Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
48c4a79d
Commit
48c4a79d
authored
Jul 23, 2014
by
edgarriba
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
DLS full algorithm compiling
parent
730fe9e5
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
226 additions
and
69 deletions
+226
-69
dls.cpp
modules/calib3d/src/dls.cpp
+209
-61
dls.h
modules/calib3d/src/dls.h
+16
-7
solvepnp.cpp
modules/calib3d/src/solvepnp.cpp
+1
-1
No files found.
modules/calib3d/src/dls.cpp
View file @
48c4a79d
...
@@ -51,14 +51,12 @@ dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints)
...
@@ -51,14 +51,12 @@ dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints)
p
=
cv
::
Mat
(
3
,
N
,
opoints
.
depth
());
p
=
cv
::
Mat
(
3
,
N
,
opoints
.
depth
());
z
=
cv
::
Mat
(
3
,
N
,
ipoints
.
depth
());
z
=
cv
::
Mat
(
3
,
N
,
ipoints
.
depth
());
cost__
=
std
::
numeric_limits
<
double
>::
infinity
();
f1coeff
.
resize
(
21
);
f1coeff
.
resize
(
21
);
f2coeff
.
resize
(
21
);
f2coeff
.
resize
(
21
);
f3coeff
.
resize
(
21
);
f3coeff
.
resize
(
21
);
Mtilde
=
cv
::
Mat
(
27
,
27
,
ipoints
.
depth
());
V_r
=
cv
::
Mat
(
27
,
27
,
ipoints
.
depth
());
V_c
=
cv
::
Mat
(
27
,
27
,
ipoints
.
depth
());
if
(
opoints
.
depth
()
==
ipoints
.
depth
())
if
(
opoints
.
depth
()
==
ipoints
.
depth
())
{
{
if
(
opoints
.
depth
()
==
CV_32F
)
if
(
opoints
.
depth
()
==
CV_32F
)
...
@@ -72,7 +70,6 @@ dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints)
...
@@ -72,7 +70,6 @@ dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints)
init_points
<
cv
::
Point3d
,
double
,
cv
::
Point2f
,
float
>
(
opoints
,
ipoints
);
init_points
<
cv
::
Point3d
,
double
,
cv
::
Point2f
,
float
>
(
opoints
,
ipoints
);
norm_z_vector
();
norm_z_vector
();
build_coeff_matrix
();
}
}
...
@@ -100,7 +97,7 @@ void dls::norm_z_vector()
...
@@ -100,7 +97,7 @@ void dls::norm_z_vector()
// OK
// OK
}
}
void
dls
::
build_coeff_matrix
()
void
dls
::
build_coeff_matrix
(
const
cv
::
Mat
&
pp
,
cv
::
Mat
&
Mtilde
,
cv
::
Mat
&
D
)
{
{
cv
::
Mat
eye
=
cv
::
Mat
::
eye
(
3
,
3
,
z
.
depth
());
cv
::
Mat
eye
=
cv
::
Mat
::
eye
(
3
,
3
,
z
.
depth
());
...
@@ -115,24 +112,17 @@ void dls::build_coeff_matrix()
...
@@ -115,24 +112,17 @@ void dls::build_coeff_matrix()
{
{
cv
::
Mat
z_dot
=
z
.
col
(
i
)
*
z
.
col
(
i
).
t
();
cv
::
Mat
z_dot
=
z
.
col
(
i
)
*
z
.
col
(
i
).
t
();
H
+=
eye
-
z_dot
;
H
+=
eye
-
z_dot
;
A
+=
(
z_dot
-
eye
)
*
LeftMultVec
(
p
.
col
(
i
));
A
+=
(
z_dot
-
eye
)
*
LeftMultVec
(
p
p
.
col
(
i
));
}
}
// OK
// OK
// A\B
cv
::
solve
(
H
,
A
,
A
);
// OK
cv
::
solve
(
H
,
A
,
A
);
// A\B
// OK
cv
::
Mat
D
=
cv
::
Mat
::
zeros
(
9
,
9
,
z
.
depth
());
for
(
int
i
=
0
;
i
<
N
;
++
i
)
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
{
cv
::
Mat
z_dot
=
z
.
col
(
i
)
*
z
.
col
(
i
).
t
();
cv
::
Mat
z_dot
=
z
.
col
(
i
)
*
z
.
col
(
i
).
t
();
D
+=
cv
::
Mat
(
LeftMultVec
(
p
.
col
(
i
))
+
A
).
t
()
*
(
eye
-
z_dot
)
*
(
LeftMultVec
(
p
.
col
(
i
))
+
A
);
D
+=
cv
::
Mat
(
LeftMultVec
(
pp
.
col
(
i
))
+
A
).
t
()
*
(
eye
-
z_dot
)
*
(
LeftMultVec
(
pp
.
col
(
i
))
+
A
);
}
}
// OK
// OK
// fill the coefficients
// fill the coefficients
fill_coeff
(
&
D
);
fill_coeff
(
&
D
);
...
@@ -148,13 +138,19 @@ void dls::build_coeff_matrix()
...
@@ -148,13 +138,19 @@ void dls::build_coeff_matrix()
cv
::
Mat
M2_2
=
M2
(
cv
::
Range
(
0
,
27
),
cv
::
Range
(
27
,
120
));
// OK
cv
::
Mat
M2_2
=
M2
(
cv
::
Range
(
0
,
27
),
cv
::
Range
(
27
,
120
));
// OK
cv
::
Mat
M2_3
=
M2
(
cv
::
Range
(
27
,
120
),
cv
::
Range
(
27
,
120
));
// OK
cv
::
Mat
M2_3
=
M2
(
cv
::
Range
(
27
,
120
),
cv
::
Range
(
27
,
120
));
// OK
cv
::
Mat
M2_4
=
M2
(
cv
::
Range
(
27
,
120
),
cv
::
Range
(
0
,
27
));
// OK
cv
::
Mat
M2_4
=
M2
(
cv
::
Range
(
27
,
120
),
cv
::
Range
(
0
,
27
));
// OK
cv
::
Mat
M2_5
;
cv
::
solve
(
M2_3
.
t
(),
M2_2
.
t
(),
M2_5
);
// A/B = B'\A'
// A/B = B'\A'
cv
::
Mat
M2_5
;
cv
::
solve
(
M2_3
.
t
(),
M2_2
.
t
(),
M2_5
);
// construct the multiplication matrix via schur compliment of the Macaulay
// construct the multiplication matrix via schur compliment of the Macaulay
// matrix
// matrix
Mtilde
=
M2_1
-
M2_5
.
t
()
*
M2_4
;
// 27x27 non-symmetric // OK
Mtilde
=
M2_1
-
M2_5
.
t
()
*
M2_4
;
// 27x27 non-symmetric // OK
}
void
dls
::
compute_eigenvec
(
const
cv
::
Mat
&
Mtilde
,
cv
::
Mat
&
eigenval_real
,
cv
::
Mat
&
eigenval_imag
,
cv
::
Mat
&
eigenvec_real
,
cv
::
Mat
&
eigenvec_imag
)
{
// EIGENVALUES AND EIGENVECTORS
// EIGENVALUES AND EIGENVECTORS
Eigen
::
MatrixXd
Mtilde_eig
,
zeros_eig
;
Eigen
::
MatrixXd
Mtilde_eig
,
zeros_eig
;
...
@@ -165,20 +161,18 @@ void dls::build_coeff_matrix()
...
@@ -165,20 +161,18 @@ void dls::build_coeff_matrix()
Mtilde_eig_cmplx
.
real
()
=
Mtilde_eig
;
Mtilde_eig_cmplx
.
real
()
=
Mtilde_eig
;
Mtilde_eig_cmplx
.
imag
()
=
zeros_eig
;
Mtilde_eig_cmplx
.
imag
()
=
zeros_eig
;
Eigen
::
ComplexEigenSolver
<
Eigen
::
MatrixXcd
>
ces
(
Mtilde_eig_cmplx
);
Eigen
::
ComplexEigenSolver
<
Eigen
::
MatrixXcd
>
ces
;
ces
.
compute
(
Mtilde_eig_cmplx
);
Eigen
::
MatrixXd
eigval_real
=
ces
.
eigenvalues
().
real
();
// OK
Eigen
::
MatrixXd
eigval_real
=
ces
.
eigenvalues
().
real
();
// OK
Eigen
::
MatrixXd
eigval_
cmplx
=
ces
.
eigenvalues
().
imag
();
// OK
Eigen
::
MatrixXd
eigval_
imag
=
ces
.
eigenvalues
().
imag
();
// OK
Eigen
::
MatrixXd
eigvec_real
=
ces
.
eigenvectors
().
real
();
Eigen
::
MatrixXd
eigvec_real
=
ces
.
eigenvectors
().
real
();
Eigen
::
MatrixXd
eigvec_cmplx
=
ces
.
eigenvectors
().
imag
();
Eigen
::
MatrixXd
eigvec_imag
=
ces
.
eigenvectors
().
imag
();
cv
::
Mat
eigenvalues_real
,
eigenvalues_complex
;
cv
::
Mat
eigenvectors_real
,
eigenvectors_complex
;
cv
::
eigen2cv
(
eigval_real
,
eigenval
ues_real
);
// OK
cv
::
eigen2cv
(
eigval_real
,
eigenval
_real
);
// OK
cv
::
eigen2cv
(
eigval_
cmplx
,
eigenvalues_complex
);
// OK
cv
::
eigen2cv
(
eigval_
imag
,
eigenval_imag
);
// OK
cv
::
eigen2cv
(
eigvec_real
,
V_r
);
cv
::
eigen2cv
(
eigvec_real
,
eigenvec_real
);
cv
::
eigen2cv
(
eigvec_
cmplx
,
V_c
);
cv
::
eigen2cv
(
eigvec_
imag
,
eigenvec_imag
);
}
}
...
@@ -267,14 +261,21 @@ void dls::fill_coeff(const cv::Mat * D_mat)
...
@@ -267,14 +261,21 @@ void dls::fill_coeff(const cv::Mat * D_mat)
f3coeff
[
19
]
=
4
*
D
[
1
][
9
]
-
4
*
D
[
1
][
1
]
+
8
*
D
[
3
][
3
]
+
8
*
D
[
3
][
7
]
+
4
*
D
[
5
][
5
]
+
8
*
D
[
7
][
3
]
+
8
*
D
[
7
][
7
]
+
4
*
D
[
9
][
1
]
-
4
*
D
[
9
][
9
];
// s1^2 * s3
f3coeff
[
19
]
=
4
*
D
[
1
][
9
]
-
4
*
D
[
1
][
1
]
+
8
*
D
[
3
][
3
]
+
8
*
D
[
3
][
7
]
+
4
*
D
[
5
][
5
]
+
8
*
D
[
7
][
3
]
+
8
*
D
[
7
][
7
]
+
4
*
D
[
9
][
1
]
-
4
*
D
[
9
][
9
];
// s1^2 * s3
f3coeff
[
20
]
=
2
*
D
[
1
][
3
]
+
2
*
D
[
1
][
7
]
+
2
*
D
[
3
][
1
]
-
2
*
D
[
3
][
5
]
-
2
*
D
[
3
][
9
]
-
2
*
D
[
5
][
3
]
-
2
*
D
[
5
][
7
]
+
2
*
D
[
7
][
1
]
-
2
*
D
[
7
][
5
]
-
2
*
D
[
7
][
9
]
-
2
*
D
[
9
][
3
]
-
2
*
D
[
9
][
7
];
// s1^3
f3coeff
[
20
]
=
2
*
D
[
1
][
3
]
+
2
*
D
[
1
][
7
]
+
2
*
D
[
3
][
1
]
-
2
*
D
[
3
][
5
]
-
2
*
D
[
3
][
9
]
-
2
*
D
[
5
][
3
]
-
2
*
D
[
5
][
7
]
+
2
*
D
[
7
][
1
]
-
2
*
D
[
7
][
5
]
-
2
*
D
[
7
][
9
]
-
2
*
D
[
9
][
3
]
-
2
*
D
[
9
][
7
];
// s1^3
cout
<<
"end fill coeff function"
<<
endl
;
// until here works
// then crashes
}
}
void
dls
::
compute_pose
(
cv
::
Mat
&
R
,
cv
::
Mat
&
t
)
void
dls
::
run_kernel
(
const
cv
::
Mat
&
pp
)
{
{
cv
::
Mat
Mtilde
(
27
,
27
,
z
.
depth
());
cv
::
Mat
D
=
cv
::
Mat
::
zeros
(
9
,
9
,
z
.
depth
());
build_coeff_matrix
(
pp
,
Mtilde
,
D
);
cv
::
Mat
eigenval_r
,
eigenval_i
,
eigenvec_r
,
eigenvec_i
;
compute_eigenvec
(
Mtilde
,
eigenval_r
,
eigenval_i
,
eigenvec_r
,
eigenvec_i
);
//printMat(eigenval_r);
//printMat(eigenval_i);
/*
/*
* Now check the solutions
* Now check the solutions
*/
*/
...
@@ -283,47 +284,146 @@ void dls::compute_pose(cv::Mat& R, cv::Mat& t)
...
@@ -283,47 +284,146 @@ void dls::compute_pose(cv::Mat& R, cv::Mat& t)
// Multiplication matrix
// Multiplication matrix
cv
::
Mat
sols
=
cv
::
Mat
::
zeros
(
3
,
27
,
z
.
depth
());
cv
::
Mat
sols
=
cv
::
Mat
::
zeros
(
3
,
27
,
z
.
depth
());
cv
::
Mat
cost
=
cv
::
Mat
::
zeros
(
27
,
1
,
z
.
depth
())
;
std
::
vector
<
double
>
cost
;
int
i
=
0
;
int
count
=
0
;
for
(
int
k
=
0
;
k
<
27
;
++
k
)
for
(
int
k
=
0
;
k
<
27
;
++
k
)
{
{
// V(:,k) = V(:,k)/V(1,k);
// V(:,k) = V(:,k)/V(1,k);
cv
::
Mat
V_kA
=
V
_r
.
col
(
k
);
// 27x1
cv
::
Mat
V_kA
=
eigenvec
_r
.
col
(
k
);
// 27x1
cv
::
Mat
V_kB
=
cv
::
Mat
(
1
,
1
,
z
.
depth
(),
V_kA
.
at
<
double
>
(
0
,
k
));
// 1x1
cv
::
Mat
V_kB
=
cv
::
Mat
(
1
,
1
,
z
.
depth
(),
V_kA
.
at
<
double
>
(
0
));
// 1x1
cv
::
Mat
V_k
;
cv
::
solve
(
V_kB
.
t
(),
V_kA
.
t
(),
V_k
);
// A/B = B'\A'
cv
::
Mat
V_k
;
cv
::
solve
(
V_kB
.
t
(),
V_kA
.
t
(),
V_k
);
// A/B = B'\A'
cv
::
Mat
(
V_k
.
t
()).
col
(
0
).
copyTo
(
V_r
.
col
(
0
)
);
cv
::
Mat
(
V_k
.
t
()).
copyTo
(
eigenvec_r
.
col
(
k
)
);
//if (imag(V(2,k)) == 0)
const
double
epsilon
=
1e-4
;
const
double
epsilon
=
1e-4
;
// if( eigenvec_i.at<double>(1,k) >= -epsilon && eigenvec_i.at<double>(1,k) <= epsilon )
if
(
V_c
.
at
<
double
>
(
1
,
k
)
>=
-
epsilon
&&
V_c
.
at
<
double
>
(
1
,
k
)
<=
epsilon
)
//if (imag(V(2,k)) == 0)
{
// it should work without checking imaginari part
{
double
stmp
[
3
];
double
stmp
[
3
];
stmp
[
0
]
=
V
_r
.
at
<
double
>
(
9
,
k
);
stmp
[
0
]
=
eigenvec
_r
.
at
<
double
>
(
9
,
k
);
stmp
[
1
]
=
V
_r
.
at
<
double
>
(
3
,
k
);
stmp
[
1
]
=
eigenvec
_r
.
at
<
double
>
(
3
,
k
);
stmp
[
2
]
=
V
_r
.
at
<
double
>
(
1
,
k
);
stmp
[
2
]
=
eigenvec
_r
.
at
<
double
>
(
1
,
k
);
cv
::
Mat
H
=
Hessian
(
stmp
);
// OK is symmetric
cv
::
Mat
H
=
Hessian
(
stmp
);
// OK is symmetric
cv
::
Mat
eigenvalues
,
eigenvectors
;
cv
::
Mat
eigenvalues
,
eigenvectors
;
cv
::
eigen
(
H
,
eigenvalues
,
eigenvectors
);
cv
::
eigen
(
H
,
eigenvalues
,
eigenvectors
);
if
(
positive_eigenvalues
(
eigenvalues
))
if
(
positive_eigenvalues
(
eigenvalues
))
{
{
// sols(:,i) = stmp;
// sols(:,i) = stmp;
cv
::
Mat
(
3
,
1
,
z
.
depth
(),
&
stmp
).
co
l
(
0
).
copyTo
(
sols
.
col
(
i
)
);
cv
::
Mat
(
3
,
1
,
z
.
depth
(),
&
stmp
).
co
pyTo
(
sols
.
col
(
count
)
);
// TODO: check cayley2rotbar function -> CRASHES!!
cv
::
Mat
Cbar
=
cayley2rotbar
(
stmp
);
cv
::
Mat
Cbar
=
cayley2rotbar
(
stmp
);
printMat
(
Cbar
);
cv
::
Mat
Cbarvec
=
Cbar
.
t
();
Cbarvec
=
Cbarvec
.
reshape
(
1
,
1
).
t
();
i
++
;
// cost(i) = CbarVec' * D * CbarVec;
cv
::
Mat
cost_mat
=
Cbarvec
.
t
()
*
D
*
Cbarvec
;
cost
.
push_back
(
cost_mat
.
at
<
double
>
(
0
)
);
count
++
;
}
}
}
}
}
}
cout
<<
"end for compute_pose"
<<
endl
;
sols
=
sols
.
clone
().
colRange
(
0
,
count
);
// printMat(sols);
// printMat(cv::Mat(cost_));
// until here seems OK. must check with eigenvectors from octave
std
::
vector
<
cv
::
Mat
>
C_est
,
t_est
;
for
(
int
j
=
0
;
j
<
sols
.
cols
;
++
j
)
{
// recover the optimal orientation
// C_est(:,:,j) = 1/(1 + sols(:,j)' * sols(:,j)) * cayley2rotbar(sols(:,j));
cv
::
Mat
sols_j
=
sols
.
col
(
j
);
double
sols_j_
[
3
]
=
{
sols_j
.
at
<
double
>
(
0
),
sols_j
.
at
<
double
>
(
1
),
sols_j
.
at
<
double
>
(
2
)
};
double
sols_mul
=
cv
::
Mat
(
sols_j
.
t
()
*
sols_j
).
at
<
double
>
(
0
);
cv
::
Mat
C_est_j
=
cayley2rotbar
(
sols_j_
).
mul
(
1.
/
(
1.
+
sols_mul
));
C_est
.
push_back
(
C_est_j
);
cv
::
Mat
A2
=
cv
::
Mat
::
zeros
(
3
,
3
,
z
.
depth
());
cv
::
Mat
b2
=
cv
::
Mat
::
zeros
(
3
,
1
,
z
.
depth
());
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
cv
::
Mat
eye
=
cv
::
Mat
::
eye
(
3
,
3
,
z
.
depth
());
cv
::
Mat
z_mul
=
z
.
col
(
i
)
*
z
.
col
(
i
).
t
();
A2
+=
eye
-
z_mul
;
b2
+=
(
z_mul
-
eye
)
*
C_est_j
*
pp
.
col
(
i
);
}
// recover the optimal translation
cv
::
Mat
X2
;
cv
::
solve
(
A2
,
b2
,
X2
);
// A\B
t_est
.
push_back
(
X2
);
}
// check that the points are infront of the center of perspectivity
for
(
int
k
=
0
;
k
<
sols
.
cols
;
++
k
)
{
cv
::
Mat
cam_points
=
C_est
[
k
]
*
pp
+
cv
::
repeat
(
t_est
[
k
],
1
,
pp
.
cols
);
cv
::
Mat
cam_points_k
=
cam_points
.
row
(
2
);
if
(
is_empty
(
&
cam_points_k
))
{
cv
::
Mat
C_valid
=
C_est
[
k
],
t_valid
=
t_est
[
k
];
double
cost_valid
=
cost
[
k
];
C_est_
.
push_back
(
C_valid
);
t_est_
.
push_back
(
t_valid
);
cost_
.
push_back
(
cost_valid
);
}
}
}
void
dls
::
compute_pose
(
cv
::
Mat
&
R
,
cv
::
Mat
&
t
)
{
std
::
vector
<
cv
::
Mat
>
R_
;
R_
.
push_back
(
rotx
(
CV_PI
/
2
));
R_
.
push_back
(
roty
(
CV_PI
/
2
));
R_
.
push_back
(
rotz
(
CV_PI
/
2
));
// OK
cv
::
Mat
t_mean
=
this
->
mean
(
p
);
// OK
// version that calls dls 3 times, to avoid Cayley singularity
for
(
int
i
=
0
;
i
<
3
;
++
i
)
{
// Make a random rotation
cv
::
Mat
pp
=
R_
[
i
]
*
(
p
-
cv
::
repeat
(
t_mean
,
1
,
p
.
cols
)
);
// OK
// clear for the new data
C_est_
.
clear
();
t_est_
.
clear
();
cost_
.
clear
();
this
->
run_kernel
(
pp
);
// run dls_pnp()
for
(
unsigned
int
j
=
0
;
j
<
cost_
.
size
();
++
j
)
{
t_est_
[
j
]
=
t_est_
[
j
]
-
C_est_
[
j
]
*
R_
[
i
]
*
t_mean
;
C_est_
[
j
]
=
C_est_
[
j
]
*
R_
[
i
];
}
if
(
min_val
(
cost_
)
<
cost__
)
{
C_est__
=
C_est_
[
i
];
t_est__
=
t_est_
[
i
];
cost__
=
cost_
[
i
];
}
}
C_est__
.
copyTo
(
R
);
t_est__
.
copyTo
(
t
);
}
}
cv
::
Mat
dls
::
LeftMultVec
(
const
cv
::
Mat
&
v
)
cv
::
Mat
dls
::
LeftMultVec
(
const
cv
::
Mat
&
v
)
...
@@ -659,19 +759,67 @@ bool dls::positive_eigenvalues(const cv::Mat& eigenvalues)
...
@@ -659,19 +759,67 @@ bool dls::positive_eigenvalues(const cv::Mat& eigenvalues)
cv
::
Mat
dls
::
cayley2rotbar
(
const
double
s
[])
cv
::
Mat
dls
::
cayley2rotbar
(
const
double
s
[])
{
{
// s -> 3x1
cv
::
Mat
s_mat
(
3
,
1
,
z
.
depth
(),
&
s
);
// s -> 3x1
cv
::
Mat
s_mat
(
3
,
1
,
z
.
depth
(),
&
s
);
double
s_mul1
=
cv
::
Mat
(
s_mat
.
t
()
*
s_mat
).
at
<
double
>
(
0
,
0
);
cv
::
Mat
s_mul2
=
s_mat
*
s_mat
.
t
();
return
cv
::
Mat
(
(
1
-
s_mat
.
t
()
*
s_mat
)
*
cv
::
Mat
::
eye
(
3
,
3
,
z
.
depth
())
+
2
*
skewsymm
(
s
)
+
2
*
(
s_mat
*
s_mat
.
t
())).
t
();
cv
::
Mat
eye
=
cv
::
Mat
::
eye
(
3
,
3
,
z
.
depth
());
return
cv
::
Mat
(
eye
.
mul
(
1.
-
s_mul1
)
+
skewsymm
(
s
).
mul
(
2.
)
+
s_mul2
.
mul
(
2.
)
).
t
();
}
}
cv
::
Mat
dls
::
skewsymm
(
const
double
X1
[])
cv
::
Mat
dls
::
skewsymm
(
const
double
X1
[])
{
{
cv
::
Mat
C
=
cv
::
Mat
::
zeros
(
3
,
3
,
z
.
depth
());
return
(
cv
::
Mat_
<
double
>
(
3
,
3
)
<<
0
,
-
X1
[
2
],
X1
[
1
],
X1
[
2
],
0
,
-
X1
[
0
],
-
X1
[
1
],
X1
[
0
],
0
);
}
bool
dls
::
is_empty
(
const
cv
::
Mat
*
M
)
{
cv
::
MatConstIterator_
<
double
>
it
=
M
->
begin
<
double
>
(),
it_end
=
M
->
end
<
double
>
();
for
(;
it
!=
it_end
;
++
it
)
{
if
(
*
it
<
0
)
return
false
;
}
return
true
;
}
cv
::
Mat
dls
::
rotx
(
const
double
t
)
{
// rotx: rotation about y-axis
double
ct
=
cos
(
t
);
double
st
=
sin
(
t
);
return
(
cv
::
Mat_
<
double
>
(
3
,
3
)
<<
1
,
0
,
0
,
0
,
ct
,
-
st
,
0
,
st
,
ct
);
}
cv
::
Mat
dls
::
roty
(
const
double
t
)
{
// roty: rotation about y-axis
double
ct
=
cos
(
t
);
double
st
=
sin
(
t
);
return
(
cv
::
Mat_
<
double
>
(
3
,
3
)
<<
ct
,
0
,
st
,
0
,
1
,
0
,
-
st
,
0
,
ct
);
}
C
.
at
<
double
>
(
0
,
1
)
=
-
X1
[
2
];
C
.
at
<
double
>
(
1
,
0
)
=
X1
[
2
];
cv
::
Mat
dls
::
rotz
(
const
double
t
)
C
.
at
<
double
>
(
0
,
2
)
=
X1
[
1
];
C
.
at
<
double
>
(
2
,
0
)
=
-
X1
[
1
];
{
C
.
at
<
double
>
(
1
,
2
)
=
-
X1
[
0
];
C
.
at
<
double
>
(
2
,
1
)
=
X1
[
0
];
// rotz: rotation about y-axis
double
ct
=
cos
(
t
);
double
st
=
sin
(
t
);
return
(
cv
::
Mat_
<
double
>
(
3
,
3
)
<<
ct
,
-
st
,
0
,
st
,
ct
,
0
,
0
,
0
,
1
);
}
return
C
;
cv
::
Mat
dls
::
mean
(
const
cv
::
Mat
&
M
)
{
cv
::
Mat
m
=
cv
::
Mat
::
zeros
(
3
,
1
,
p
.
depth
());
for
(
int
i
=
0
;
i
<
M
.
cols
;
++
i
)
m
+=
M
.
col
(
i
);
return
m
.
mul
(
1.
/
(
double
)
M
.
cols
);
}
double
dls
::
min_val
(
const
std
::
vector
<
double
>&
values
)
{
double
min
=
std
::
numeric_limits
<
double
>::
infinity
();
std
::
vector
<
double
>::
const_iterator
iter
=
values
.
begin
();
for
(
;
iter
!=
values
.
end
()
;
iter
++
)
{
if
(
*
iter
<
min
)
min
=
*
iter
;
}
return
min
;
}
}
modules/calib3d/src/dls.h
View file @
48c4a79d
...
@@ -32,7 +32,14 @@ private:
...
@@ -32,7 +32,14 @@ private:
}
}
void
norm_z_vector
();
void
norm_z_vector
();
void
build_coeff_matrix
();
void
build_coeff_matrix
(
const
cv
::
Mat
&
pp
,
cv
::
Mat
&
Mtilde
,
cv
::
Mat
&
D
);
void
compute_eigenvec
(
const
cv
::
Mat
&
Mtilde
,
cv
::
Mat
&
eigenval_real
,
cv
::
Mat
&
eigenval_imag
,
cv
::
Mat
&
eigenvec_real
,
cv
::
Mat
&
eigenvec_imag
);
double
min_val
(
const
std
::
vector
<
double
>&
values
);
cv
::
Mat
rotx
(
const
double
t
);
cv
::
Mat
roty
(
const
double
t
);
cv
::
Mat
rotz
(
const
double
t
);
cv
::
Mat
mean
(
const
cv
::
Mat
&
M
);
void
fill_coeff
(
const
cv
::
Mat
*
D
);
void
fill_coeff
(
const
cv
::
Mat
*
D
);
cv
::
Mat
LeftMultVec
(
const
cv
::
Mat
&
v
);
cv
::
Mat
LeftMultVec
(
const
cv
::
Mat
&
v
);
cv
::
Mat
cayley_LS_M
(
const
std
::
vector
<
double
>&
a
,
const
std
::
vector
<
double
>&
b
,
cv
::
Mat
cayley_LS_M
(
const
std
::
vector
<
double
>&
a
,
const
std
::
vector
<
double
>&
b
,
...
@@ -41,14 +48,16 @@ private:
...
@@ -41,14 +48,16 @@ private:
cv
::
Mat
Hessian
(
const
double
s
[]);
cv
::
Mat
Hessian
(
const
double
s
[]);
cv
::
Mat
cayley2rotbar
(
const
double
s
[]);
cv
::
Mat
cayley2rotbar
(
const
double
s
[]);
cv
::
Mat
skewsymm
(
const
double
X1
[]);
cv
::
Mat
skewsymm
(
const
double
X1
[]);
bool
is_empty
(
const
cv
::
Mat
*
v
);
void
run_kernel
(
const
cv
::
Mat
&
pp
);
cv
::
Mat
Mtilde
;
// coeff matrix
cv
::
Mat
p
,
z
;
// object-image points
cv
::
Mat
V_r
,
V_c
;
// eigen
cv
::
Mat
p
;
// object points
cv
::
Mat
z
;
// image points
int
N
;
// number of input points
int
N
;
// number of input points
std
::
vector
<
double
>
f1coeff
,
f2coeff
,
f3coeff
;
std
::
vector
<
double
>
f1coeff
,
f2coeff
,
f3coeff
,
cost_
;
};
std
::
vector
<
cv
::
Mat
>
C_est_
,
t_est_
;
// vector to store candidate
cv
::
Mat
C_est__
,
t_est__
;
// best found solution
double
cost__
;
};
#endif // DLS_H
#endif // DLS_H
modules/calib3d/src/solvepnp.cpp
View file @
48c4a79d
...
@@ -98,7 +98,7 @@ bool cv::solvePnP( InputArray _opoints, InputArray _ipoints,
...
@@ -98,7 +98,7 @@ bool cv::solvePnP( InputArray _opoints, InputArray _ipoints,
{
{
std
::
cout
<<
"DLS"
<<
std
::
endl
;
std
::
cout
<<
"DLS"
<<
std
::
endl
;
cv
::
Mat
undistortedPoints
;
cv
::
Mat
undistortedPoints
;
cv
::
undistortPoints
(
ipoints
,
undistortedPoints
,
cameraMatrix
,
distCoeffs
);
//
cv::undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
cv
::
Mat
R
,
rvec
=
_rvec
.
getMat
(),
tvec
=
_tvec
.
getMat
();
cv
::
Mat
R
,
rvec
=
_rvec
.
getMat
(),
tvec
=
_tvec
.
getMat
();
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment