Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
4d4f2915
Commit
4d4f2915
authored
Jan 09, 2018
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #10513 from pengli:dnn
parents
f92e880d
e3b42bf9
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
246 additions
and
17 deletions
+246
-17
batch_norm_layer.cpp
modules/dnn/src/layers/batch_norm_layer.cpp
+65
-0
blank_layer.cpp
modules/dnn/src/layers/blank_layer.cpp
+15
-1
eltwise_layer.cpp
modules/dnn/src/layers/eltwise_layer.cpp
+52
-0
normalize_bbox_layer.cpp
modules/dnn/src/layers/normalize_bbox_layer.cpp
+63
-0
test_layers.cpp
modules/dnn/test/test_layers.cpp
+5
-0
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+31
-16
test_torch_importer.cpp
modules/dnn/test/test_torch_importer.cpp
+15
-0
No files found.
modules/dnn/src/layers/batch_norm_layer.cpp
View file @
4d4f2915
...
...
@@ -22,6 +22,7 @@ class BatchNormLayerImpl : public BatchNormLayer
{
public
:
Mat
weights_
,
bias_
;
Mat
weightMat
,
biasMat
;
BatchNormLayerImpl
(
const
LayerParams
&
params
)
{
...
...
@@ -96,17 +97,81 @@ public:
return
true
;
}
void
finalize
(
const
std
::
vector
<
Mat
*>
&
inputs
,
std
::
vector
<
Mat
>
&
outputs
)
{
if
(
inputs
[
0
]
->
dims
==
4
)
{
int
groups
=
inputs
[
0
]
->
size
[
0
];
int
channels
=
inputs
[
0
]
->
size
[
1
];
int
rows
=
inputs
[
0
]
->
size
[
2
];
int
cols
=
inputs
[
0
]
->
size
[
3
];
MatShape
s
=
shape
(
groups
*
channels
,
rows
*
cols
);
weightMat
=
Mat
(
s
[
0
],
s
[
1
],
CV_32FC1
);
biasMat
=
Mat
(
s
[
0
],
s
[
1
],
CV_32FC1
);
for
(
int
n
=
0
;
n
<
s
[
0
];
n
++
)
{
weightMat
.
row
(
n
).
setTo
(
weights_
.
at
<
float
>
(
n
%
channels
));
biasMat
.
row
(
n
).
setTo
(
bias_
.
at
<
float
>
(
n
%
channels
));
}
}
}
virtual
bool
supportBackend
(
int
backendId
)
{
return
backendId
==
DNN_BACKEND_DEFAULT
||
backendId
==
DNN_BACKEND_HALIDE
&&
haveHalide
();
}
#ifdef HAVE_OPENCL
bool
forward_ocl
(
InputArrayOfArrays
inputs_
,
OutputArrayOfArrays
outputs_
,
OutputArrayOfArrays
internals_
)
{
std
::
vector
<
UMat
>
inputs
;
std
::
vector
<
UMat
>
outputs
;
inputs_
.
getUMatVector
(
inputs
);
outputs_
.
getUMatVector
(
outputs
);
CV_Assert
(
blobs
.
size
()
>=
2
);
CV_Assert
(
inputs
.
size
()
==
1
);
UMat
&
inpBlob
=
inputs
[
0
];
CV_Assert
(
inpBlob
.
dims
==
2
||
inpBlob
.
dims
==
4
);
int
groups
=
inpBlob
.
size
[
0
];
int
channels
=
inpBlob
.
size
[
1
];
int
rows
=
inpBlob
.
dims
>
2
?
inpBlob
.
size
[
2
]
:
1
;
int
cols
=
inpBlob
.
dims
>
2
?
inpBlob
.
size
[
3
]
:
1
;
for
(
size_t
ii
=
0
;
ii
<
outputs
.
size
();
ii
++
)
{
if
(
inpBlob
.
dims
==
2
)
{
UMat
&
src
=
inputs
[
ii
];
UMat
&
dst
=
outputs
[
ii
];
multiply
(
src
,
weights_
,
dst
);
add
(
dst
,
bias_
,
dst
);
}
else
{
MatShape
s
=
shape
(
groups
*
channels
,
rows
*
cols
);
UMat
src
=
inputs
[
ii
].
reshape
(
1
,
s
.
size
(),
&
s
[
0
]);
UMat
dst
=
outputs
[
ii
].
reshape
(
1
,
s
.
size
(),
&
s
[
0
]);
multiply
(
src
,
weightMat
,
dst
);
add
(
dst
,
biasMat
,
dst
);
}
}
return
true
;
}
#endif
void
forward
(
InputArrayOfArrays
inputs_arr
,
OutputArrayOfArrays
outputs_arr
,
OutputArrayOfArrays
internals_arr
)
{
CV_TRACE_FUNCTION
();
CV_TRACE_ARG_VALUE
(
name
,
"name"
,
name
.
c_str
());
CV_OCL_RUN
((
preferableTarget
==
DNN_TARGET_OPENCL
)
&&
OCL_PERFORMANCE_CHECK
(
ocl
::
Device
::
getDefault
().
isIntel
()),
forward_ocl
(
inputs_arr
,
outputs_arr
,
internals_arr
))
Layer
::
forward_fallback
(
inputs_arr
,
outputs_arr
,
internals_arr
);
}
...
...
modules/dnn/src/layers/blank_layer.cpp
View file @
4d4f2915
...
...
@@ -63,8 +63,22 @@ public:
}
#ifdef HAVE_OPENCL
bool
forward_ocl
(
InputArrayOfArrays
inputs
,
OutputArrayOfArrays
outputs
,
OutputArrayOfArrays
internals
)
bool
forward_ocl
(
InputArrayOfArrays
inputs
_
,
OutputArrayOfArrays
outputs_
,
OutputArrayOfArrays
internals_
)
{
std
::
vector
<
UMat
>
inputs
;
std
::
vector
<
UMat
>
outputs
;
inputs_
.
getUMatVector
(
inputs
);
outputs_
.
getUMatVector
(
outputs
);
for
(
int
i
=
0
,
n
=
outputs
.
size
();
i
<
n
;
++
i
)
{
void
*
src_handle
=
inputs
[
i
].
handle
(
ACCESS_READ
);
void
*
dst_handle
=
outputs
[
i
].
handle
(
ACCESS_WRITE
);
if
(
src_handle
!=
dst_handle
)
inputs
[
i
].
copyTo
(
outputs
[
i
]);
}
return
true
;
}
#endif
...
...
modules/dnn/src/layers/eltwise_layer.cpp
View file @
4d4f2915
...
...
@@ -259,11 +259,63 @@ public:
}
};
#ifdef HAVE_OPENCL
bool
forward_ocl
(
InputArrayOfArrays
inputs_
,
OutputArrayOfArrays
outputs_
,
OutputArrayOfArrays
internals_
)
{
std
::
vector
<
UMat
>
inputs
;
std
::
vector
<
UMat
>
outputs
;
inputs_
.
getUMatVector
(
inputs
);
outputs_
.
getUMatVector
(
outputs
);
switch
(
op
)
{
case
SUM
:
if
(
coeffs
.
empty
())
{
add
(
inputs
[
0
],
inputs
[
1
],
outputs
[
0
]);
for
(
int
i
=
2
;
i
<
inputs
.
size
();
++
i
)
add
(
outputs
[
0
],
inputs
[
i
],
outputs
[
0
]);
}
else
{
UMat
mul0
,
mul1
;
multiply
(
coeffs
[
0
],
inputs
[
0
],
mul0
);
multiply
(
coeffs
[
1
],
inputs
[
1
],
mul1
);
add
(
mul0
,
mul1
,
outputs
[
0
]);
for
(
int
i
=
2
;
i
<
inputs
.
size
();
++
i
)
{
multiply
(
coeffs
[
i
],
inputs
[
i
],
mul0
);
add
(
mul0
,
outputs
[
0
],
outputs
[
0
]);
}
}
break
;
case
PROD
:
multiply
(
inputs
[
0
],
inputs
[
1
],
outputs
[
0
]);
for
(
int
i
=
2
;
i
<
inputs
.
size
();
++
i
)
multiply
(
inputs
[
i
],
outputs
[
0
],
outputs
[
0
]);
break
;
case
MAX
:
max
(
inputs
[
0
],
inputs
[
1
],
outputs
[
0
]);
for
(
int
i
=
2
;
i
<
inputs
.
size
();
++
i
)
max
(
inputs
[
i
],
outputs
[
0
],
outputs
[
0
]);
break
;
default:
return
false
;
}
return
true
;
}
#endif
void
forward
(
InputArrayOfArrays
inputs_arr
,
OutputArrayOfArrays
outputs_arr
,
OutputArrayOfArrays
internals_arr
)
{
CV_TRACE_FUNCTION
();
CV_TRACE_ARG_VALUE
(
name
,
"name"
,
name
.
c_str
());
CV_OCL_RUN
((
preferableTarget
==
DNN_TARGET_OPENCL
)
&&
OCL_PERFORMANCE_CHECK
(
ocl
::
Device
::
getDefault
().
isIntel
()),
forward_ocl
(
inputs_arr
,
outputs_arr
,
internals_arr
))
Layer
::
forward_fallback
(
inputs_arr
,
outputs_arr
,
internals_arr
);
}
...
...
modules/dnn/src/layers/normalize_bbox_layer.cpp
View file @
4d4f2915
...
...
@@ -69,11 +69,74 @@ public:
return
true
;
}
#ifdef HAVE_OPENCL
bool
forward_ocl
(
InputArrayOfArrays
inputs_
,
OutputArrayOfArrays
outputs_
,
OutputArrayOfArrays
internals_
)
{
std
::
vector
<
UMat
>
inputs
;
std
::
vector
<
UMat
>
outputs
;
std
::
vector
<
UMat
>
internals
;
inputs_
.
getUMatVector
(
inputs
);
outputs_
.
getUMatVector
(
outputs
);
internals_
.
getUMatVector
(
internals
);
CV_Assert
(
inputs
.
size
()
==
1
&&
outputs
.
size
()
==
1
);
CV_Assert
(
inputs
[
0
].
total
()
==
outputs
[
0
].
total
());
const
UMat
&
inp0
=
inputs
[
0
];
UMat
&
buffer
=
internals
[
0
];
size_t
num
=
inp0
.
size
[
0
];
size_t
channels
=
inp0
.
size
[
1
];
size_t
channelSize
=
inp0
.
total
()
/
(
num
*
channels
);
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
MatShape
s
=
shape
(
channels
,
channelSize
);
UMat
src
=
inputs
[
i
].
reshape
(
1
,
s
.
size
(),
&
s
[
0
]);
UMat
dst
=
outputs
[
i
].
reshape
(
1
,
s
.
size
(),
&
s
[
0
]);
UMat
abs_mat
;
absdiff
(
src
,
cv
::
Scalar
::
all
(
0
),
abs_mat
);
pow
(
abs_mat
,
pnorm
,
buffer
);
if
(
acrossSpatial
)
{
// add eps to avoid overflow
float
absSum
=
sum
(
buffer
)[
0
]
+
epsilon
;
float
norm
=
pow
(
absSum
,
1.0
f
/
pnorm
);
multiply
(
src
,
1.0
f
/
norm
,
dst
);
}
if
(
!
blobs
.
empty
())
{
// scale the output
Mat
scale
=
blobs
[
0
];
if
(
scale
.
total
()
==
1
)
{
// _scale: 1 x 1
multiply
(
dst
,
scale
.
at
<
float
>
(
0
,
0
),
dst
);
}
else
{
// _scale: _channels x 1
CV_Assert
(
scale
.
total
()
==
channels
);
repeat
(
scale
,
1
,
dst
.
cols
,
buffer
);
multiply
(
dst
,
buffer
,
dst
);
}
}
}
return
true
;
}
#endif
void
forward
(
InputArrayOfArrays
inputs_arr
,
OutputArrayOfArrays
outputs_arr
,
OutputArrayOfArrays
internals_arr
)
{
CV_TRACE_FUNCTION
();
CV_TRACE_ARG_VALUE
(
name
,
"name"
,
name
.
c_str
());
CV_OCL_RUN
((
preferableTarget
==
DNN_TARGET_OPENCL
)
&&
OCL_PERFORMANCE_CHECK
(
ocl
::
Device
::
getDefault
().
isIntel
()),
forward_ocl
(
inputs_arr
,
outputs_arr
,
internals_arr
))
Layer
::
forward_fallback
(
inputs_arr
,
outputs_arr
,
internals_arr
);
}
...
...
modules/dnn/test/test_layers.cpp
View file @
4d4f2915
...
...
@@ -320,6 +320,11 @@ TEST(Layer_Test_Eltwise, Accuracy)
testLayerUsingCaffeModels
(
"layer_eltwise"
);
}
OCL_TEST
(
Layer_Test_Eltwise
,
Accuracy
)
{
testLayerUsingCaffeModels
(
"layer_eltwise"
,
DNN_TARGET_OPENCL
);
}
TEST
(
Layer_Test_PReLU
,
Accuracy
)
{
testLayerUsingCaffeModels
(
"layer_prelu"
,
DNN_TARGET_CPU
,
true
);
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
4d4f2915
...
...
@@ -76,7 +76,7 @@ static std::string path(const std::string& file)
return
findDataFile
(
"dnn/tensorflow/"
+
file
,
false
);
}
static
void
runTensorFlowNet
(
const
std
::
string
&
prefix
,
bool
hasText
=
false
,
static
void
runTensorFlowNet
(
const
std
::
string
&
prefix
,
int
targetId
=
DNN_TARGET_CPU
,
bool
hasText
=
false
,
double
l1
=
1e-5
,
double
lInf
=
1e-4
,
bool
memoryLoad
=
false
)
{
...
...
@@ -104,6 +104,9 @@ static void runTensorFlowNet(const std::string& prefix, bool hasText = false,
ASSERT_FALSE
(
net
.
empty
());
net
.
setPreferableBackend
(
DNN_BACKEND_DEFAULT
);
net
.
setPreferableTarget
(
targetId
);
cv
::
Mat
input
=
blobFromNPY
(
inpPath
);
cv
::
Mat
target
=
blobFromNPY
(
outPath
);
...
...
@@ -132,6 +135,11 @@ TEST(Test_TensorFlow, eltwise_add_mul)
runTensorFlowNet
(
"eltwise_add_mul"
);
}
OCL_TEST
(
Test_TensorFlow
,
eltwise_add_mul
)
{
runTensorFlowNet
(
"eltwise_add_mul"
,
DNN_TARGET_OPENCL
);
}
TEST
(
Test_TensorFlow
,
pad_and_concat
)
{
runTensorFlowNet
(
"pad_and_concat"
);
...
...
@@ -141,7 +149,14 @@ TEST(Test_TensorFlow, batch_norm)
{
runTensorFlowNet
(
"batch_norm"
);
runTensorFlowNet
(
"fused_batch_norm"
);
runTensorFlowNet
(
"batch_norm_text"
,
true
);
runTensorFlowNet
(
"batch_norm_text"
,
DNN_TARGET_CPU
,
true
);
}
OCL_TEST
(
Test_TensorFlow
,
batch_norm
)
{
runTensorFlowNet
(
"batch_norm"
,
DNN_TARGET_OPENCL
);
runTensorFlowNet
(
"fused_batch_norm"
,
DNN_TARGET_OPENCL
);
runTensorFlowNet
(
"batch_norm_text"
,
DNN_TARGET_OPENCL
,
true
);
}
TEST
(
Test_TensorFlow
,
pooling
)
...
...
@@ -179,15 +194,15 @@ TEST(Test_TensorFlow, fp16)
{
const
float
l1
=
1e-3
;
const
float
lInf
=
1e-2
;
runTensorFlowNet
(
"fp16_single_conv"
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_deconvolution"
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_max_pool_odd_same"
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_padding_valid"
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_eltwise_add_mul"
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_max_pool_odd_valid"
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_pad_and_concat"
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_max_pool_even"
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_padding_same"
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_single_conv"
,
DNN_TARGET_CPU
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_deconvolution"
,
DNN_TARGET_CPU
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_max_pool_odd_same"
,
DNN_TARGET_CPU
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_padding_valid"
,
DNN_TARGET_CPU
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_eltwise_add_mul"
,
DNN_TARGET_CPU
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_max_pool_odd_valid"
,
DNN_TARGET_CPU
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_pad_and_concat"
,
DNN_TARGET_CPU
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_max_pool_even"
,
DNN_TARGET_CPU
,
false
,
l1
,
lInf
);
runTensorFlowNet
(
"fp16_padding_same"
,
DNN_TARGET_CPU
,
false
,
l1
,
lInf
);
}
TEST
(
Test_TensorFlow
,
quantized
)
...
...
@@ -267,7 +282,7 @@ OCL_TEST(Test_TensorFlow, MobileNet_SSD)
TEST
(
Test_TensorFlow
,
lstm
)
{
runTensorFlowNet
(
"lstm"
,
true
);
runTensorFlowNet
(
"lstm"
,
DNN_TARGET_CPU
,
true
);
}
TEST
(
Test_TensorFlow
,
split
)
...
...
@@ -284,11 +299,11 @@ TEST(Test_TensorFlow, memory_read)
{
double
l1
=
1e-5
;
double
lInf
=
1e-4
;
runTensorFlowNet
(
"lstm"
,
true
,
l1
,
lInf
,
true
);
runTensorFlowNet
(
"lstm"
,
DNN_TARGET_CPU
,
true
,
l1
,
lInf
,
true
);
runTensorFlowNet
(
"batch_norm"
,
false
,
l1
,
lInf
,
true
);
runTensorFlowNet
(
"fused_batch_norm"
,
false
,
l1
,
lInf
,
true
);
runTensorFlowNet
(
"batch_norm_text"
,
true
,
l1
,
lInf
,
true
);
runTensorFlowNet
(
"batch_norm"
,
DNN_TARGET_CPU
,
false
,
l1
,
lInf
,
true
);
runTensorFlowNet
(
"fused_batch_norm"
,
DNN_TARGET_CPU
,
false
,
l1
,
lInf
,
true
);
runTensorFlowNet
(
"batch_norm_text"
,
DNN_TARGET_CPU
,
true
,
l1
,
lInf
,
true
);
}
}
modules/dnn/test/test_torch_importer.cpp
View file @
4d4f2915
...
...
@@ -170,6 +170,11 @@ TEST(Torch_Importer, run_batch_norm)
runTorchNet
(
"net_batch_norm"
,
DNN_TARGET_CPU
,
""
,
false
,
true
);
}
OCL_TEST
(
Torch_Importer
,
run_batch_norm
)
{
runTorchNet
(
"net_batch_norm"
,
DNN_TARGET_OPENCL
,
""
,
false
,
true
);
}
TEST
(
Torch_Importer
,
net_prelu
)
{
runTorchNet
(
"net_prelu"
);
...
...
@@ -225,6 +230,11 @@ TEST(Torch_Importer, net_normalize)
runTorchNet
(
"net_normalize"
,
DNN_TARGET_CPU
,
""
,
false
,
true
);
}
OCL_TEST
(
Torch_Importer
,
net_normalize
)
{
runTorchNet
(
"net_normalize"
,
DNN_TARGET_OPENCL
,
""
,
false
,
true
);
}
TEST
(
Torch_Importer
,
net_padding
)
{
runTorchNet
(
"net_padding"
,
DNN_TARGET_CPU
,
""
,
false
,
true
);
...
...
@@ -237,6 +247,11 @@ TEST(Torch_Importer, net_non_spatial)
runTorchNet
(
"net_non_spatial"
,
DNN_TARGET_CPU
,
""
,
false
,
true
);
}
OCL_TEST
(
Torch_Importer
,
net_non_spatial
)
{
runTorchNet
(
"net_non_spatial"
,
DNN_TARGET_OPENCL
,
""
,
false
,
true
);
}
TEST
(
Torch_Importer
,
ENet_accuracy
)
{
Net
net
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment