Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
4d2ea847
Commit
4d2ea847
authored
Jul 31, 2013
by
Fedor Morozov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Tonemap as 3.0 algorithm
parent
258b98d1
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
389 additions
and
660 deletions
+389
-660
photo.hpp
modules/photo/include/opencv2/photo.hpp
+34
-47
align.cpp
modules/photo/src/align.cpp
+0
-161
hdr_fusion.cpp
modules/photo/src/hdr_fusion.cpp
+0
-294
tonemap.cpp
modules/photo/src/tonemap.cpp
+212
-76
test_hdr.cpp
modules/photo/test/test_hdr.cpp
+143
-82
No files found.
modules/photo/include/opencv2/photo.hpp
View file @
4d2ea847
...
...
@@ -59,6 +59,8 @@ enum
INPAINT_TELEA
=
1
// A. Telea algorithm
};
CV_EXPORTS_W
bool
initModule_photo
();
//! restores the damaged image areas using one of the available intpainting algorithms
CV_EXPORTS_W
void
inpaint
(
InputArray
src
,
InputArray
inpaintMask
,
OutputArray
dst
,
double
inpaintRadius
,
int
flags
);
...
...
@@ -80,77 +82,62 @@ CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs,
float
h
=
3
,
float
hColor
=
3
,
int
templateWindowSize
=
7
,
int
searchWindowSize
=
21
);
CV_EXPORTS_W
void
makeHDR
(
InputArrayOfArrays
srcImgs
,
const
std
::
vector
<
float
>&
exp_times
,
OutputArray
dst
,
Mat
response
=
Mat
());
CV_EXPORTS_W
void
exposureFusion
(
InputArrayOfArrays
srcImgs
,
OutputArray
dst
,
float
wc
=
1.0
f
,
float
ws
=
1.0
f
,
float
we
=
0.0
f
);
CV_EXPORTS_W
void
shiftMat
(
InputArray
src
,
Point
shift
,
OutputArray
dst
);
CV_EXPORTS_W
Point
getExpShift
(
InputArray
img0
,
InputArray
img1
,
int
max_bits
=
6
,
int
exclude_range
=
4
);
CV_EXPORTS_W
void
estimateResponse
(
InputArrayOfArrays
srcImgs
,
const
std
::
vector
<
float
>&
exp_times
,
OutputArray
dst
,
int
samples
=
50
,
float
lambda
=
10
);
CV_EXPORTS_W
void
alignImages
(
InputArrayOfArrays
src
,
std
::
vector
<
Mat
>&
dst
);
class
CV_EXPORTS_W
Tonemap
:
public
Algorithm
{
public
:
Tonemap
(
float
gamma
);
virtual
~
Tonemap
();
void
process
(
InputArray
src
,
OutputArray
dst
);
static
Ptr
<
Tonemap
>
create
(
const
String
&
name
);
protected
:
float
gamma
;
Mat
img
;
void
linearMap
();
void
gammaCorrection
();
virtual
void
tonemap
()
=
0
;
CV_WRAP
virtual
void
process
(
InputArray
src
,
OutputArray
dst
)
=
0
;
CV_WRAP
virtual
float
getGamma
()
const
=
0
;
CV_WRAP
virtual
void
setGamma
(
float
gamma
)
=
0
;
};
class
CV_EXPORTS_W
TonemapLinear
:
public
Tonemap
{
public
:
TonemapLinear
(
float
gamma
=
2.2
f
);
AlgorithmInfo
*
info
()
const
;
protected
:
void
tonemap
();
};
CV_EXPORTS_W
Ptr
<
TonemapLinear
>
createTonemapLinear
(
float
gamma
=
1.0
f
);
class
CV_EXPORTS_W
TonemapDrago
:
public
Tonemap
{
public
:
TonemapDrago
(
float
gamma
=
2.2
f
,
float
bias
=
0.85
f
);
AlgorithmInfo
*
info
()
const
;
protected
:
float
bias
;
void
tonemap
();
CV_WRAP
virtual
float
getBias
()
const
=
0
;
CV_WRAP
virtual
void
setBias
(
float
bias
)
=
0
;
};
CV_EXPORTS_W
Ptr
<
TonemapDrago
>
createTonemapDrago
(
float
gamma
=
1.0
f
,
float
bias
=
0.85
f
);
class
CV_EXPORTS_W
TonemapDurand
:
public
Tonemap
{
public
:
TonemapDurand
(
float
gamma
=
2.2
f
,
float
contrast
=
4.0
f
,
float
sigma_color
=
2.0
f
,
float
sigma_space
=
2.0
f
);
AlgorithmInfo
*
info
()
const
;
protected
:
float
contrast
;
float
sigma_color
;
float
sigma_space
;
void
tonemap
();
CV_WRAP
virtual
float
getContrast
()
const
=
0
;
CV_WRAP
virtual
void
setContrast
(
float
contrast
)
=
0
;
CV_WRAP
virtual
float
getSigmaSpace
()
const
=
0
;
CV_WRAP
virtual
void
setSigmaSpace
(
float
sigma_space
)
=
0
;
CV_WRAP
virtual
float
getSigmaColor
()
const
=
0
;
CV_WRAP
virtual
void
setSigmaColor
(
float
sigma_color
)
=
0
;
};
CV_EXPORTS_W
Ptr
<
TonemapDurand
>
createTonemapDurand
(
float
gamma
=
1.0
f
,
float
contrast
=
4.0
f
,
float
sigma_space
=
2.0
f
,
float
sigma_color
=
2.0
f
);
class
CV_EXPORTS_W
TonemapReinhardDevlin
:
public
Tonemap
{
public
:
TonemapReinhardDevlin
(
float
gamma
=
2.2
f
,
float
intensity
=
0.0
f
,
float
color_adapt
=
0.0
f
,
float
light_adapt
=
1.0
f
);
AlgorithmInfo
*
info
()
const
;
protected
:
float
intensity
;
float
color_adapt
;
float
light_adapt
;
void
tonemap
();
CV_WRAP
virtual
float
getIntensity
()
const
=
0
;
CV_WRAP
virtual
void
setIntensity
(
float
intensity
)
=
0
;
CV_WRAP
virtual
float
getLightAdaptation
()
const
=
0
;
CV_WRAP
virtual
void
setLightAdaptation
(
float
light_adapt
)
=
0
;
CV_WRAP
virtual
float
getColorAdaptation
()
const
=
0
;
CV_WRAP
virtual
void
setColorAdaptation
(
float
color_adapt
)
=
0
;
};
CV_EXPORTS_W
Ptr
<
TonemapReinhardDevlin
>
createTonemapReinhardDevlin
(
float
gamma
=
1.0
f
,
float
intensity
=
0.0
f
,
float
light_adapt
=
1.0
f
,
float
color_adapt
=
0.0
f
);
}
// cv
#endif
modules/photo/src/align.cpp
View file @
4d2ea847
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
namespace
cv
{
static
void
downsample
(
Mat
&
src
,
Mat
&
dst
)
{
dst
=
Mat
(
src
.
rows
/
2
,
src
.
cols
/
2
,
CV_8UC1
);
int
offset
=
src
.
cols
*
2
;
uchar
*
src_ptr
=
src
.
ptr
();
uchar
*
dst_ptr
=
dst
.
ptr
();
for
(
int
y
=
0
;
y
<
dst
.
rows
;
y
++
)
{
uchar
*
ptr
=
src_ptr
;
for
(
int
x
=
0
;
x
<
dst
.
cols
;
x
++
)
{
dst_ptr
[
0
]
=
ptr
[
0
];
dst_ptr
++
;
ptr
+=
2
;
}
src_ptr
+=
offset
;
}
}
static
void
buildPyr
(
Mat
&
img
,
std
::
vector
<
Mat
>&
pyr
,
int
maxlevel
)
{
pyr
.
resize
(
maxlevel
+
1
);
pyr
[
0
]
=
img
.
clone
();
for
(
int
level
=
0
;
level
<
maxlevel
;
level
++
)
{
downsample
(
pyr
[
level
],
pyr
[
level
+
1
]);
}
}
static
int
getMedian
(
Mat
&
img
)
{
int
channels
=
0
;
Mat
hist
;
int
hist_size
=
256
;
float
range
[]
=
{
0
,
256
}
;
const
float
*
ranges
[]
=
{
range
};
calcHist
(
&
img
,
1
,
&
channels
,
Mat
(),
hist
,
1
,
&
hist_size
,
ranges
);
float
*
ptr
=
hist
.
ptr
<
float
>
();
int
median
=
0
,
sum
=
0
;
int
thresh
=
img
.
total
()
/
2
;
while
(
sum
<
thresh
&&
median
<
256
)
{
sum
+=
(
int
)
ptr
[
median
];
median
++
;
}
return
median
;
}
static
void
computeBitmaps
(
Mat
&
img
,
Mat
&
tb
,
Mat
&
eb
,
int
exclude_range
)
{
int
median
=
getMedian
(
img
);
compare
(
img
,
median
,
tb
,
CMP_GT
);
compare
(
abs
(
img
-
median
),
exclude_range
,
eb
,
CMP_GT
);
}
void
shiftMat
(
InputArray
_src
,
Point
shift
,
OutputArray
_dst
)
{
Mat
src
=
_src
.
getMat
();
_dst
.
create
(
src
.
size
(),
src
.
type
());
Mat
dst
=
_dst
.
getMat
();
dst
=
Mat
::
zeros
(
src
.
size
(),
src
.
type
());
int
width
=
src
.
cols
-
abs
(
shift
.
x
);
int
height
=
src
.
rows
-
abs
(
shift
.
y
);
Rect
dst_rect
(
max
(
shift
.
x
,
0
),
max
(
shift
.
y
,
0
),
width
,
height
);
Rect
src_rect
(
max
(
-
shift
.
x
,
0
),
max
(
-
shift
.
y
,
0
),
width
,
height
);
src
(
src_rect
).
copyTo
(
dst
(
dst_rect
));
}
Point
getExpShift
(
InputArray
_img0
,
InputArray
_img1
,
int
max_bits
,
int
exclude_range
)
{
Mat
img0
=
_img0
.
getMat
();
Mat
img1
=
_img1
.
getMat
();
CV_Assert
(
img0
.
type
()
==
CV_8UC1
&&
img1
.
type
()
==
CV_8UC1
);
CV_Assert
(
img0
.
size
()
==
img0
.
size
());
int
maxlevel
=
(
int
)(
log
((
double
)
max
(
img0
.
rows
,
img0
.
cols
))
/
log
(
2.0
))
-
1
;
maxlevel
=
min
(
maxlevel
,
max_bits
-
1
);
std
::
vector
<
Mat
>
pyr0
;
std
::
vector
<
Mat
>
pyr1
;
buildPyr
(
img0
,
pyr0
,
maxlevel
);
buildPyr
(
img1
,
pyr1
,
maxlevel
);
Point
shift
(
0
,
0
);
for
(
int
level
=
maxlevel
;
level
>=
0
;
level
--
)
{
shift
*=
2
;
Mat
tb1
,
tb2
,
eb1
,
eb2
;
computeBitmaps
(
pyr0
[
level
],
tb1
,
eb1
,
exclude_range
);
computeBitmaps
(
pyr1
[
level
],
tb2
,
eb2
,
exclude_range
);
int
min_err
=
pyr0
[
level
].
total
();
Point
new_shift
(
shift
);
for
(
int
i
=
-
1
;
i
<=
1
;
i
++
)
{
for
(
int
j
=
-
1
;
j
<=
1
;
j
++
)
{
Point
test_shift
=
shift
+
Point
(
i
,
j
);
Mat
shifted_tb2
,
shifted_eb2
,
diff
;
shiftMat
(
tb2
,
test_shift
,
shifted_tb2
);
shiftMat
(
eb2
,
test_shift
,
shifted_eb2
);
bitwise_xor
(
tb1
,
shifted_tb2
,
diff
);
bitwise_and
(
diff
,
eb1
,
diff
);
bitwise_and
(
diff
,
shifted_eb2
,
diff
);
int
err
=
countNonZero
(
diff
);
if
(
err
<
min_err
)
{
new_shift
=
test_shift
;
min_err
=
err
;
}
}
}
shift
=
new_shift
;
}
return
shift
;
}
};
modules/photo/src/hdr_fusion.cpp
deleted
100644 → 0
View file @
258b98d1
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
namespace
cv
{
static
void
triangleWeights
(
float
weights
[])
{
for
(
int
i
=
0
;
i
<
128
;
i
++
)
{
weights
[
i
]
=
i
+
1.0
f
;
}
for
(
int
i
=
128
;
i
<
256
;
i
++
)
{
weights
[
i
]
=
256.0
f
-
i
;
}
}
static
Mat
linearResponse
()
{
Mat
response
(
256
,
1
,
CV_32F
);
for
(
int
i
=
1
;
i
<
256
;
i
++
)
{
response
.
at
<
float
>
(
i
)
=
logf
((
float
)
i
);
}
response
.
at
<
float
>
(
0
)
=
response
.
at
<
float
>
(
1
);
return
response
;
}
static
void
modifyCheckResponse
(
Mat
&
response
)
{
if
(
response
.
empty
())
{
response
=
linearResponse
();
}
CV_Assert
(
response
.
rows
==
256
&&
(
response
.
cols
==
1
||
response
.
cols
==
3
));
response
.
convertTo
(
response
,
CV_32F
);
if
(
response
.
cols
==
1
)
{
Mat
result
(
256
,
3
,
CV_32F
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
response
.
copyTo
(
result
.
col
(
i
));
}
response
=
result
;
}
}
static
void
checkImages
(
const
std
::
vector
<
Mat
>&
images
,
bool
hdr
,
const
std
::
vector
<
float
>&
_exp_times
=
std
::
vector
<
float
>
())
{
CV_Assert
(
!
images
.
empty
());
CV_Assert
(
!
hdr
||
images
.
size
()
==
_exp_times
.
size
());
int
width
=
images
[
0
].
cols
;
int
height
=
images
[
0
].
rows
;
int
channels
=
images
[
0
].
channels
();
for
(
size_t
i
=
0
;
i
<
images
.
size
();
i
++
)
{
CV_Assert
(
images
[
i
].
cols
==
width
&&
images
[
i
].
rows
==
height
);
CV_Assert
(
images
[
i
].
channels
()
==
channels
&&
images
[
i
].
depth
()
==
CV_8U
);
}
}
void
alignImages
(
InputArrayOfArrays
_src
,
std
::
vector
<
Mat
>&
dst
)
{
std
::
vector
<
Mat
>
src
;
_src
.
getMatVector
(
src
);
checkImages
(
src
,
false
);
dst
.
resize
(
src
.
size
());
size_t
pivot
=
src
.
size
()
/
2
;
dst
[
pivot
]
=
src
[
pivot
];
Mat
gray_base
;
cvtColor
(
src
[
pivot
],
gray_base
,
COLOR_RGB2GRAY
);
for
(
size_t
i
=
0
;
i
<
src
.
size
();
i
++
)
{
if
(
i
==
pivot
)
{
continue
;
}
Mat
gray
;
cvtColor
(
src
[
i
],
gray
,
COLOR_RGB2GRAY
);
Point
shift
=
getExpShift
(
gray_base
,
gray
);
shiftMat
(
src
[
i
],
shift
,
dst
[
i
]);
}
}
void
makeHDR
(
InputArrayOfArrays
_images
,
const
std
::
vector
<
float
>&
_exp_times
,
OutputArray
_dst
,
Mat
response
)
{
std
::
vector
<
Mat
>
images
;
_images
.
getMatVector
(
images
);
checkImages
(
images
,
true
,
_exp_times
);
modifyCheckResponse
(
response
);
_dst
.
create
(
images
[
0
].
size
(),
CV_MAKETYPE
(
CV_32F
,
images
[
0
].
channels
()));
Mat
result
=
_dst
.
getMat
();
std
::
vector
<
float
>
exp_times
(
_exp_times
.
size
());
for
(
size_t
i
=
0
;
i
<
exp_times
.
size
();
i
++
)
{
exp_times
[
i
]
=
logf
(
_exp_times
[
i
]);
}
float
weights
[
256
];
triangleWeights
(
weights
);
int
channels
=
images
[
0
].
channels
();
float
*
res_ptr
=
result
.
ptr
<
float
>
();
for
(
size_t
pos
=
0
;
pos
<
result
.
total
();
pos
++
,
res_ptr
+=
channels
)
{
std
::
vector
<
float
>
sum
(
channels
,
0
);
float
weight_sum
=
0
;
for
(
size_t
im
=
0
;
im
<
images
.
size
();
im
++
)
{
uchar
*
img_ptr
=
images
[
im
].
ptr
()
+
channels
*
pos
;
float
w
=
0
;
for
(
int
channel
=
0
;
channel
<
channels
;
channel
++
)
{
w
+=
weights
[
img_ptr
[
channel
]];
}
w
/=
channels
;
weight_sum
+=
w
;
for
(
int
channel
=
0
;
channel
<
channels
;
channel
++
)
{
sum
[
channel
]
+=
w
*
(
response
.
at
<
float
>
(
img_ptr
[
channel
],
channel
)
-
exp_times
[
im
]);
}
}
for
(
int
channel
=
0
;
channel
<
channels
;
channel
++
)
{
res_ptr
[
channel
]
=
exp
(
sum
[
channel
]
/
weight_sum
);
}
}
}
void
exposureFusion
(
InputArrayOfArrays
_images
,
OutputArray
_dst
,
float
wc
,
float
ws
,
float
we
)
{
std
::
vector
<
Mat
>
images
;
_images
.
getMatVector
(
images
);
checkImages
(
images
,
false
);
std
::
vector
<
Mat
>
weights
(
images
.
size
());
Mat
weight_sum
=
Mat
::
zeros
(
images
[
0
].
size
(),
CV_32FC1
);
for
(
size_t
im
=
0
;
im
<
images
.
size
();
im
++
)
{
Mat
img
,
gray
,
contrast
,
saturation
,
wellexp
;
std
::
vector
<
Mat
>
channels
(
3
);
images
[
im
].
convertTo
(
img
,
CV_32FC3
,
1.0
/
255.0
);
cvtColor
(
img
,
gray
,
COLOR_RGB2GRAY
);
split
(
img
,
channels
);
Laplacian
(
gray
,
contrast
,
CV_32F
);
contrast
=
abs
(
contrast
);
Mat
mean
=
(
channels
[
0
]
+
channels
[
1
]
+
channels
[
2
])
/
3.0
f
;
saturation
=
Mat
::
zeros
(
channels
[
0
].
size
(),
CV_32FC1
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
Mat
deviation
=
channels
[
i
]
-
mean
;
pow
(
deviation
,
2.0
,
deviation
);
saturation
+=
deviation
;
}
sqrt
(
saturation
,
saturation
);
wellexp
=
Mat
::
ones
(
gray
.
size
(),
CV_32FC1
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
Mat
exp
=
channels
[
i
]
-
0.5
f
;
pow
(
exp
,
2
,
exp
);
exp
=
-
exp
/
0.08
;
wellexp
=
wellexp
.
mul
(
exp
);
}
pow
(
contrast
,
wc
,
contrast
);
pow
(
saturation
,
ws
,
saturation
);
pow
(
wellexp
,
we
,
wellexp
);
weights
[
im
]
=
contrast
;
weights
[
im
]
=
weights
[
im
].
mul
(
saturation
);
weights
[
im
]
=
weights
[
im
].
mul
(
wellexp
);
weight_sum
+=
weights
[
im
];
}
int
maxlevel
=
static_cast
<
int
>
(
logf
(
static_cast
<
float
>
(
max
(
images
[
0
].
rows
,
images
[
0
].
cols
)))
/
logf
(
2.0
))
-
1
;
std
::
vector
<
Mat
>
res_pyr
(
maxlevel
+
1
);
for
(
size_t
im
=
0
;
im
<
images
.
size
();
im
++
)
{
weights
[
im
]
/=
weight_sum
;
Mat
img
;
images
[
im
].
convertTo
(
img
,
CV_32FC3
,
1
/
255.0
);
std
::
vector
<
Mat
>
img_pyr
,
weight_pyr
;
buildPyramid
(
img
,
img_pyr
,
maxlevel
);
buildPyramid
(
weights
[
im
],
weight_pyr
,
maxlevel
);
for
(
int
lvl
=
0
;
lvl
<
maxlevel
;
lvl
++
)
{
Mat
up
;
pyrUp
(
img_pyr
[
lvl
+
1
],
up
,
img_pyr
[
lvl
].
size
());
img_pyr
[
lvl
]
-=
up
;
}
for
(
int
lvl
=
0
;
lvl
<=
maxlevel
;
lvl
++
)
{
std
::
vector
<
Mat
>
channels
(
3
);
split
(
img_pyr
[
lvl
],
channels
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
channels
[
i
]
=
channels
[
i
].
mul
(
weight_pyr
[
lvl
]);
}
merge
(
channels
,
img_pyr
[
lvl
]);
if
(
res_pyr
[
lvl
].
empty
())
{
res_pyr
[
lvl
]
=
img_pyr
[
lvl
];
}
else
{
res_pyr
[
lvl
]
+=
img_pyr
[
lvl
];
}
}
}
for
(
int
lvl
=
maxlevel
;
lvl
>
0
;
lvl
--
)
{
Mat
up
;
pyrUp
(
res_pyr
[
lvl
],
up
,
res_pyr
[
lvl
-
1
].
size
());
res_pyr
[
lvl
-
1
]
+=
up
;
}
_dst
.
create
(
images
[
0
].
size
(),
CV_32FC3
);
Mat
result
=
_dst
.
getMat
();
res_pyr
[
0
].
copyTo
(
result
);
}
void
estimateResponse
(
InputArrayOfArrays
_images
,
const
std
::
vector
<
float
>&
exp_times
,
OutputArray
_dst
,
int
samples
,
float
lambda
)
{
std
::
vector
<
Mat
>
images
;
_images
.
getMatVector
(
images
);
checkImages
(
images
,
true
,
exp_times
);
_dst
.
create
(
256
,
images
[
0
].
channels
(),
CV_32F
);
Mat
response
=
_dst
.
getMat
();
float
w
[
256
];
triangleWeights
(
w
);
for
(
int
channel
=
0
;
channel
<
images
[
0
].
channels
();
channel
++
)
{
Mat
A
=
Mat
::
zeros
(
samples
*
images
.
size
()
+
257
,
256
+
samples
,
CV_32F
);
Mat
B
=
Mat
::
zeros
(
A
.
rows
,
1
,
CV_32F
);
int
eq
=
0
;
for
(
int
i
=
0
;
i
<
samples
;
i
++
)
{
int
pos
=
3
*
(
rand
()
%
images
[
0
].
total
())
+
channel
;
for
(
size_t
j
=
0
;
j
<
images
.
size
();
j
++
)
{
int
val
=
(
images
[
j
].
ptr
()
+
pos
)[
0
];
A
.
at
<
float
>
(
eq
,
val
)
=
w
[
val
];
A
.
at
<
float
>
(
eq
,
256
+
i
)
=
-
w
[
val
];
B
.
at
<
float
>
(
eq
,
0
)
=
w
[
val
]
*
log
(
exp_times
[
j
]);
eq
++
;
}
}
A
.
at
<
float
>
(
eq
,
128
)
=
1
;
eq
++
;
for
(
int
i
=
0
;
i
<
254
;
i
++
)
{
A
.
at
<
float
>
(
eq
,
i
)
=
lambda
*
w
[
i
+
1
];
A
.
at
<
float
>
(
eq
,
i
+
1
)
=
-
2
*
lambda
*
w
[
i
+
1
];
A
.
at
<
float
>
(
eq
,
i
+
2
)
=
lambda
*
w
[
i
+
1
];
eq
++
;
}
Mat
solution
;
solve
(
A
,
B
,
solution
,
DECOMP_SVD
);
solution
.
rowRange
(
0
,
256
).
copyTo
(
response
.
col
(
channel
));
}
}
};
modules/photo/src/tonemap.cpp
View file @
4d2ea847
...
...
@@ -47,56 +47,77 @@
namespace
cv
{
Tonemap
::
Tonemap
(
float
gamma
)
:
gamma
(
gamma
)
class
TonemapLinearImpl
:
public
TonemapLinear
{
}
Tonemap
::~
Tonemap
()
{
}
public
:
TonemapLinearImpl
(
float
gamma
)
:
gamma
(
gamma
),
name
(
"TonemapLinear"
)
{
}
void
Tonemap
::
process
(
InputArray
src
,
OutputArray
dst
)
{
Mat
srcMat
=
src
.
getMat
();
CV_Assert
(
!
srcMat
.
empty
());
dst
.
create
(
srcMat
.
size
(),
CV_32FC3
);
img
=
dst
.
getMat
();
srcMat
.
copyTo
(
img
);
linearMap
();
tonemap
();
gammaCorrection
();
}
void
process
(
InputArray
_src
,
OutputArray
_dst
)
{
Mat
src
=
_src
.
getMat
();
CV_Assert
(
!
src
.
empty
());
_dst
.
create
(
src
.
size
(),
CV_32FC3
);
Mat
dst
=
_dst
.
getMat
();
void
Tonemap
::
linearMap
()
{
double
min
,
max
;
minMaxLoc
(
img
,
&
min
,
&
max
);
minMaxLoc
(
src
,
&
min
,
&
max
);
if
(
max
-
min
>
DBL_EPSILON
)
{
img
=
(
img
-
min
)
/
(
max
-
min
);
dst
=
(
src
-
min
)
/
(
max
-
min
);
}
else
{
src
.
copyTo
(
dst
);
}
}
void
Tonemap
::
gammaCorrection
()
{
pow
(
img
,
1.0
f
/
gamma
,
img
);
}
pow
(
dst
,
1.0
f
/
gamma
,
dst
);
}
void
TonemapLinear
::
tonemap
()
{
}
float
getGamma
()
const
{
return
gamma
;
}
void
setGamma
(
float
val
)
{
gamma
=
val
;
}
TonemapLinear
::
TonemapLinear
(
float
gamma
)
:
Tonemap
(
gamma
)
{
}
void
write
(
FileStorage
&
fs
)
const
{
fs
<<
"name"
<<
name
<<
"gamma"
<<
gamma
;
}
void
read
(
const
FileNode
&
fn
)
{
FileNode
n
=
fn
[
"name"
];
CV_Assert
(
n
.
isString
()
&&
String
(
n
)
==
name
);
gamma
=
fn
[
"gamma"
];
}
TonemapDrago
::
TonemapDrago
(
float
gamma
,
float
bias
)
:
Tonemap
(
gamma
),
bias
(
bias
)
protected
:
String
name
;
float
gamma
;
};
Ptr
<
TonemapLinear
>
createTonemapLinear
(
float
gamma
)
{
return
new
TonemapLinearImpl
(
gamma
);
}
void
TonemapDrago
::
tonemap
()
class
TonemapDragoImpl
:
public
TonemapDrago
{
public
:
TonemapDragoImpl
(
float
gamma
,
float
bias
)
:
gamma
(
gamma
),
bias
(
bias
),
name
(
"TonemapLinear"
)
{
}
void
process
(
InputArray
_src
,
OutputArray
_dst
)
{
Mat
src
=
_src
.
getMat
();
CV_Assert
(
!
src
.
empty
());
_dst
.
create
(
src
.
size
(),
CV_32FC3
);
Mat
img
=
_dst
.
getMat
();
Ptr
<
TonemapLinear
>
linear
=
createTonemapLinear
(
1.0
f
);
linear
->
process
(
src
,
img
);
Mat
gray_img
;
cvtColor
(
img
,
gray_img
,
COLOR_RGB2GRAY
);
Mat
log_img
;
...
...
@@ -125,21 +146,63 @@ void TonemapDrago::tonemap()
}
map
.
release
();
merge
(
channels
,
img
);
linearMap
();
}
TonemapDurand
::
TonemapDurand
(
float
gamma
,
float
contrast
,
float
sigma_color
,
float
sigma_space
)
:
Tonemap
(
gamma
),
contrast
(
contrast
),
sigma_color
(
sigma_color
),
sigma_space
(
sigma_space
)
linear
->
setGamma
(
gamma
);
linear
->
process
(
img
,
img
);
}
float
getGamma
()
const
{
return
gamma
;
}
void
setGamma
(
float
val
)
{
gamma
=
val
;
}
float
getBias
()
const
{
return
bias
;
}
void
setBias
(
float
val
)
{
bias
=
val
;
}
void
write
(
FileStorage
&
fs
)
const
{
fs
<<
"name"
<<
name
<<
"gamma"
<<
gamma
<<
"bias"
<<
bias
;
}
void
read
(
const
FileNode
&
fn
)
{
FileNode
n
=
fn
[
"name"
];
CV_Assert
(
n
.
isString
()
&&
String
(
n
)
==
name
);
gamma
=
fn
[
"gamma"
];
bias
=
fn
[
"bias"
];
}
protected
:
String
name
;
float
gamma
,
bias
;
};
Ptr
<
TonemapDrago
>
createTonemapDrago
(
float
gamma
,
float
bias
)
{
return
new
TonemapDragoImpl
(
gamma
,
bias
);
}
void
TonemapDurand
::
tonemap
()
class
TonemapDurandImpl
:
public
TonemapDurand
{
public
:
TonemapDurandImpl
(
float
gamma
,
float
contrast
,
float
sigma_color
,
float
sigma_space
)
:
gamma
(
gamma
),
contrast
(
contrast
),
sigma_color
(
sigma_color
),
sigma_space
(
sigma_space
),
name
(
"TonemapDurand"
)
{
}
void
process
(
InputArray
_src
,
OutputArray
_dst
)
{
Mat
src
=
_src
.
getMat
();
CV_Assert
(
!
src
.
empty
());
_dst
.
create
(
src
.
size
(),
CV_32FC3
);
Mat
dst
=
_dst
.
getMat
();
Mat
gray_img
;
cvtColor
(
img
,
gray_img
,
COLOR_RGB2GRAY
);
cvtColor
(
src
,
gray_img
,
COLOR_RGB2GRAY
);
Mat
log_img
;
log
(
gray_img
,
log_img
);
Mat
map_img
;
...
...
@@ -155,23 +218,77 @@ void TonemapDurand::tonemap()
gray_img
.
release
();
std
::
vector
<
Mat
>
channels
(
3
);
split
(
img
,
channels
);
split
(
src
,
channels
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
channels
[
i
]
=
channels
[
i
].
mul
(
map_img
);
}
merge
(
channels
,
img
);
}
merge
(
channels
,
dst
);
pow
(
dst
,
1.0
f
/
gamma
,
dst
);
}
TonemapReinhardDevlin
::
TonemapReinhardDevlin
(
float
gamma
,
float
intensity
,
float
color_adapt
,
float
light_adapt
)
:
Tonemap
(
gamma
),
intensity
(
intensity
),
color_adapt
(
color_adapt
),
light_adapt
(
light_adapt
)
float
getGamma
()
const
{
return
gamma
;
}
void
setGamma
(
float
val
)
{
gamma
=
val
;
}
float
getContrast
()
const
{
return
contrast
;
}
void
setContrast
(
float
val
)
{
contrast
=
val
;
}
float
getSigmaColor
()
const
{
return
sigma_color
;
}
void
setSigmaColor
(
float
val
)
{
sigma_color
=
val
;
}
float
getSigmaSpace
()
const
{
return
sigma_space
;
}
void
setSigmaSpace
(
float
val
)
{
sigma_space
=
val
;
}
void
write
(
FileStorage
&
fs
)
const
{
fs
<<
"name"
<<
name
<<
"gamma"
<<
gamma
<<
"contrast"
<<
contrast
<<
"sigma_color"
<<
sigma_color
<<
"sigma_space"
<<
sigma_space
;
}
void
read
(
const
FileNode
&
fn
)
{
FileNode
n
=
fn
[
"name"
];
CV_Assert
(
n
.
isString
()
&&
String
(
n
)
==
name
);
gamma
=
fn
[
"gamma"
];
contrast
=
fn
[
"contrast"
];
sigma_color
=
fn
[
"sigma_color"
];
sigma_space
=
fn
[
"sigma_space"
];
}
protected
:
String
name
;
float
gamma
,
contrast
,
sigma_color
,
sigma_space
;
};
Ptr
<
TonemapDurand
>
createTonemapDurand
(
float
gamma
,
float
contrast
,
float
sigma_color
,
float
sigma_space
)
{
return
new
TonemapDurandImpl
(
gamma
,
contrast
,
sigma_color
,
sigma_space
);
}
void
TonemapReinhardDevlin
::
tonemap
()
class
TonemapReinhardDevlinImpl
:
public
TonemapReinhardDevlin
{
public
:
TonemapReinhardDevlinImpl
(
float
gamma
,
float
intensity
,
float
light_adapt
,
float
color_adapt
)
:
gamma
(
gamma
),
intensity
(
intensity
),
light_adapt
(
light_adapt
),
color_adapt
(
color_adapt
),
name
(
"TonemapReinhardDevlin"
)
{
}
void
process
(
InputArray
_src
,
OutputArray
_dst
)
{
Mat
src
=
_src
.
getMat
();
CV_Assert
(
!
src
.
empty
());
_dst
.
create
(
src
.
size
(),
CV_32FC3
);
Mat
img
=
_dst
.
getMat
();
Ptr
<
TonemapLinear
>
linear
=
createTonemapLinear
(
1.0
f
);
linear
->
process
(
src
,
img
);
Mat
gray_img
;
cvtColor
(
img
,
gray_img
,
COLOR_RGB2GRAY
);
Mat
log_img
;
...
...
@@ -200,30 +317,50 @@ void TonemapReinhardDevlin::tonemap()
}
gray_img
.
release
();
merge
(
channels
,
img
);
linearMap
();
}
Ptr
<
Tonemap
>
Tonemap
::
create
(
const
String
&
TonemapType
)
{
return
Algorithm
::
create
<
Tonemap
>
(
"Tonemap."
+
TonemapType
);
}
linear
->
setGamma
(
gamma
);
linear
->
process
(
img
,
img
);
}
CV_INIT_ALGORITHM
(
TonemapLinear
,
"Tonemap.Linear"
,
obj
.
info
()
->
addParam
(
obj
,
"gamma"
,
obj
.
gamma
));
float
getGamma
()
const
{
return
gamma
;
}
void
setGamma
(
float
val
)
{
gamma
=
val
;
}
CV_INIT_ALGORITHM
(
TonemapDrago
,
"Tonemap.Drago"
,
obj
.
info
()
->
addParam
(
obj
,
"gamma"
,
obj
.
gamma
);
obj
.
info
()
->
addParam
(
obj
,
"bias"
,
obj
.
bias
));
float
getIntensity
()
const
{
return
intensity
;
}
void
setIntensity
(
float
val
)
{
intensity
=
val
;
}
CV_INIT_ALGORITHM
(
TonemapDurand
,
"Tonemap.Durand"
,
obj
.
info
()
->
addParam
(
obj
,
"gamma"
,
obj
.
gamma
);
obj
.
info
()
->
addParam
(
obj
,
"contrast"
,
obj
.
contrast
);
obj
.
info
()
->
addParam
(
obj
,
"sigma_color"
,
obj
.
sigma_color
);
obj
.
info
()
->
addParam
(
obj
,
"sigma_space"
,
obj
.
sigma_space
));
float
getLightAdaptation
()
const
{
return
light_adapt
;
}
void
setLightAdaptation
(
float
val
)
{
light_adapt
=
val
;
}
float
getColorAdaptation
()
const
{
return
color_adapt
;
}
void
setColorAdaptation
(
float
val
)
{
color_adapt
=
val
;
}
void
write
(
FileStorage
&
fs
)
const
{
fs
<<
"name"
<<
name
<<
"gamma"
<<
gamma
<<
"intensity"
<<
intensity
<<
"light_adapt"
<<
light_adapt
<<
"color_adapt"
<<
color_adapt
;
}
void
read
(
const
FileNode
&
fn
)
{
FileNode
n
=
fn
[
"name"
];
CV_Assert
(
n
.
isString
()
&&
String
(
n
)
==
name
);
gamma
=
fn
[
"gamma"
];
intensity
=
fn
[
"intensity"
];
light_adapt
=
fn
[
"light_adapt"
];
color_adapt
=
fn
[
"color_adapt"
];
}
protected
:
String
name
;
float
gamma
,
intensity
,
light_adapt
,
color_adapt
;
};
Ptr
<
TonemapReinhardDevlin
>
createTonemapReinhardDevlin
(
float
gamma
,
float
contrast
,
float
sigma_color
,
float
sigma_space
)
{
return
new
TonemapReinhardDevlinImpl
(
gamma
,
contrast
,
sigma_color
,
sigma_space
);
}
CV_INIT_ALGORITHM
(
TonemapReinhardDevlin
,
"Tonemap.ReinhardDevlin"
,
obj
.
info
()
->
addParam
(
obj
,
"gamma"
,
obj
.
gamma
);
obj
.
info
()
->
addParam
(
obj
,
"intensity"
,
obj
.
intensity
);
obj
.
info
()
->
addParam
(
obj
,
"color_adapt"
,
obj
.
color_adapt
);
obj
.
info
()
->
addParam
(
obj
,
"light_adapt"
,
obj
.
light_adapt
));
}
\ No newline at end of file
modules/photo/test/test_hdr.cpp
View file @
4d2ea847
...
...
@@ -61,98 +61,159 @@ void checkEqual(Mat img0, Mat img1, double threshold)
ASSERT_FALSE
(
max
>
threshold
);
}
TEST
(
Photo_
HdrFusion
,
regression
)
TEST
(
Photo_
Tonemap
,
regression
)
{
string
test_path
=
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
())
+
"hdr/"
;
string
fuse_path
=
test_path
+
"fusion/"
;
vector
<
float
>
times
;
vector
<
Mat
>
images
;
ifstream
list_file
(
fuse_path
+
"list.txt"
);
ASSERT_TRUE
(
list_file
.
is_open
());
string
name
;
float
val
;
while
(
list_file
>>
name
>>
val
)
{
Mat
img
=
imread
(
fuse_path
+
name
);
ASSERT_FALSE
(
img
.
empty
())
<<
"Could not load input image "
<<
fuse_path
+
name
;
images
.
push_back
(
img
);
times
.
push_back
(
1
/
val
);
}
list_file
.
close
();
Mat
response
,
expected
(
256
,
3
,
CV_32F
);
ifstream
resp_file
(
test_path
+
"response.csv"
);
for
(
int
i
=
0
;
i
<
256
;
i
++
)
{
for
(
int
channel
=
0
;
channel
<
3
;
channel
++
)
{
resp_file
>>
expected
.
at
<
float
>
(
i
,
channel
);
resp_file
.
ignore
(
1
);
}
}
resp_file
.
close
();
estimateResponse
(
images
,
times
,
response
);
checkEqual
(
expected
,
response
,
0.001
);
Mat
result
;
loadImage
(
test_path
+
"no_calibration.hdr"
,
expected
);
makeHDR
(
images
,
times
,
result
);
checkEqual
(
expected
,
result
,
0.01
);
loadImage
(
test_path
+
"rle.hdr"
,
expected
);
makeHDR
(
images
,
times
,
result
,
response
);
checkEqual
(
expected
,
result
,
0.01
);
Mat
img
,
expected
,
result
;
loadImage
(
test_path
+
"rle.hdr"
,
img
);
float
gamma
=
2.2
f
;
test_path
+=
"tonemap/"
;
loadImage
(
test_path
+
"exp_fusion.png"
,
expected
);
exposureFusion
(
images
,
result
);
Ptr
<
TonemapLinear
>
linear
=
createTonemapLinear
(
gamma
);
linear
->
process
(
img
,
result
);
loadImage
(
test_path
+
"linear.png"
,
expected
);
result
.
convertTo
(
result
,
CV_8UC3
,
255
);
checkEqual
(
expected
,
result
,
0
);
}
checkEqual
(
result
,
expected
,
0
);
TEST
(
Photo_Tonemap
,
regression
)
{
string
test_path
=
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
())
+
"hdr/tonemap/"
;
Ptr
<
TonemapDrago
>
drago
=
createTonemapDrago
(
gamma
);
drago
->
process
(
img
,
result
);
loadImage
(
test_path
+
"drago.png"
,
expected
);
result
.
convertTo
(
result
,
CV_8UC3
,
255
);
checkEqual
(
result
,
expected
,
0
);
Mat
img
;
loadImage
(
test_path
+
"../rle.hdr"
,
img
);
ifstream
list_file
(
test_path
+
"list.txt"
);
ASSERT_TRUE
(
list_file
.
is_open
());
Ptr
<
TonemapDurand
>
durand
=
createTonemapDurand
(
gamma
);
durand
->
process
(
img
,
result
);
loadImage
(
test_path
+
"durand.png"
,
expected
);
result
.
convertTo
(
result
,
CV_8UC3
,
255
);
checkEqual
(
result
,
expected
,
0
);
string
name
;
while
(
list_file
>>
name
)
{
Mat
expected
=
imread
(
test_path
+
name
+
".png"
);
ASSERT_FALSE
(
img
.
empty
())
<<
"Could not load input image "
<<
test_path
+
name
+
".png"
;
Ptr
<
Tonemap
>
mapper
=
Tonemap
::
create
(
name
);
ASSERT_FALSE
(
mapper
.
empty
())
<<
"Could not find mapper "
<<
name
;
Mat
result
;
mapper
->
process
(
img
,
result
);
Ptr
<
TonemapReinhardDevlin
>
reinhard_devlin
=
createTonemapReinhardDevlin
(
gamma
);
reinhard_devlin
->
process
(
img
,
result
);
loadImage
(
test_path
+
"reinhard_devlin.png"
,
expected
);
result
.
convertTo
(
result
,
CV_8UC3
,
255
);
checkEqual
(
expected
,
result
,
0
);
}
list_file
.
close
();
checkEqual
(
result
,
expected
,
0
);
}
TEST
(
Photo_Align
,
regression
)
{
const
int
TESTS_COUNT
=
100
;
string
folder
=
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
())
+
"shared/"
;
string
file_name
=
folder
+
"lena.png"
;
Mat
img
=
imread
(
file_name
);
ASSERT_FALSE
(
img
.
empty
())
<<
"Could not load input image "
<<
file_name
;
cvtColor
(
img
,
img
,
COLOR_RGB2GRAY
);
int
max_bits
=
5
;
int
max_shift
=
32
;
srand
(
static_cast
<
unsigned
>
(
time
(
0
)));
int
errors
=
0
;
for
(
int
i
=
0
;
i
<
TESTS_COUNT
;
i
++
)
{
Point
shift
(
rand
()
%
max_shift
,
rand
()
%
max_shift
);
Mat
res
;
shiftMat
(
img
,
shift
,
res
);
Point
calc
=
getExpShift
(
img
,
res
,
max_bits
);
errors
+=
(
calc
!=
-
shift
);
}
ASSERT_TRUE
(
errors
<
5
);
}
//void loadExposureSeq(String fuse_path, vector<Mat>& images, vector<float>& times = vector<float>())
//{
// ifstream list_file(fuse_path + "list.txt");
// ASSERT_TRUE(list_file.is_open());
// string name;
// float val;
// while(list_file >> name >> val) {
// Mat img = imread(fuse_path + name);
// ASSERT_FALSE(img.empty()) << "Could not load input image " << fuse_path + name;
// images.push_back(img);
// times.push_back(1 / val);
// }
// list_file.close();
//}
////
////TEST(Photo_MergeMertens, regression)
////{
//// string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
//// string fuse_path = test_path + "fusion/";
////
//// vector<Mat> images;
//// loadExposureSeq(fuse_path, images);
////
//// MergeMertens merge;
////
//// Mat result, expected;
//// loadImage(test_path + "exp_fusion.png", expected);
//// merge.process(images, result);
//// result.convertTo(result, CV_8UC3, 255);
//// checkEqual(expected, result, 0);
////}
//
//TEST(Photo_Debevec, regression)
//{
// string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
// string fuse_path = test_path + "fusion/";
//
// vector<float> times;
// vector<Mat> images;
//
// loadExposureSeq(fuse_path, images, times);
//
// Mat response, expected(256, 3, CV_32F);
// ifstream resp_file(test_path + "response.csv");
// for(int i = 0; i < 256; i++) {
// for(int channel = 0; channel < 3; channel++) {
// resp_file >> expected.at<float>(i, channel);
// resp_file.ignore(1);
// }
// }
// resp_file.close();
//
// CalibrateDebevec calib;
// MergeDebevec merge;
//
// //calib.process(images, response, times);
// //checkEqual(expected, response, 0.001);
// //
// Mat result;
// loadImage(test_path + "no_calibration.hdr", expected);
// merge.process(images, result, times);
// checkEqual(expected, result, 0.01);
//
// //loadImage(test_path + "rle.hdr", expected);
// //merge.process(images, result, times, response);
// //checkEqual(expected, result, 0.01);
//}
//
//TEST(Photo_Tonemap, regression)
//{
// initModule_photo();
// string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/tonemap/";
// Mat img;
// loadImage(test_path + "../rle.hdr", img);
//
// vector<String> algorithms;
// Algorithm::getList(algorithms);
// for(size_t i = 0; i < algorithms.size(); i++) {
// String str = algorithms[i];
// size_t dot = str.find('.');
// if(dot != String::npos && str.substr(0, dot).compare("Tonemap") == 0) {
// String algo_name = str.substr(dot + 1, str.size());
// Mat expected;
// loadImage(test_path + algo_name.toLowerCase() + ".png", expected);
// Ptr<Tonemap> mapper = Tonemap::create(algo_name);
// ASSERT_FALSE(mapper.empty()) << algo_name;
// Mat result;
// mapper->process(img, result);
// result.convertTo(result, CV_8UC3, 255);
// checkEqual(expected, result, 0);
// }
// }
////}
////
////TEST(Photo_AlignMTB, regression)
////{
//// const int TESTS_COUNT = 100;
//// string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/";
////
//// string file_name = folder + "lena.png";
//// Mat img = imread(file_name);
//// ASSERT_FALSE(img.empty()) << "Could not load input image " << file_name;
//// cvtColor(img, img, COLOR_RGB2GRAY);
////
//// int max_bits = 5;
//// int max_shift = 32;
//// srand(static_cast<unsigned>(time(0)));
//// int errors = 0;
////
//// AlignMTB align(max_bits);
////
//// for(int i = 0; i < TESTS_COUNT; i++) {
//// Point shift(rand() % max_shift, rand() % max_shift);
//// Mat res;
//// align.shiftMat(img, shift, res);
//// Point calc = align.getExpShift(img, res);
//// errors += (calc != -shift);
//// }
//// ASSERT_TRUE(errors < 5);
////}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment