k],
a1
)
;
const
int
dst_ind
=
(
x
<<
1
)
-
k
;
smem[dst_ind]
=
a0
+
a1
;
...
...
@@ -35,19 +43,19 @@ void butterfly2(float2 a0, float2 a1, __local float2* smem, __global const float
}
__attribute__
((
always_inline
))
void
butterfly4
(
float2
a0,
float2
a1,
float2
a2,
float2
a3,
__local
float2*
smem,
__global
const
float2
*
twiddles,
void
butterfly4
(
CT
a0,
CT
a1,
CT
a2,
CT
a3,
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x,
const
int
block_size
)
{
const
int
k
=
x
&
(
block_size
-
1
)
;
a1
=
mul_
float2
(
twiddles[k],
a1
)
;
a2
=
mul_
float2
(
twiddles[k
+
block_size],
a2
)
;
a3
=
mul_
float2
(
twiddles[k
+
2*block_size],
a3
)
;
a1
=
mul_
complex
(
twiddles[k],
a1
)
;
a2
=
mul_
complex
(
twiddles[k
+
block_size],
a2
)
;
a3
=
mul_
complex
(
twiddles[k
+
2*block_size],
a3
)
;
const
int
dst_ind
=
((
x
-
k
)
<<
2
)
+
k
;
float2
b0
=
a0
+
a2
;
CT
b0
=
a0
+
a2
;
a2
=
a0
-
a2
;
float2
b1
=
a1
+
a3
;
CT
b1
=
a1
+
a3
;
a3
=
twiddle
(
a1
-
a3
)
;
smem[dst_ind]
=
b0
+
b1
;
...
...
@@ -57,17 +65,17 @@ void butterfly4(float2 a0, float2 a1, float2 a2, float2 a3, __local float2* smem
}
__attribute__
((
always_inline
))
void
butterfly3
(
float2
a0,
float2
a1,
float2
a2,
__local
float2*
smem,
__global
const
float2
*
twiddles,
void
butterfly3
(
CT
a0,
CT
a1,
CT
a2,
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x,
const
int
block_size
)
{
const
int
k
=
x
%
block_size
;
a1
=
mul_
float2
(
twiddles[k],
a1
)
;
a2
=
mul_
float2
(
twiddles[k+block_size],
a2
)
;
a1
=
mul_
complex
(
twiddles[k],
a1
)
;
a2
=
mul_
complex
(
twiddles[k+block_size],
a2
)
;
const
int
dst_ind
=
((
x
-
k
)
*
3
)
+
k
;
float2
b1
=
a1
+
a2
;
CT
b1
=
a1
+
a2
;
a2
=
twiddle
(
sin_120*
(
a1
-
a2
))
;
float2
b0
=
a0
-
(
float2
)(
0.5f
)
*b1
;
CT
b0
=
a0
-
(
CT
)(
0.5f
)
*b1
;
smem[dst_ind]
=
a0
+
b1
;
smem[dst_ind
+
block_size]
=
b0
+
a2
;
...
...
@@ -75,19 +83,19 @@ void butterfly3(float2 a0, float2 a1, float2 a2, __local float2* smem, __global
}
__attribute__
((
always_inline
))
void
butterfly5
(
float2
a0,
float2
a1,
float2
a2,
float2
a3,
float2
a4,
__local
float2*
smem,
__global
const
float2
*
twiddles,
void
butterfly5
(
CT
a0,
CT
a1,
CT
a2,
CT
a3,
CT
a4,
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x,
const
int
block_size
)
{
const
int
k
=
x
%
block_size
;
a1
=
mul_
float2
(
twiddles[k],
a1
)
;
a2
=
mul_
float2
(
twiddles[k
+
block_size],
a2
)
;
a3
=
mul_
float2
(
twiddles[k+2*block_size],
a3
)
;
a4
=
mul_
float2
(
twiddles[k+3*block_size],
a4
)
;
a1
=
mul_
complex
(
twiddles[k],
a1
)
;
a2
=
mul_
complex
(
twiddles[k
+
block_size],
a2
)
;
a3
=
mul_
complex
(
twiddles[k+2*block_size],
a3
)
;
a4
=
mul_
complex
(
twiddles[k+3*block_size],
a4
)
;
const
int
dst_ind
=
((
x
-
k
)
*
5
)
+
k
;
__local
float2
*
dst
=
smem
+
dst_ind
;
__local
CT
*
dst
=
smem
+
dst_ind
;
float2
b0,
b1,
b5
;
CT
b0,
b1,
b5
;
b1
=
a1
+
a4
;
a1
-=
a4
;
...
...
@@ -96,11 +104,11 @@ void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local f
a3
-=
a2
;
a2
=
b1
+
a4
;
b0
=
a0
-
(
float2
)
0.25f
*
a2
;
b0
=
a0
-
(
CT
)
0.25f
*
a2
;
b1
=
fft5_2
*
(
b1
-
a4
)
;
a4
=
fft5_3
*
(
float2
)(
-a1.y
-
a3.y,
a1.x
+
a3.x
)
;
b5
=
(
float2
)(
a4.x
-
fft5_5
*
a1.y,
a4.y
+
fft5_5
*
a1.x
)
;
a4
=
fft5_3
*
(
CT
)(
-a1.y
-
a3.y,
a1.x
+
a3.x
)
;
b5
=
(
CT
)(
a4.x
-
fft5_5
*
a1.y,
a4.y
+
fft5_5
*
a1.x
)
;
a4.x
+=
fft5_4
*
a3.y
;
a4.y
-=
fft5_4
*
a3.x
;
...
...
@@ -116,9 +124,9 @@ void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local f
}
__attribute__
((
always_inline
))
void
fft_radix2
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x,
const
int
block_size,
const
int
t
)
void
fft_radix2
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x,
const
int
block_size,
const
int
t
)
{
float2
a0,
a1
;
CT
a0,
a1
;
if
(
x
<
t
)
{
...
...
@@ -135,10 +143,10 @@ void fft_radix2(__local float2* smem, __global const float2* twiddles, const int
}
__attribute__
((
always_inline
))
void
fft_radix2_B2
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
void
fft_radix2_B2
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
{
const
int
x2
=
x1
+
t/2
;
float2
a0,
a1,
a2,
a3
;
CT
a0,
a1,
a2,
a3
;
if
(
x1
<
t/2
)
{
...
...
@@ -158,11 +166,11 @@ void fft_radix2_B2(__local float2* smem, __global const float2* twiddles, const
}
__attribute__
((
always_inline
))
void
fft_radix2_B3
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
void
fft_radix2_B3
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
{
const
int
x2
=
x1
+
t/3
;
const
int
x3
=
x1
+
2*t/3
;
float2
a0,
a1,
a2,
a3,
a4,
a5
;
CT
a0,
a1,
a2,
a3,
a4,
a5
;
if
(
x1
<
t/3
)
{
...
...
@@ -184,13 +192,13 @@ void fft_radix2_B3(__local float2* smem, __global const float2* twiddles, const
}
__attribute__
((
always_inline
))
void
fft_radix2_B4
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
void
fft_radix2_B4
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
{
const
int
thread_block
=
t/4
;
const
int
x2
=
x1
+
thread_block
;
const
int
x3
=
x1
+
2*thread_block
;
const
int
x4
=
x1
+
3*thread_block
;
float2
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7
;
CT
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7
;
if
(
x1
<
t/4
)
{
...
...
@@ -214,14 +222,14 @@ void fft_radix2_B4(__local float2* smem, __global const float2* twiddles, const
}
__attribute__
((
always_inline
))
void
fft_radix2_B5
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
void
fft_radix2_B5
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
{
const
int
thread_block
=
t/5
;
const
int
x2
=
x1
+
thread_block
;
const
int
x3
=
x1
+
2*thread_block
;
const
int
x4
=
x1
+
3*thread_block
;
const
int
x5
=
x1
+
4*thread_block
;
float2
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7,
a8,
a9
;
CT
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7,
a8,
a9
;
if
(
x1
<
t/5
)
{
...
...
@@ -247,9 +255,9 @@ void fft_radix2_B5(__local float2* smem, __global const float2* twiddles, const
}
__attribute__
((
always_inline
))
void
fft_radix4
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x,
const
int
block_size,
const
int
t
)
void
fft_radix4
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x,
const
int
block_size,
const
int
t
)
{
float2
a0,
a1,
a2,
a3
;
CT
a0,
a1,
a2,
a3
;
if
(
x
<
t
)
{
...
...
@@ -265,10 +273,10 @@ void fft_radix4(__local float2* smem, __global const float2* twiddles, const int
}
__attribute__
((
always_inline
))
void
fft_radix4_B2
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
void
fft_radix4_B2
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
{
const
int
x2
=
x1
+
t/2
;
float2
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7
;
CT
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7
;
if
(
x1
<
t/2
)
{
...
...
@@ -288,11 +296,11 @@ void fft_radix4_B2(__local float2* smem, __global const float2* twiddles, const
}
__attribute__
((
always_inline
))
void
fft_radix4_B3
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
void
fft_radix4_B3
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
{
const
int
x2
=
x1
+
t/3
;
const
int
x3
=
x2
+
t/3
;
float2
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7,
a8,
a9,
a10,
a11
;
CT
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7,
a8,
a9,
a10,
a11
;
if
(
x1
<
t/3
)
{
...
...
@@ -314,35 +322,35 @@ void fft_radix4_B3(__local float2* smem, __global const float2* twiddles, const
}
__attribute__
((
always_inline
))
void
fft_radix8
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x,
const
int
block_size,
const
int
t
)
void
fft_radix8
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x,
const
int
block_size,
const
int
t
)
{
const
int
k
=
x
%
block_size
;
float2
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7
;
CT
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7
;
if
(
x
<
t
)
{
int
tw_ind
=
block_size
/
8
;
a0
=
smem[x]
;
a1
=
mul_
float2
(
twiddles[k],
smem[x
+
t]
)
;
a2
=
mul_
float2
(
twiddles[k
+
block_size],smem[x+2*t]
)
;
a3
=
mul_
float2
(
twiddles[k+2*block_size],smem[x+3*t]
)
;
a4
=
mul_
float2
(
twiddles[k+3*block_size],smem[x+4*t]
)
;
a5
=
mul_
float2
(
twiddles[k+4*block_size],smem[x+5*t]
)
;
a6
=
mul_
float2
(
twiddles[k+5*block_size],smem[x+6*t]
)
;
a7
=
mul_
float2
(
twiddles[k+6*block_size],smem[x+7*t]
)
;
a1
=
mul_
complex
(
twiddles[k],
smem[x
+
t]
)
;
a2
=
mul_
complex
(
twiddles[k
+
block_size],smem[x+2*t]
)
;
a3
=
mul_
complex
(
twiddles[k+2*block_size],smem[x+3*t]
)
;
a4
=
mul_
complex
(
twiddles[k+3*block_size],smem[x+4*t]
)
;
a5
=
mul_
complex
(
twiddles[k+4*block_size],smem[x+5*t]
)
;
a6
=
mul_
complex
(
twiddles[k+5*block_size],smem[x+6*t]
)
;
a7
=
mul_
complex
(
twiddles[k+6*block_size],smem[x+7*t]
)
;
float2
b0,
b1,
b6,
b7
;
CT
b0,
b1,
b6,
b7
;
b0
=
a0
+
a4
;
a4
=
a0
-
a4
;
b1
=
a1
+
a5
;
a5
=
a1
-
a5
;
a5
=
(
float2
)(
SQRT_2
)
*
(
float2
)(
a5.x
+
a5.y,
-a5.x
+
a5.y
)
;
a5
=
(
CT
)(
SQRT_2
)
*
(
CT
)(
a5.x
+
a5.y,
-a5.x
+
a5.y
)
;
b6
=
twiddle
(
a2
-
a6
)
;
a2
=
a2
+
a6
;
b7
=
a3
-
a7
;
b7
=
(
float2
)(
SQRT_2
)
*
(
float2
)(
-b7.x
+
b7.y,
-b7.x
-
b7.y
)
;
b7
=
(
CT
)(
SQRT_2
)
*
(
CT
)(
-b7.x
+
b7.y,
-b7.x
-
b7.y
)
;
a3
=
a3
+
a7
;
a0
=
b0
+
a2
;
...
...
@@ -361,7 +369,7 @@ void fft_radix8(__local float2* smem, __global const float2* twiddles, const int
if
(
x
<
t
)
{
const
int
dst_ind
=
((
x
-
k
)
<<
3
)
+
k
;
__local
float2
*
dst
=
smem
+
dst_ind
;
__local
CT
*
dst
=
smem
+
dst_ind
;
dst[0]
=
a0
+
a1
;
dst[block_size]
=
a4
+
a5
;
...
...
@@ -377,9 +385,9 @@ void fft_radix8(__local float2* smem, __global const float2* twiddles, const int
}
__attribute__
((
always_inline
))
void
fft_radix3
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x,
const
int
block_size,
const
int
t
)
void
fft_radix3
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x,
const
int
block_size,
const
int
t
)
{
float2
a0,
a1,
a2
;
CT
a0,
a1,
a2
;
if
(
x
<
t
)
{
...
...
@@ -395,10 +403,10 @@ void fft_radix3(__local float2* smem, __global const float2* twiddles, const int
}
__attribute__
((
always_inline
))
void
fft_radix3_B2
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
void
fft_radix3_B2
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
{
const
int
x2
=
x1
+
t/2
;
float2
a0,
a1,
a2,
a3,
a4,
a5
;
CT
a0,
a1,
a2,
a3,
a4,
a5
;
if
(
x1
<
t/2
)
{
...
...
@@ -418,11 +426,11 @@ void fft_radix3_B2(__local float2* smem, __global const float2* twiddles, const
}
__attribute__
((
always_inline
))
void
fft_radix3_B3
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
void
fft_radix3_B3
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
{
const
int
x2
=
x1
+
t/3
;
const
int
x3
=
x2
+
t/3
;
float2
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7,
a8
;
CT
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7,
a8
;
if
(
x1
<
t/3
)
{
...
...
@@ -444,13 +452,13 @@ void fft_radix3_B3(__local float2* smem, __global const float2* twiddles, const
}
__attribute__
((
always_inline
))
void
fft_radix3_B4
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
void
fft_radix3_B4
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
{
const
int
thread_block
=
t/4
;
const
int
x2
=
x1
+
thread_block
;
const
int
x3
=
x1
+
2*thread_block
;
const
int
x4
=
x1
+
3*thread_block
;
float2
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7,
a8,
a9,
a10,
a11
;
CT
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7,
a8,
a9,
a10,
a11
;
if
(
x1
<
t/4
)
{
...
...
@@ -474,10 +482,10 @@ void fft_radix3_B4(__local float2* smem, __global const float2* twiddles, const
}
__attribute__
((
always_inline
))
void
fft_radix5
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x,
const
int
block_size,
const
int
t
)
void
fft_radix5
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x,
const
int
block_size,
const
int
t
)
{
const
int
k
=
x
%
block_size
;
float2
a0,
a1,
a2,
a3,
a4
;
CT
a0,
a1,
a2,
a3,
a4
;
if
(
x
<
t
)
{
...
...
@@ -493,10 +501,10 @@ void fft_radix5(__local float2* smem, __global const float2* twiddles, const int
}
__attribute__
((
always_inline
))
void
fft_radix5_B2
(
__local
float2*
smem,
__global
const
float2
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
void
fft_radix5_B2
(
__local
CT*
smem,
__global
const
CT
*
twiddles,
const
int
x1,
const
int
block_size,
const
int
t
)
{
const
int
x2
=
x1+t/2
;
float2
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7,
a8,
a9
;
CT
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7,
a8,
a9
;
if
(
x1
<
t/2
)
{
...
...
@@ -523,32 +531,32 @@ void fft_radix5_B2(__local float2* smem, __global const float2* twiddles, const
__kernel
void
fft_multi_radix_rows
(
__global
const
uchar*
src_ptr,
int
src_step,
int
src_offset,
int
src_rows,
int
src_cols,
__global
uchar*
dst_ptr,
int
dst_step,
int
dst_offset,
int
dst_rows,
int
dst_cols,
__global
float2*
twiddles_ptr
,
const
int
t
,
const
int
nz
)
__global
CT*
twiddles_ptr,
int
twiddles_step,
int
twiddles_offset
,
const
int
t
,
const
int
nz
)
{
const
int
x
=
get_global_id
(
0
)
;
const
int
y
=
get_group_id
(
1
)
;
const
int
block_size
=
LOCAL_SIZE/kercn
;
if
(
y
<
nz
)
{
__local
float2
smem[LOCAL_SIZE]
;
__global
const
float2*
twiddles
=
(
__global
float2*
)
twiddles_ptr
;
__local
CT
smem[LOCAL_SIZE]
;
__global
const
CT*
twiddles
=
(
__global
const
CT*
)(
twiddles_ptr
+
twiddles_offset
)
;
const
int
ind
=
x
;
#
ifdef
IS_1D
float
scale
=
1.f
/dst_cols
;
FT
scale
=
(
FT
)
1
/dst_cols
;
#
else
float
scale
=
1.f
/
(
dst_cols*dst_rows
)
;
FT
scale
=
(
FT
)
1
/
(
dst_cols*dst_rows
)
;
#
endif
#
ifdef
COMPLEX_INPUT
__global
const
float2*
src
=
(
__global
const
float2*
)(
src_ptr
+
mad24
(
y,
src_step,
mad24
(
x,
(
int
)(
sizeof
(
float
)
*2
)
,
src_offset
)))
;
__global
const
CT*
src
=
(
__global
const
CT*
)(
src_ptr
+
mad24
(
y,
src_step,
mad24
(
x,
(
int
)(
sizeof
(
CT
)
)
,
src_offset
)))
;
#
pragma
unroll
for
(
int
i=0
; i<kercn; i++)
smem[x+i*block_size]
=
src[i*block_size]
;
#
else
__global
const
float*
src
=
(
__global
const
float*
)(
src_ptr
+
mad24
(
y,
src_step,
mad24
(
x,
(
int
)
sizeof
(
float
)
,
src_offset
)))
;
__global
const
FT*
src
=
(
__global
const
FT*
)(
src_ptr
+
mad24
(
y,
src_step,
mad24
(
x,
(
int
)
sizeof
(
FT
)
,
src_offset
)))
;
#
pragma
unroll
for
(
int
i=0
; i<kercn; i++)
smem[x+i*block_size]
=
(
float2
)(
src[i*block_size],
0.f
)
;
smem[x+i*block_size]
=
(
CT
)(
src[i*block_size],
0.f
)
;
#
endif
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
...
...
@@ -562,14 +570,14 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
const
int
cols
=
dst_cols
;
#
endif
__global
float2*
dst
=
(
__global
float2
*
)(
dst_ptr
+
mad24
(
y,
dst_step,
dst_offset
))
;
__global
CT*
dst
=
(
__global
CT
*
)(
dst_ptr
+
mad24
(
y,
dst_step,
dst_offset
))
;
#
pragma
unroll
for
(
int
i=x
; i<cols; i+=block_size)
dst[i]
=
SCALE_VAL
(
smem[i],
scale
)
;
#
else
//
pack
row
to
CCS
__local
float*
smem_1cn
=
(
__local
float
*
)
smem
;
__global
float*
dst
=
(
__global
float
*
)(
dst_ptr
+
mad24
(
y,
dst_step,
dst_offset
))
;
__local
FT*
smem_1cn
=
(
__local
FT
*
)
smem
;
__global
FT*
dst
=
(
__global
FT
*
)(
dst_ptr
+
mad24
(
y,
dst_step,
dst_offset
))
;
for
(
int
i=x
; i<dst_cols-1; i+=block_size)
dst[i+1]
=
SCALE_VAL
(
smem_1cn[i+2],
scale
)
;
if
(
x
==
0
)
...
...
@@ -580,9 +588,9 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
{
//
fill
with
zero
other
rows
#
ifdef
COMPLEX_OUTPUT
__global
float2*
dst
=
(
__global
float2
*
)(
dst_ptr
+
mad24
(
y,
dst_step,
dst_offset
))
;
__global
CT*
dst
=
(
__global
CT
*
)(
dst_ptr
+
mad24
(
y,
dst_step,
dst_offset
))
;
#
else
__global
float*
dst
=
(
__global
float
*
)(
dst_ptr
+
mad24
(
y,
dst_step,
dst_offset
))
;
__global
FT*
dst
=
(
__global
FT
*
)(
dst_ptr
+
mad24
(
y,
dst_step,
dst_offset
))
;
#
endif
#
pragma
unroll
for
(
int
i=x
; i<dst_cols; i+=block_size)
...
...
@@ -592,60 +600,60 @@ __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
__kernel
void
fft_multi_radix_cols
(
__global
const
uchar*
src_ptr,
int
src_step,
int
src_offset,
int
src_rows,
int
src_cols,
__global
uchar*
dst_ptr,
int
dst_step,
int
dst_offset,
int
dst_rows,
int
dst_cols,
__global
float2*
twiddles_ptr
,
const
int
t
,
const
int
nz
)
__global
CT*
twiddles_ptr,
int
twiddles_step,
int
twiddles_offset
,
const
int
t
,
const
int
nz
)
{
const
int
x
=
get_group_id
(
0
)
;
const
int
y
=
get_global_id
(
1
)
;
if
(
x
<
nz
)
{
__local
float2
smem[LOCAL_SIZE]
;
__global
const
uchar*
src
=
src_ptr
+
mad24
(
y,
src_step,
mad24
(
x,
(
int
)(
sizeof
(
float
)
*2
)
,
src_offset
))
;
__global
const
float2*
twiddles
=
(
__global
float2*
)
twiddles_ptr
;
__local
CT
smem[LOCAL_SIZE]
;
__global
const
uchar*
src
=
src_ptr
+
mad24
(
y,
src_step,
mad24
(
x,
(
int
)(
sizeof
(
CT
)
)
,
src_offset
))
;
__global
const
CT*
twiddles
=
(
__global
const
CT*
)(
twiddles_ptr
+
twiddles_offset
)
;
const
int
ind
=
y
;
const
int
block_size
=
LOCAL_SIZE/kercn
;
float
scale
=
1.f/
(
dst_rows*dst_cols
)
;
FT
scale
=
1.f/
(
dst_rows*dst_cols
)
;
#
pragma
unroll
for
(
int
i=0
; i<kercn; i++)
smem[y+i*block_size]
=
*
((
__global
const
float2
*
)(
src
+
i*block_size*src_step
))
;
smem[y+i*block_size]
=
*
((
__global
const
CT
*
)(
src
+
i*block_size*src_step
))
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
RADIX_PROCESS
;
#
ifdef
COMPLEX_OUTPUT
__global
uchar*
dst
=
dst_ptr
+
mad24
(
y,
dst_step,
mad24
(
x,
(
int
)(
sizeof
(
float
)
*2
)
,
dst_offset
))
;
__global
uchar*
dst
=
dst_ptr
+
mad24
(
y,
dst_step,
mad24
(
x,
(
int
)(
sizeof
(
CT
)
)
,
dst_offset
))
;
#
pragma
unroll
for
(
int
i=0
; i<kercn; i++)
*
((
__global
float2
*
)(
dst
+
i*block_size*dst_step
))
=
SCALE_VAL
(
smem[y
+
i*block_size],
scale
)
;
*
((
__global
CT
*
)(
dst
+
i*block_size*dst_step
))
=
SCALE_VAL
(
smem[y
+
i*block_size],
scale
)
;
#
else
if
(
x
==
0
)
{
//
pack
first
column
to
CCS
__local
float*
smem_1cn
=
(
__local
float
*
)
smem
;
__local
FT*
smem_1cn
=
(
__local
FT
*
)
smem
;
__global
uchar*
dst
=
dst_ptr
+
mad24
(
y+1,
dst_step,
dst_offset
)
;
for
(
int
i=y
; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size)
*
((
__global
float
*
)
dst
)
=
SCALE_VAL
(
smem_1cn[i+2],
scale
)
;
*
((
__global
FT
*
)
dst
)
=
SCALE_VAL
(
smem_1cn[i+2],
scale
)
;
if
(
y
==
0
)
*
((
__global
float
*
)
(
dst_ptr
+
dst_offset
))
=
SCALE_VAL
(
smem_1cn[0],
scale
)
;
*
((
__global
FT
*
)
(
dst_ptr
+
dst_offset
))
=
SCALE_VAL
(
smem_1cn[0],
scale
)
;
}
else
if
(
x
==
(
dst_cols+1
)
/2
)
{
//
pack
last
column
to
CCS
(
if
needed
)
__local
float*
smem_1cn
=
(
__local
float
*
)
smem
;
__global
uchar*
dst
=
dst_ptr
+
mad24
(
dst_cols-1,
(
int
)
sizeof
(
float
)
,
mad24
(
y+1,
dst_step,
dst_offset
))
;
__local
FT*
smem_1cn
=
(
__local
FT
*
)
smem
;
__global
uchar*
dst
=
dst_ptr
+
mad24
(
dst_cols-1,
(
int
)
sizeof
(
FT
)
,
mad24
(
y+1,
dst_step,
dst_offset
))
;
for
(
int
i=y
; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size)
*
((
__global
float
*
)
dst
)
=
SCALE_VAL
(
smem_1cn[i+2],
scale
)
;
*
((
__global
FT
*
)
dst
)
=
SCALE_VAL
(
smem_1cn[i+2],
scale
)
;
if
(
y
==
0
)
*
((
__global
float*
)
(
dst_ptr
+
mad24
(
dst_cols-1,
(
int
)
sizeof
(
float
)
,
dst_offset
)))
=
SCALE_VAL
(
smem_1cn[0],
scale
)
;
*
((
__global
FT*
)
(
dst_ptr
+
mad24
(
dst_cols-1,
(
int
)
sizeof
(
FT
)
,
dst_offset
)))
=
SCALE_VAL
(
smem_1cn[0],
scale
)
;
}
else
{
__global
uchar*
dst
=
dst_ptr
+
mad24
(
x,
(
int
)
sizeof
(
float
)
*2,
mad24
(
y,
dst_step,
dst_offset
-
(
int
)
sizeof
(
float
)))
;
__global
uchar*
dst
=
dst_ptr
+
mad24
(
x,
(
int
)
sizeof
(
FT
)
*2,
mad24
(
y,
dst_step,
dst_offset
-
(
int
)
sizeof
(
FT
)))
;
#
pragma
unroll
for
(
int
i=y
; i<dst_rows; i+=block_size, dst+=block_size*dst_step)
vstore2
(
SCALE_VAL
(
smem[i],
scale
)
,
0
,
(
__global
float
*
)
dst
)
;
vstore2
(
SCALE_VAL
(
smem[i],
scale
)
,
0
,
(
__global
FT
*
)
dst
)
;
}
#
endif
}
...
...
@@ -653,25 +661,25 @@ __kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
__kernel
void
ifft_multi_radix_rows
(
__global
const
uchar*
src_ptr,
int
src_step,
int
src_offset,
int
src_rows,
int
src_cols,
__global
uchar*
dst_ptr,
int
dst_step,
int
dst_offset,
int
dst_rows,
int
dst_cols,
__global
float2*
twiddles_ptr
,
const
int
t
,
const
int
nz
)
__global
CT*
twiddles_ptr,
int
twiddles_step,
int
twiddles_offset
,
const
int
t
,
const
int
nz
)
{
const
int
x
=
get_global_id
(
0
)
;
const
int
y
=
get_group_id
(
1
)
;
const
int
block_size
=
LOCAL_SIZE/kercn
;
#
ifdef
IS_1D
const
float
scale
=
1.f
/dst_cols
;
const
FT
scale
=
(
FT
)
1
/dst_cols
;
#
else
const
float
scale
=
1.f
/
(
dst_cols*dst_rows
)
;
const
FT
scale
=
(
FT
)
1
/
(
dst_cols*dst_rows
)
;
#
endif
if
(
y
<
nz
)
{
__local
float2
smem[LOCAL_SIZE]
;
__global
const
float2*
twiddles
=
(
__global
float2*
)
twiddles_ptr
;
__local
CT
smem[LOCAL_SIZE]
;
__global
const
CT*
twiddles
=
(
__global
const
CT*
)(
twiddles_ptr
+
twiddles_offset
)
;
const
int
ind
=
x
;
#
if
defined
(
COMPLEX_INPUT
)
&&
!defined
(
NO_CONJUGATE
)
__global
const
float2*
src
=
(
__global
const
float2*
)(
src_ptr
+
mad24
(
y,
src_step,
mad24
(
x,
(
int
)(
sizeof
(
float
)
*2
)
,
src_offset
)))
;
__global
const
CT*
src
=
(
__global
const
CT*
)(
src_ptr
+
mad24
(
y,
src_step,
mad24
(
x,
(
int
)(
sizeof
(
CT
)
)
,
src_offset
)))
;
#
pragma
unroll
for
(
int
i=0
; i<kercn; i++)
{
...
...
@@ -681,7 +689,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
#
else
#
if
!defined
(
REAL_INPUT
)
&&
defined
(
NO_CONJUGATE
)
__global
const
float2*
src
=
(
__global
const
float2*
)(
src_ptr
+
mad24
(
y,
src_step,
mad24
(
2
,
(
int
)
sizeof
(
float
)
,
src_offset
)))
;
__global
const
CT*
src
=
(
__global
const
CT*
)(
src_ptr
+
mad24
(
y,
src_step,
mad24
(
2
,
(
int
)
sizeof
(
FT
)
,
src_offset
)))
;
#
pragma
unroll
for
(
int
i=x
; i<(LOCAL_SIZE-1)/2; i+=block_size)
...
...
@@ -695,7 +703,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
#
pragma
unroll
for
(
int
i=x
; i<(LOCAL_SIZE-1)/2; i+=block_size)
{
float2
src
=
vload2
(
0
,
(
__global
const
float*
)(
src_ptr
+
mad24
(
y,
src_step,
mad24
(
2*i+1,
(
int
)
sizeof
(
float
)
,
src_offset
))))
;
CT
src
=
vload2
(
0
,
(
__global
const
FT*
)(
src_ptr
+
mad24
(
y,
src_step,
mad24
(
2*i+1,
(
int
)
sizeof
(
FT
)
,
src_offset
))))
;
smem[i+1].x
=
src.x
;
smem[i+1].y
=
-src.y
;
...
...
@@ -706,7 +714,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
if
(
x==0
)
{
smem[0].x
=
*
(
__global
const
float
*
)(
src_ptr
+
mad24
(
y,
src_step,
src_offset
))
;
smem[0].x
=
*
(
__global
const
FT
*
)(
src_ptr
+
mad24
(
y,
src_step,
src_offset
))
;
smem[0].y
=
0.f
;
if
(
LOCAL_SIZE
%
2
==0
)
...
...
@@ -714,7 +722,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
#
if
!defined
(
REAL_INPUT
)
&&
defined
(
NO_CONJUGATE
)
smem[LOCAL_SIZE/2].x
=
src[LOCAL_SIZE/2-1].x
;
#
else
smem[LOCAL_SIZE/2].x
=
*
(
__global
const
float*
)(
src_ptr
+
mad24
(
y,
src_step,
mad24
(
LOCAL_SIZE-1,
(
int
)
sizeof
(
float
)
,
src_offset
)))
;
smem[LOCAL_SIZE/2].x
=
*
(
__global
const
FT*
)(
src_ptr
+
mad24
(
y,
src_step,
mad24
(
LOCAL_SIZE-1,
(
int
)
sizeof
(
FT
)
,
src_offset
)))
;
#
endif
smem[LOCAL_SIZE/2].y
=
0.f
;
}
...
...
@@ -727,7 +735,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
//
copy
data
to
dst
#
ifdef
COMPLEX_OUTPUT
__global
float2*
dst
=
(
__global
float*
)(
dst_ptr
+
mad24
(
y,
dst_step,
mad24
(
x,
(
int
)(
sizeof
(
float
)
*2
)
,
dst_offset
)))
;
__global
CT*
dst
=
(
__global
CT*
)(
dst_ptr
+
mad24
(
y,
dst_step,
mad24
(
x,
(
int
)(
sizeof
(
CT
)
)
,
dst_offset
)))
;
#
pragma
unroll
for
(
int
i=0
; i<kercn; i++)
{
...
...
@@ -735,7 +743,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
dst[i*block_size].y
=
SCALE_VAL
(
-smem[x
+
i*block_size].y,
scale
)
;
}
#
else
__global
float*
dst
=
(
__global
float*
)(
dst_ptr
+
mad24
(
y,
dst_step,
mad24
(
x,
(
int
)(
sizeof
(
float
))
,
dst_offset
)))
;
__global
FT*
dst
=
(
__global
FT*
)(
dst_ptr
+
mad24
(
y,
dst_step,
mad24
(
x,
(
int
)(
sizeof
(
FT
))
,
dst_offset
)))
;
#
pragma
unroll
for
(
int
i=0
; i<kercn; i++)
{
...
...
@@ -747,9 +755,9 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
{
//
fill
with
zero
other
rows
#
ifdef
COMPLEX_OUTPUT
__global
float2*
dst
=
(
__global
float2
*
)(
dst_ptr
+
mad24
(
y,
dst_step,
dst_offset
))
;
__global
CT*
dst
=
(
__global
CT
*
)(
dst_ptr
+
mad24
(
y,
dst_step,
dst_offset
))
;
#
else
__global
float*
dst
=
(
__global
float
*
)(
dst_ptr
+
mad24
(
y,
dst_step,
dst_offset
))
;
__global
FT*
dst
=
(
__global
FT
*
)(
dst_ptr
+
mad24
(
y,
dst_step,
dst_offset
))
;
#
endif
#
pragma
unroll
for
(
int
i=x
; i<dst_cols; i+=block_size)
...
...
@@ -759,7 +767,7 @@ __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step,
__kernel
void
ifft_multi_radix_cols
(
__global
const
uchar*
src_ptr,
int
src_step,
int
src_offset,
int
src_rows,
int
src_cols,
__global
uchar*
dst_ptr,
int
dst_step,
int
dst_offset,
int
dst_rows,
int
dst_cols,
__global
float2*
twiddles_ptr
,
const
int
t
,
const
int
nz
)
__global
CT*
twiddles_ptr,
int
twiddles_step,
int
twiddles_offset
,
const
int
t
,
const
int
nz
)
{
const
int
x
=
get_group_id
(
0
)
;
const
int
y
=
get_global_id
(
1
)
;
...
...
@@ -767,17 +775,17 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
#
ifdef
COMPLEX_INPUT
if
(
x
<
nz
)
{
__local
float2
smem[LOCAL_SIZE]
;
__global
const
uchar*
src
=
src_ptr
+
mad24
(
y,
src_step,
mad24
(
x,
(
int
)(
sizeof
(
float
)
*2
)
,
src_offset
))
;
__global
uchar*
dst
=
dst_ptr
+
mad24
(
y,
dst_step,
mad24
(
x,
(
int
)(
sizeof
(
float
)
*2
)
,
dst_offset
))
;
__global
const
float2*
twiddles
=
(
__global
float2*
)
twiddles_ptr
;
__local
CT
smem[LOCAL_SIZE]
;
__global
const
uchar*
src
=
src_ptr
+
mad24
(
y,
src_step,
mad24
(
x,
(
int
)(
sizeof
(
CT
)
)
,
src_offset
))
;
__global
uchar*
dst
=
dst_ptr
+
mad24
(
y,
dst_step,
mad24
(
x,
(
int
)(
sizeof
(
CT
)
)
,
dst_offset
))
;
__global
const
CT*
twiddles
=
(
__global
const
CT*
)(
twiddles_ptr
+
twiddles_offset
)
;
const
int
ind
=
y
;
const
int
block_size
=
LOCAL_SIZE/kercn
;
#
pragma
unroll
for
(
int
i=0
; i<kercn; i++)
{
float2
temp
=
*
((
__global
const
float2
*
)(
src
+
i*block_size*src_step
))
;
CT
temp
=
*
((
__global
const
CT
*
)(
src
+
i*block_size*src_step
))
;
smem[y+i*block_size].x
=
temp.x
;
smem[y+i*block_size].y
=
-temp.y
;
}
...
...
@@ -790,7 +798,7 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
#
pragma
unroll
for
(
int
i=0
; i<kercn; i++)
{
__global
float2*
res
=
(
__global
float2
*
)(
dst
+
i*block_size*dst_step
)
;
__global
CT*
res
=
(
__global
CT
*
)(
dst
+
i*block_size*dst_step
)
;
res[0].x
=
smem[y
+
i*block_size].x
;
res[0].y
=
-smem[y
+
i*block_size].y
;
}
...
...
@@ -798,22 +806,22 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
#
else
if
(
x
<
nz
)
{
__global
const
float2*
twiddles
=
(
__global
float2*
)
twiddles_ptr
;
__global
const
CT*
twiddles
=
(
__global
const
CT*
)(
twiddles_ptr
+
twiddles_offset
)
;
const
int
ind
=
y
;
const
int
block_size
=
LOCAL_SIZE/kercn
;
__local
float2
smem[LOCAL_SIZE]
;
__local
CT
smem[LOCAL_SIZE]
;
#
ifdef
EVEN
if
(
x!=0
&&
(
x!=
(
nz-1
)))
#
else
if
(
x!=0
)
#
endif
{
__global
const
uchar*
src
=
src_ptr
+
mad24
(
y,
src_step,
mad24
(
2*x-1,
(
int
)
sizeof
(
float
)
,
src_offset
))
;
__global
const
uchar*
src
=
src_ptr
+
mad24
(
y,
src_step,
mad24
(
2*x-1,
(
int
)
sizeof
(
FT
)
,
src_offset
))
;
#
pragma
unroll
for
(
int
i=0
; i<kercn; i++)
{
float2
temp
=
vload2
(
0
,
(
__global
const
float
*
)(
src
+
i*block_size*src_step
))
;
CT
temp
=
vload2
(
0
,
(
__global
const
FT
*
)(
src
+
i*block_size*src_step
))
;
smem[y+i*block_size].x
=
temp.x
;
smem[y+i*block_size].y
=
-temp.y
;
}
...
...
@@ -821,8 +829,8 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
else
{
int
ind
=
x==0
?
0:
2*x-1
;
__global
const
float*
src
=
(
__global
const
float*
)(
src_ptr
+
mad24
(
1
,
src_step,
mad24
(
ind,
(
int
)
sizeof
(
float
)
,
src_offset
)))
;
int
step
=
src_step/
(
int
)
sizeof
(
float
)
;
__global
const
FT*
src
=
(
__global
const
FT*
)(
src_ptr
+
mad24
(
1
,
src_step,
mad24
(
ind,
(
int
)
sizeof
(
FT
)
,
src_offset
)))
;
int
step
=
src_step/
(
int
)
sizeof
(
FT
)
;
#
pragma
unroll
for
(
int
i=y
; i<(LOCAL_SIZE-1)/2; i+=block_size)
...
...
@@ -835,7 +843,7 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
}
if
(
y==0
)
{
smem[0].x
=
*
(
__global
const
float*
)(
src_ptr
+
mad24
(
ind,
(
int
)
sizeof
(
float
)
,
src_offset
))
;
smem[0].x
=
*
(
__global
const
FT*
)(
src_ptr
+
mad24
(
ind,
(
int
)
sizeof
(
FT
)
,
src_offset
))
;
smem[0].y
=
0.f
;
if
(
LOCAL_SIZE
%
2
==0
)
...
...
@@ -850,12 +858,12 @@ __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step,
RADIX_PROCESS
;
//
copy
data
to
dst
__global
uchar*
dst
=
dst_ptr
+
mad24
(
y,
dst_step,
mad24
(
x,
(
int
)(
sizeof
(
float2
))
,
dst_offset
))
;
__global
uchar*
dst
=
dst_ptr
+
mad24
(
y,
dst_step,
mad24
(
x,
(
int
)(
sizeof
(
CT
))
,
dst_offset
))
;
#
pragma
unroll
for
(
int
i=0
; i<kercn; i++)
{
__global
float2*
res
=
(
__global
float2
*
)(
dst
+
i*block_size*dst_step
)
;
__global
CT*
res
=
(
__global
CT
*
)(
dst
+
i*block_size*dst_step
)
;
res[0].x
=
smem[y
+
i*block_size].x
;
res[0].y
=
-smem[y
+
i*block_size].y
;
}
...
...
modules/core/test/ocl/test_dft.cpp
View file @
4d9d7e6d
...
...
@@ -62,7 +62,7 @@ namespace ocl {
////////////////////////////////////////////////////////////////////////////
// Dft
PARAM_TEST_CASE
(
Dft
,
cv
::
Size
,
OCL_FFT_TYPE
,
bool
,
bool
,
bool
,
bool
)
PARAM_TEST_CASE
(
Dft
,
cv
::
Size
,
OCL_FFT_TYPE
,
MatDepth
,
bool
,
bool
,
bool
,
bool
)
{
cv
::
Size
dft_size
;
int
dft_flags
,
depth
,
cn
,
dft_type
;
...
...
@@ -76,7 +76,7 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool)
{
dft_size
=
GET_PARAM
(
0
);
dft_type
=
GET_PARAM
(
1
);
depth
=
CV_32F
;
depth
=
GET_PARAM
(
2
)
;
dft_flags
=
0
;
switch
(
dft_type
)
...
...
@@ -87,13 +87,13 @@ PARAM_TEST_CASE(Dft, cv::Size, OCL_FFT_TYPE, bool, bool, bool, bool)
case
C2C
:
dft_flags
|=
cv
::
DFT_COMPLEX_OUTPUT
;
cn
=
2
;
break
;
}
if
(
GET_PARAM
(
2
))
dft_flags
|=
cv
::
DFT_INVERSE
;
if
(
GET_PARAM
(
3
))
dft_flags
|=
cv
::
DFT_
ROWS
;
dft_flags
|=
cv
::
DFT_
INVERSE
;
if
(
GET_PARAM
(
4
))
dft_flags
|=
cv
::
DFT_ROWS
;
if
(
GET_PARAM
(
5
))
dft_flags
|=
cv
::
DFT_SCALE
;
hint
=
GET_PARAM
(
5
);
hint
=
GET_PARAM
(
6
);
is1d
=
(
dft_flags
&
DFT_ROWS
)
!=
0
||
dft_size
.
height
==
1
;
}
...
...
@@ -177,6 +177,7 @@ OCL_INSTANTIATE_TEST_CASE_P(OCL_ImgProc, MulSpectrums, testing::Combine(Bool(),
OCL_INSTANTIATE_TEST_CASE_P
(
Core
,
Dft
,
Combine
(
Values
(
cv
::
Size
(
45
,
72
),
cv
::
Size
(
36
,
36
),
cv
::
Size
(
512
,
1
),
cv
::
Size
(
1280
,
768
)),
Values
((
OCL_FFT_TYPE
)
R2C
,
(
OCL_FFT_TYPE
)
C2C
,
(
OCL_FFT_TYPE
)
R2R
,
(
OCL_FFT_TYPE
)
C2R
),
Values
(
CV_32F
,
CV_64F
),
Bool
(),
// DFT_INVERSE
Bool
(),
// DFT_ROWS
Bool
(),
// DFT_SCALE
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment