Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
4d676165
Commit
4d676165
authored
Nov 20, 2010
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
incorporated several critical fixes in EM implementation from Albert G (ticket #264)
parent
7174957f
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
12 additions
and
6 deletions
+12
-6
em.cpp
modules/ml/src/em.cpp
+12
-6
No files found.
modules/ml/src/em.cpp
View file @
4d676165
...
...
@@ -789,8 +789,9 @@ double CvEM::run_em( const CvVectors& train_data )
int
nsamples
=
train_data
.
count
,
dims
=
train_data
.
dims
,
nclusters
=
params
.
nclusters
;
double
min_variation
=
FLT_EPSILON
;
double
min_det_value
=
MAX
(
DBL_MIN
,
pow
(
min_variation
,
dims
));
double
likelihood_bias
=
-
CV_LOG2PI
*
(
double
)
nsamples
*
(
double
)
dims
/
2.
,
_log_likelihood
=
-
DBL_MAX
;
double
_log_likelihood
=
-
DBL_MAX
;
int
start_step
=
params
.
start_step
;
double
sum_max_val
;
int
i
,
j
,
k
,
n
;
int
is_general
=
0
,
is_diagonal
=
0
,
is_spherical
=
0
;
...
...
@@ -912,6 +913,7 @@ double CvEM::run_em( const CvVectors& train_data )
// e-step: compute probs_ik from means_k, covs_k and weights_k.
CV_CALL
(
cvLog
(
weights
,
log_weights
));
sum_max_val
=
0.
;
// S_ik = -0.5[log(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)] + log(weights_k)
for
(
k
=
0
;
k
<
nclusters
;
k
++
)
{
...
...
@@ -934,14 +936,16 @@ double CvEM::run_em( const CvVectors& train_data )
cvGEMM
(
centered_sample
,
u
,
1
,
0
,
0
,
centered_sample
,
CV_GEMM_B_T
);
for
(
j
=
0
;
j
<
dims
;
j
++
)
p
+=
csample
[
j
]
*
csample
[
j
]
*
w_data
[
is_spherical
?
0
:
j
];
pp
[
k
]
=
-
0.5
*
p
+
log_weights
->
data
.
db
[
k
];
//pp[k] = -0.5*p + log_weights->data.db[k];
pp
[
k
]
=
-
0.5
*
(
p
+
CV_LOG2PI
*
(
double
)
dims
)
+
log_weights
->
data
.
db
[
k
];
// S_ik <- S_ik - max_j S_ij
if
(
k
==
nclusters
-
1
)
{
double
max_val
=
0
;
for
(
j
=
0
;
j
<
nclusters
;
j
++
)
double
max_val
=
pp
[
0
]
;
for
(
j
=
1
;
j
<
nclusters
;
j
++
)
max_val
=
MAX
(
max_val
,
pp
[
j
]
);
sum_max_val
+=
max_val
;
for
(
j
=
0
;
j
<
nclusters
;
j
++
)
pp
[
j
]
-=
max_val
;
}
...
...
@@ -953,7 +957,7 @@ double CvEM::run_em( const CvVectors& train_data )
// alpha_ik = exp( S_ik ) / sum_j exp( S_ij ),
// log_likelihood = sum_i log (sum_j exp(S_ij))
for
(
i
=
0
,
_log_likelihood
=
likelihood_bias
;
i
<
nsamples
;
i
++
)
for
(
i
=
0
,
_log_likelihood
=
0
;
i
<
nsamples
;
i
++
)
{
double
*
pp
=
(
double
*
)(
probs
->
data
.
ptr
+
probs
->
step
*
i
),
sum
=
0
;
for
(
j
=
0
;
j
<
nclusters
;
j
++
)
...
...
@@ -966,9 +970,11 @@ double CvEM::run_em( const CvVectors& train_data )
}
_log_likelihood
-=
log
(
sum
);
}
_log_likelihood
+=
sum_max_val
;
// check termination criteria
if
(
fabs
(
(
_log_likelihood
-
prev_log_likelihood
)
/
prev_log_likelihood
)
<
params
.
term_crit
.
epsilon
)
//if( fabs( (_log_likelihood - prev_log_likelihood) / prev_log_likelihood ) < params.term_crit.epsilon )
if
(
fabs
(
(
_log_likelihood
-
prev_log_likelihood
)
)
<
params
.
term_crit
.
epsilon
)
break
;
prev_log_likelihood
=
_log_likelihood
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment