Commit 493d7a6e authored by Alexey Spizhevoy's avatar Alexey Spizhevoy

added min eigen val based corner detector into gpu module

parent 9adfc2ca
......@@ -629,7 +629,13 @@ namespace cv
//! computes Harris cornerness criteria at each image pixel
// (does BORDER_CONSTANT interpolation with 0 as the fill value)
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int apertureSize, double k);
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k);
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
// (does BORDER_CONSTANT interpolation with 0 as the fill value)
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize=3);
//////////////////////////////// Filter Engine ////////////////////////////////
......
......@@ -466,7 +466,8 @@ namespace cv { namespace gpu { namespace imgproc
/////////////////////////////////////////// Corner Harris /////////////////////////////////////////////////
__global__ void cornerHarris_kernel(const int cols, const int rows, const int block_size, const float k, const PtrStep Dx, const PtrStep Dy, PtrStep dst)
__global__ void cornerHarris_kernel(const int cols, const int rows, const int block_size, const float k,
const PtrStep Dx, const PtrStep Dy, PtrStep dst)
{
const unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
......@@ -511,4 +512,55 @@ namespace cv { namespace gpu { namespace imgproc
cornerHarris_kernel<<<grid, threads>>>(cols, rows, block_size / 2, k, Dx, Dy, dst);
cudaSafeCall(cudaThreadSynchronize());
}
/////////////////////////////////////////// Corner Min Eigen Val /////////////////////////////////////////////////
__global__ void cornerMinEigenVal_kernel(const int cols, const int rows, const int block_size,
const PtrStep Dx, const PtrStep Dy, PtrStep dst)
{
const unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < cols && y < rows)
{
float a = 0.f;
float b = 0.f;
float c = 0.f;
const unsigned int j_begin = max(x - block_size, 0);
const unsigned int i_begin = max(y - block_size, 0);
const unsigned int j_end = min(x + block_size + 1, cols);
const unsigned int i_end = min(y + block_size + 1, rows);
for (unsigned int i = i_begin; i < i_end; ++i)
{
const float* dx_row = (const float*)Dx.ptr(i);
const float* dy_row = (const float*)Dy.ptr(i);
for (unsigned int j = j_begin; j < j_end; ++j)
{
float dx = dx_row[j];
float dy = dy_row[j];
a += dx * dx;
b += dx * dy;
c += dy * dy;
}
}
a *= 0.5f;
c *= 0.5f;
((float*)dst.ptr(y))[x] = (a + c) - sqrtf((a - c) * (a - c) + b * b);
}
}
void cornerMinEigenVal_caller(const int block_size, const DevMem2D Dx, const DevMem2D Dy, DevMem2D dst)
{
const int rows = Dx.rows;
const int cols = Dx.cols;
dim3 threads(32, 8);
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
cornerMinEigenVal_kernel<<<grid, threads>>>(cols, rows, block_size / 2, Dx, Dy, dst);
cudaSafeCall(cudaThreadSynchronize());
}
}}}
......@@ -69,6 +69,7 @@ void cv::gpu::histEven(const GpuMat&, GpuMat*, int*, int*, int*) { throw_nogpu()
void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*) { throw_nogpu(); }
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, int, int, double) { throw_nogpu(); }
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, int, int) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
......@@ -861,32 +862,48 @@ void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4
namespace cv { namespace gpu { namespace imgproc {
void cornerHarris_caller(const int block_size, const float k, const DevMem2D Dx, const DevMem2D Dy, DevMem2D dst);
void cornerMinEigenVal_caller(const int block_size, const DevMem2D Dx, const DevMem2D Dy, DevMem2D dst);
}}}
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int apertureSize, double k)
namespace
{
CV_Assert(src.type() == CV_32F);
void computeGradients(const GpuMat& src, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize)
{
CV_Assert(src.type() == CV_32F);
double scale = (double)(1 << ((apertureSize > 0 ? apertureSize : 3) - 1)) * blockSize;
if (apertureSize < 0) scale *= 2.;
scale = 1./scale;
double scale = (double)(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize;
if (ksize < 0) scale *= 2.;
scale = 1./scale;
GpuMat Dx, Dy;
if (apertureSize > 0)
{
Sobel(src, Dx, CV_32F, 1, 0, apertureSize, scale);
Sobel(src, Dy, CV_32F, 0, 1, apertureSize, scale);
}
else
{
Scharr(src, Dx, CV_32F, 1, 0, scale);
Scharr(src, Dy, CV_32F, 0, 1, scale);
if (ksize > 0)
{
Sobel(src, Dx, CV_32F, 1, 0, ksize, scale);
Sobel(src, Dy, CV_32F, 0, 1, ksize, scale);
}
else
{
Scharr(src, Dx, CV_32F, 1, 0, scale);
Scharr(src, Dy, CV_32F, 0, 1, scale);
}
}
}
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k)
{
GpuMat Dx, Dy;
computeGradients(src, Dx, Dy, blockSize, ksize);
dst.create(src.size(), CV_32F);
imgproc::cornerHarris_caller(blockSize, (float)k, Dx, Dy, dst);
}
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize)
{
GpuMat Dx, Dy;
computeGradients(src, Dx, Dy, blockSize, ksize);
dst.create(src.size(), CV_32F);
imgproc::cornerMinEigenVal_caller(blockSize, Dx, Dy, dst);
}
#endif /* !defined (HAVE_CUDA) */
......@@ -659,6 +659,62 @@ struct CV_GpuCornerHarrisTest: CvTest
}
};
////////////////////////////////////////////////////////////////////////
// Corner Min Eigen Val
struct CV_GpuCornerMinEigenValTest: CvTest
{
CV_GpuCornerMinEigenValTest(): CvTest("GPU-CornerMinEigenValTest", "cornerMinEigenVal") {}
void run(int)
{
try
{
int rows = 1 + rand() % 300, cols = 1 + rand() % 300;
if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, -1)) return;
for (int i = 0; i < 3; ++i)
{
rows = 1 + rand() % 300; cols = 1 + rand() % 300;
if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return;
}
}
catch (const Exception& e)
{
if (!check_and_treat_gpu_exception(e, ts)) throw;
return;
}
}
bool compareToCpuTest(int rows, int cols, int depth, int blockSize, int apertureSize)
{
RNG rng;
cv::Mat src(rows, cols, depth);
if (depth == CV_32F)
rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(1));
double k = 0.1;
int borderType = BORDER_DEFAULT;
cv::Mat dst_gold;
cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType);
cv::gpu::GpuMat dst;
cv::gpu::cornerMinEigenVal(cv::gpu::GpuMat(src), dst, blockSize, apertureSize);
cv::Mat dsth = dst;
for (int i = apertureSize + 2; i < dst.rows - apertureSize - 2; ++i)
{
for (int j = apertureSize + 2; j < dst.cols - apertureSize - 2; ++j)
{
float a = dst_gold.at<float>(i, j);
float b = dsth.at<float>(i, j);
if (fabs(a - b) > 1e-3f) return false;
}
}
return true;
}
};
/////////////////////////////////////////////////////////////////////////////
/////////////////// tests registration /////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
......@@ -677,4 +733,5 @@ CV_GpuNppImageCannyTest CV_GpuNppImageCanny_test;
CV_GpuCvtColorTest CV_GpuCvtColor_test;
CV_GpuHistogramsTest CV_GpuHistograms_test;
CV_GpuCornerHarrisTest CV_GpuCornerHarris_test;
CV_GpuCornerMinEigenValTest CV_GpuCornerMinEigenVal_test;
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment