Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
48183f10
Commit
48183f10
authored
Nov 25, 2010
by
Alexey Spizhevoy
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
optimized memory requirements for gpu::minMax's buffers, added support of compute capability 1.0
parent
c4654620
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
256 additions
and
130 deletions
+256
-130
arithm.cpp
modules/gpu/src/arithm.cpp
+64
-40
mathfunc.cu
modules/gpu/src/cuda/mathfunc.cu
+168
-85
arithm.cpp
tests/gpu/src/arithm.cpp
+24
-5
No files found.
modules/gpu/src/arithm.cpp
View file @
48183f10
...
...
@@ -490,44 +490,64 @@ Scalar cv::gpu::sum(const GpuMat& src)
////////////////////////////////////////////////////////////////////////
// minMax
namespace
cv
{
namespace
gpu
{
namespace
mathfunc
{
namespace
cv
{
namespace
gpu
{
namespace
mathfunc
{
namespace
minmax
{
void
get_buf_size_required
(
int
elem_size
,
int
&
b1cols
,
int
&
b1rows
,
int
&
b2cols
,
int
&
b2rows
);
template
<
typename
T
>
void
min_max_caller
(
const
DevMem2D
src
,
double
*
minval
,
double
*
maxval
);
}}}
void
min_max_caller
(
const
DevMem2D
src
,
double
*
minval
,
double
*
maxval
,
unsigned
char
*
minval_buf
,
unsigned
char
*
maxval_buf
);
template
<
typename
T
>
void
min_max_caller_2steps
(
const
DevMem2D
src
,
double
*
minval
,
double
*
maxval
,
unsigned
char
*
minval_buf
,
unsigned
char
*
maxval_buf
);
}}}}
void
cv
::
gpu
::
minMax
(
const
GpuMat
&
src
,
double
*
minVal
,
double
*
maxVal
)
{
GpuMat
src_
=
src
.
reshape
(
1
)
;
using
namespace
mathfunc
::
minmax
;
double
maxVal_
;
if
(
!
maxVal
)
maxVal
=
&
maxVal_
;
if
(
!
maxVal
)
maxVal
=
&
maxVal_
;
GpuMat
src_
=
src
.
reshape
(
1
);
// Allocate GPU buffers
Size
b1size
,
b2size
;
get_buf_size_required
(
src
.
elemSize
(),
b1size
.
width
,
b1size
.
height
,
b2size
.
width
,
b2size
.
height
);
GpuMat
b1
(
b1size
,
CV_8U
),
b2
(
b2size
,
CV_8U
);
int
major
,
minor
;
getComputeCapability
(
getDevice
(),
major
,
minor
);
if
(
major
>=
1
&&
minor
>=
1
)
{
switch
(
src_
.
type
())
{
case
CV_8U
:
mathfunc
::
min_max_caller
<
unsigned
char
>
(
src_
,
minVal
,
maxVal
);
break
;
case
CV_8S
:
mathfunc
::
min_max_caller
<
signed
char
>
(
src_
,
minVal
,
maxVal
);
break
;
case
CV_16U
:
mathfunc
::
min_max_caller
<
unsigned
short
>
(
src_
,
minVal
,
maxVal
);
break
;
case
CV_16S
:
mathfunc
::
min_max_caller
<
signed
short
>
(
src_
,
minVal
,
maxVal
);
break
;
case
CV_32S
:
mathfunc
::
min_max_caller
<
int
>
(
src_
,
minVal
,
maxVal
);
break
;
case
CV_32F
:
mathfunc
::
min_max_caller
<
float
>
(
src_
,
minVal
,
maxVal
);
break
;
case
CV_64F
:
mathfunc
::
min_max_caller
<
double
>
(
src_
,
minVal
,
maxVal
);
break
;
default
:
CV_Error
(
CV_StsBadArg
,
"Unsupported type"
);
case
CV_8U
:
min_max_caller
<
unsigned
char
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
case
CV_8S
:
min_max_caller
<
signed
char
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
case
CV_16U
:
min_max_caller
<
unsigned
short
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
case
CV_16S
:
min_max_caller
<
signed
short
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
case
CV_32S
:
min_max_caller
<
int
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
case
CV_32F
:
min_max_caller
<
float
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
case
CV_64F
:
min_max_caller
<
double
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
default
:
CV_Error
(
CV_StsBadArg
,
"Unsupported type"
);
}
}
else
{
switch
(
src_
.
type
())
{
case
CV_8U
:
min_max_caller_2steps
<
unsigned
char
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
case
CV_8S
:
min_max_caller_2steps
<
signed
char
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
case
CV_16U
:
min_max_caller_2steps
<
unsigned
short
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
case
CV_16S
:
min_max_caller_2steps
<
signed
short
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
case
CV_32S
:
min_max_caller_2steps
<
int
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
case
CV_32F
:
min_max_caller_2steps
<
float
>
(
src_
,
minVal
,
maxVal
,
b1
.
data
,
b2
.
data
);
break
;
default
:
CV_Error
(
CV_StsBadArg
,
"Unsupported type"
);
}
}
}
...
...
@@ -535,14 +555,18 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal)
////////////////////////////////////////////////////////////////////////
// minMaxLoc
namespace
cv
{
namespace
gpu
{
namespace
mathfunc
{
namespace
cv
{
namespace
gpu
{
namespace
mathfunc
{
namespace
minmaxloc
{
template
<
typename
T
>
void
min_max_loc_caller
(
const
DevMem2D
src
,
double
*
minval
,
double
*
maxval
,
int
*
minlocx
,
int
*
minlocy
,
int
*
maxlocx
,
int
*
maxlocy
);
}}}
void
min_max_loc_caller
(
const
DevMem2D
src
,
double
*
minval
,
double
*
maxval
,
int
*
minlocx
,
int
*
minlocy
,
int
*
maxlocx
,
int
*
maxlocy
);
}}}}
void
cv
::
gpu
::
minMaxLoc
(
const
GpuMat
&
src
,
double
*
minVal
,
double
*
maxVal
,
Point
*
minLoc
,
Point
*
maxLoc
)
{
using
namespace
mathfunc
::
minmaxloc
;
CV_Assert
(
src
.
channels
()
==
1
);
double
maxVal_
;
...
...
@@ -557,25 +581,25 @@ void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point
switch
(
src
.
type
())
{
case
CV_8U
:
m
athfunc
::
m
in_max_loc_caller
<
unsigned
char
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
min_max_loc_caller
<
unsigned
char
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
break
;
case
CV_8S
:
m
athfunc
::
m
in_max_loc_caller
<
signed
char
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
min_max_loc_caller
<
signed
char
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
break
;
case
CV_16U
:
m
athfunc
::
m
in_max_loc_caller
<
unsigned
short
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
min_max_loc_caller
<
unsigned
short
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
break
;
case
CV_16S
:
m
athfunc
::
m
in_max_loc_caller
<
signed
short
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
min_max_loc_caller
<
signed
short
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
break
;
case
CV_32S
:
m
athfunc
::
m
in_max_loc_caller
<
int
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
min_max_loc_caller
<
int
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
break
;
case
CV_32F
:
m
athfunc
::
m
in_max_loc_caller
<
float
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
min_max_loc_caller
<
float
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
break
;
case
CV_64F
:
m
athfunc
::
m
in_max_loc_caller
<
double
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
min_max_loc_caller
<
double
>
(
src
,
minVal
,
maxVal
,
&
minLoc
->
x
,
&
minLoc
->
y
,
&
maxLoc
->
x
,
&
maxLoc
->
y
);
break
;
default
:
CV_Error
(
CV_StsBadArg
,
"Unsupported type"
);
...
...
modules/gpu/src/cuda/mathfunc.cu
View file @
48183f10
...
...
@@ -42,8 +42,10 @@
#include "cuda_shared.hpp"
#include "transform.hpp"
#include "limits_gpu.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
#ifndef CV_PI
#define CV_PI 3.1415926535897932384626433832795f
...
...
@@ -399,8 +401,8 @@ namespace cv { namespace gpu { namespace mathfunc
//////////////////////////////////////////////////////////////////////////////
// Min max
enum { MIN, MAX };
// To avoid shared banck confilict we convert reach value into value of
// appropriate type (32 bits minimum)
template <typename T> struct MinMaxTypeTraits {};
template <> struct MinMaxTypeTraits<unsigned char> { typedef int best_type; };
template <> struct MinMaxTypeTraits<signed char> { typedef int best_type; };
...
...
@@ -410,129 +412,208 @@ namespace cv { namespace gpu { namespace mathfunc
template <> struct MinMaxTypeTraits<float> { typedef float best_type; };
template <> struct MinMaxTypeTraits<double> { typedef double best_type; };
template <typename T, int op> struct Opt {};
// Available optimization operations
enum { OP_MIN, OP_MAX };
template <typename T>
struct Opt<T, MIN>
namespace minmax
{
static __device__ void call(unsigned int tid, unsigned int offset, volatile T* optval)
__constant__ int ctwidth;
__constant__ int ctheight;
static const unsigned int czero = 0;
// Estimates good thread configuration
// - threads variable satisfies to threads.x * threads.y == 256
void estimate_thread_cfg(dim3& threads, dim3& grid)
{
optval[tid] = min(optval[tid], optval[tid + offset]);
threads = dim3(64, 4);
grid = dim3(6, 5);
}
};
template <typename T>
struct Opt<T, MAX>
// Returns required buffer sizes
void get_buf_size_required(int elem_size, int& b1cols, int& b1rows, int& b2cols, int& b2rows)
{
static __device__ void call(unsigned int tid, unsigned int offset, volatile T* optval)
dim3 threads, grid;
estimate_thread_cfg(threads, grid);
b1cols = grid.x * grid.y * elem_size; b1rows = 1;
b2cols = grid.x * grid.y * elem_size; b2rows = 1;
}
// Estimates device constants which are used in the kernels using specified thread configuration
void estimate_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid)
{
optval[tid] = max(optval[tid], optval[tid + offset]);
int twidth = divUp(divUp(cols, grid.x), threads.x);
int theight = divUp(divUp(rows, grid.y), threads.y);
cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(ctwidth)));
cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(ctheight)));
}
};
// Does min and max in shared memory
template <typename T>
__device__ void merge(unsigned int tid, unsigned int offset, volatile T* minval, volatile T* maxval)
{
minval[tid] = min(minval[tid], minval[tid + offset]);
maxval[tid] = max(maxval[tid], maxval[tid + offset]);
}
template <int nthreads, int op, typename T>
__global__ void opt_kernel(int cols, int rows, const PtrStep src, PtrStep optval)
// Global counter of blocks finished its work
__device__ unsigned int blocks_finished;
template <int nthreads, typename T>
__global__ void min_max_kernel(int cols, int rows, const PtrStep src, T* minval, T* maxval)
{
typedef typename MinMaxTypeTraits<T>::best_type best_type;
__shared__ best_type soptval[nthreads];
__shared__ best_type sminval[nthreads];
__shared__ best_type smaxval[nthreads];
unsigned int x0 = blockIdx.x * blockDim.x;
unsigned int y0 = blockIdx.y * blockDim.y;
unsigned int x0 = blockIdx.x * blockDim.x
* ctwidth + threadIdx.x
;
unsigned int y0 = blockIdx.y * blockDim.y
* ctheight + threadIdx.y
;
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
if (x0 + threadIdx.x < cols && y0 + threadIdx.y < rows)
soptval[tid] = ((const T*)src.ptr(y0 + threadIdx.y))[x0 + threadIdx.x];
else
soptval[tid] = ((const T*)src.ptr(y0))[x0];
T val;
T mymin = numeric_limits_gpu<T>::max();
T mymax = numeric_limits_gpu<T>::min();
for (unsigned int y = 0; y < ctheight && y0 + y * blockDim.y < rows; ++y)
{
const T* ptr = (const T*)src.ptr(y0 + y * blockDim.y);
for (unsigned int x = 0; x < ctwidth && x0 + x * blockDim.x < cols; ++x)
{
val = ptr[x0 + x * blockDim.x];
mymin = min(mymin, val);
mymax = max(mymax, val);
}
}
sminval[tid] = mymin;
smaxval[tid] = mymax;
__syncthreads();
if (nthreads >= 512) if (tid < 256) {
Opt<best_type, op>::call(tid, 256, sopt
val); __syncthreads(); }
if (nthreads >= 256) if (tid < 128) {
Opt<best_type, op>::call(tid, 128, sopt
val); __syncthreads(); }
if (nthreads >= 128) if (tid < 64) {
Opt<best_type, op>::call(tid, 64, sopt
val); __syncthreads(); }
if (nthreads >= 512) if (tid < 256) {
merge(tid, 256, sminval, smax
val); __syncthreads(); }
if (nthreads >= 256) if (tid < 128) {
merge(tid, 128, sminval, smax
val); __syncthreads(); }
if (nthreads >= 128) if (tid < 64) {
merge(tid, 64, sminval, smax
val); __syncthreads(); }
if (tid < 32)
{
if (nthreads >= 64)
Opt<best_type, op>::call(tid, 32, sopt
val);
if (nthreads >= 32)
Opt<best_type, op>::call(tid, 16, sopt
val);
if (nthreads >= 16)
Opt<best_type, op>::call(tid, 8, sopt
val);
if (nthreads >= 8)
Opt<best_type, op>::call(tid, 4, sopt
val);
if (nthreads >= 4)
Opt<best_type, op>::call(tid, 2, sopt
val);
if (nthreads >= 2)
Opt<best_type, op>::call(tid, 1, sopt
val);
if (nthreads >= 64)
merge(tid, 32, sminval, smax
val);
if (nthreads >= 32)
merge(tid, 16, sminval, smax
val);
if (nthreads >= 16)
merge(tid, 8, sminval, smax
val);
if (nthreads >= 8)
merge(tid, 4, sminval, smax
val);
if (nthreads >= 4)
merge(tid, 2, sminval, smax
val);
if (nthreads >= 2)
merge(tid, 1, sminval, smax
val);
}
if (tid == 0) ((T*)optval.ptr(blockIdx.y))[blockIdx.x] = (T)soptval[0];
__syncthreads();
if (tid == 0)
{
minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0];
maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0];
}
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
// Process partial results in the first thread of the last block
if ((gridDim.x > 1 || gridDim.y > 1) && tid == 0)
{
__threadfence();
if (atomicInc(&blocks_finished, gridDim.x * gridDim.y) == gridDim.x * gridDim.y - 1)
{
mymin = numeric_limits_gpu<T>::max();
mymax = numeric_limits_gpu<T>::min();
for (unsigned int i = 0; i < gridDim.x * gridDim.y; ++i)
{
mymin = min(mymin, minval[i]);
mymax = max(mymax, maxval[i]);
}
minval[0] = mymin;
maxval[0] = mymax;
}
}
#endif
}
// This kernel will be used only when compute capability is 1.0
template <typename T>
void min_max_caller(const DevMem2D src, double* minval, double* maxval
)
__global__ void min_max_kernel_2ndstep(T* minval, T* maxval, int size
)
{
dim3 threads(32, 8);
T val;
T mymin = numeric_limits_gpu<T>::max();
T mymax = numeric_limits_gpu<T>::min();
for (unsigned int i = 0; i < size; ++i)
{
val = minval[i]; if (val < mymin) mymin = val;
val = maxval[i]; if (val > mymax) mymax = val;
}
minval[0] = mymin;
maxval[0] = mymax;
}
// Allocate memory for aux. buffers
DevMem2D minval_buf[2];
minval_buf[0].cols = divUp(src.cols, threads.x);
minval_buf[0].rows = divUp(src.rows, threads.y);
minval_buf[1].cols = divUp(minval_buf[0].cols, threads.x);
minval_buf[1].rows = divUp(minval_buf[0].rows, threads.y);
cudaSafeCall(cudaMallocPitch(&minval_buf[0].data, &minval_buf[0].step, minval_buf[0].cols * sizeof(T), minval_buf[0].rows));
cudaSafeCall(cudaMallocPitch(&minval_buf[1].data, &minval_buf[1].step, minval_buf[1].cols * sizeof(T), minval_buf[1].rows));
template <typename T>
void min_max_caller(const DevMem2D src, double* minval, double* maxval,
unsigned char* minval_buf, unsigned char* maxval_buf)
{
dim3 threads, grid;
estimate_thread_cfg(threads, grid);
estimate_kernel_consts(src.cols, src.rows, threads, grid);
DevMem2D maxval_buf[2];
maxval_buf[0].cols = divUp(src.cols, threads.x);
maxval_buf[0].rows = divUp(src.rows, threads.y);
maxval_buf[1].cols = divUp(maxval_buf[0].cols, threads.x);
maxval_buf[1].rows = divUp(maxval_buf[0].rows, threads.y);
cudaSafeCall(cudaMallocPitch(&maxval_buf[0].data, &maxval_buf[0].step, maxval_buf[0].cols * sizeof(T), maxval_buf[0].rows));
cudaSafeCall(cudaMallocPitch(&maxval_buf[1].data, &maxval_buf[1].step, maxval_buf[1].cols * sizeof(T), maxval_buf[1].rows));
cudaSafeCall(cudaMemcpyToSymbol(blocks_finished, &czero, sizeof(blocks_finished)));
min_max_kernel<256, T><<<grid, threads>>>(src.cols, src.rows, src, (T*)minval_buf, (T*)maxval_buf);
int curbuf = 0;
dim3 cursize(src.cols, src.rows);
dim3 grid(divUp(cursize.x, threads.x), divUp(cursize.y, threads.y));
cudaSafeCall(cudaThreadSynchronize());
opt_kernel<256, MIN, T><<<grid, threads>>>(cursize.x, cursize.y, src, minval_buf[curbuf]);
opt_kernel<256, MAX, T><<<grid, threads>>>(cursize.x, cursize.y, src, maxval_buf[curbuf]);
cursize = grid;
T minval_, maxval_;
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
*minval = minval_;
*maxval = maxval_;
}
while (cursize.x > 1 || cursize.y > 1)
template <typename T>
void min_max_caller_2steps(const DevMem2D src, double* minval, double* maxval,
unsigned char* minval_buf, unsigned char* maxval_buf)
{
grid.x = divUp(cursize.x, threads.x);
grid.y = divUp(cursize.y, threads.y);
opt_kernel<256, MIN, T><<<grid, threads>>>(cursize.x, cursize.y, minval_buf[curbuf], minval_buf[1 - curbuf]);
opt_kernel<256, MAX, T><<<grid, threads>>>(cursize.x, cursize.y, maxval_buf[curbuf], maxval_buf[1 - curbuf]);
curbuf = 1 - curbuf;
cursize = grid;
}
dim3 threads, grid;
estimate_thread_cfg(threads, grid);
estimate_kernel_consts(src.cols, src.rows, threads, grid);
cudaSafeCall(cudaMemcpyToSymbol(blocks_finished, &czero, sizeof(blocks_finished)));
min_max_kernel<256, T><<<grid, threads>>>(src.cols, src.rows, src, (T*)minval_buf, (T*)maxval_buf);
min_max_kernel_2ndstep<T><<<1, 1>>>((T*)minval_buf, (T*)maxval_buf, grid.x * grid.y);
cudaSafeCall(cudaThreadSynchronize());
// Copy results from device to host
T minval_, maxval_;
cudaSafeCall(cudaMemcpy(&minval_, minval_buf
[curbuf].ptr(0)
, sizeof(T), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf
[curbuf].ptr(0)
, sizeof(T), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
*minval = minval_;
*maxval = maxval_;
// Release aux. buffers
cudaSafeCall(cudaFree(minval_buf[0].data));
cudaSafeCall(cudaFree(minval_buf[1].data));
cudaSafeCall(cudaFree(maxval_buf[0].data));
cudaSafeCall(cudaFree(maxval_buf[1].data));
}
template void min_max_caller<unsigned char>(const DevMem2D, double*, double*);
template void min_max_caller<signed char>(const DevMem2D, double*, double*);
template void min_max_caller<unsigned short>(const DevMem2D, double*, double*);
template void min_max_caller<signed short>(const DevMem2D, double*, double*);
template void min_max_caller<int>(const DevMem2D, double*, double*);
template void min_max_caller<float>(const DevMem2D, double*, double*);
template void min_max_caller<double>(const DevMem2D, double*, double*);
template void min_max_caller<unsigned char>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
template void min_max_caller<signed char>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
template void min_max_caller<unsigned short>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
template void min_max_caller<signed short>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
template void min_max_caller<int>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
template void min_max_caller<float>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
template void min_max_caller<double>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
template void min_max_caller_2steps<unsigned char>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
template void min_max_caller_2steps<signed char>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
template void min_max_caller_2steps<unsigned short>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
template void min_max_caller_2steps<signed short>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
template void min_max_caller_2steps<int>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
template void min_max_caller_2steps<float>(const DevMem2D, double*, double*, unsigned char*, unsigned char*);
} // namespace minmax
namespace minmaxloc {
template <typename T, int op> struct OptLoc {};
template <typename T>
struct OptLoc<T, MIN>
struct OptLoc<T,
OP_
MIN>
{
static __device__ void call(unsigned int tid, unsigned int offset, volatile T* optval, volatile unsigned int* optloc)
{
...
...
@@ -546,7 +627,7 @@ namespace cv { namespace gpu { namespace mathfunc
};
template <typename T>
struct OptLoc<T, MAX>
struct OptLoc<T,
OP_
MAX>
{
static __device__ void call(unsigned int tid, unsigned int offset, volatile T* optval, volatile unsigned int* optloc)
{
...
...
@@ -693,17 +774,17 @@ namespace cv { namespace gpu { namespace mathfunc
dim3 cursize(src.cols, src.rows);
dim3 grid(divUp(cursize.x, threads.x), divUp(cursize.y, threads.y));
opt_loc_init_kernel<256, MIN, T><<<grid, threads>>>(cursize.x, cursize.y, src, minval_buf[curbuf], minloc_buf[curbuf]);
opt_loc_init_kernel<256, MAX, T><<<grid, threads>>>(cursize.x, cursize.y, src, maxval_buf[curbuf], maxloc_buf[curbuf]);
opt_loc_init_kernel<256,
OP_
MIN, T><<<grid, threads>>>(cursize.x, cursize.y, src, minval_buf[curbuf], minloc_buf[curbuf]);
opt_loc_init_kernel<256,
OP_
MAX, T><<<grid, threads>>>(cursize.x, cursize.y, src, maxval_buf[curbuf], maxloc_buf[curbuf]);
cursize = grid;
while (cursize.x > 1 || cursize.y > 1)
{
grid.x = divUp(cursize.x, threads.x);
grid.y = divUp(cursize.y, threads.y);
opt_loc_kernel<256, MIN, T><<<grid, threads>>>(cursize.x, cursize.y, minval_buf[curbuf], minloc_buf[curbuf],
opt_loc_kernel<256,
OP_
MIN, T><<<grid, threads>>>(cursize.x, cursize.y, minval_buf[curbuf], minloc_buf[curbuf],
minval_buf[1 - curbuf], minloc_buf[1 - curbuf]);
opt_loc_kernel<256, MAX, T><<<grid, threads>>>(cursize.x, cursize.y, maxval_buf[curbuf], maxloc_buf[curbuf],
opt_loc_kernel<256,
OP_
MAX, T><<<grid, threads>>>(cursize.x, cursize.y, maxval_buf[curbuf], maxloc_buf[curbuf],
maxval_buf[1 - curbuf], maxloc_buf[1 - curbuf]);
curbuf = 1 - curbuf;
cursize = grid;
...
...
@@ -744,4 +825,6 @@ namespace cv { namespace gpu { namespace mathfunc
template void min_max_loc_caller<float>(const DevMem2D, double*, double*, int*, int*, int*, int*);
template void min_max_loc_caller<double>(const DevMem2D, double*, double*, int*, int*, int*, int*);
} // namespace minmaxloc
}}}
tests/gpu/src/arithm.cpp
View file @
48183f10
...
...
@@ -678,8 +678,14 @@ struct CV_GpuMinMaxTest: public CvTest
void
run
(
int
)
{
int
depth_end
;
int
major
,
minor
;
cv
::
gpu
::
getComputeCapability
(
getDevice
(),
major
,
minor
);
minor
=
0
;
if
(
minor
>=
1
)
depth_end
=
CV_64F
;
else
depth_end
=
CV_32F
;
for
(
int
cn
=
1
;
cn
<=
4
;
++
cn
)
for
(
int
depth
=
CV_8U
;
depth
<=
CV_64F
;
++
depth
)
for
(
int
depth
=
CV_8U
;
depth
<=
depth_end
;
++
depth
)
{
int
rows
=
1
,
cols
=
3
;
test
(
rows
,
cols
,
cn
,
depth
);
...
...
@@ -703,10 +709,11 @@ struct CV_GpuMinMaxTest: public CvTest
}
double
minVal
,
maxVal
;
cv
::
Point
minLoc
,
maxLoc
;
Mat
src_
=
src
.
reshape
(
1
);
if
(
depth
!=
CV_8S
)
{
cv
::
Point
minLoc
,
maxLoc
;
cv
::
minMaxLoc
(
src_
,
&
minVal
,
&
maxVal
,
&
minLoc
,
&
maxLoc
);
}
else
...
...
@@ -727,8 +734,16 @@ struct CV_GpuMinMaxTest: public CvTest
cv
::
Point
minLoc_
,
maxLoc_
;
cv
::
gpu
::
minMax
(
cv
::
gpu
::
GpuMat
(
src
),
&
minVal_
,
&
maxVal_
);
CHECK
(
minVal
==
minVal_
,
CvTS
::
FAIL_INVALID_OUTPUT
);
CHECK
(
maxVal
==
maxVal_
,
CvTS
::
FAIL_INVALID_OUTPUT
);
if
(
abs
(
minVal
-
minVal_
)
>
1e-3
f
)
{
ts
->
printf
(
CvTS
::
CONSOLE
,
"
\n
fail: minVal=%f minVal_=%f rows=%d cols=%d depth=%d cn=%d
\n
"
,
minVal
,
minVal_
,
rows
,
cols
,
depth
,
cn
);
ts
->
set_failed_test_info
(
CvTS
::
FAIL_INVALID_OUTPUT
);
}
if
(
abs
(
maxVal
-
maxVal_
)
>
1e-3
f
)
{
ts
->
printf
(
CvTS
::
CONSOLE
,
"
\n
fail: maxVal=%f maxVal_=%f rows=%d cols=%d depth=%d cn=%d
\n
"
,
maxVal
,
maxVal_
,
rows
,
cols
,
depth
,
cn
);
ts
->
set_failed_test_info
(
CvTS
::
FAIL_INVALID_OUTPUT
);
}
}
};
...
...
@@ -742,7 +757,11 @@ struct CV_GpuMinMaxLocTest: public CvTest
void
run
(
int
)
{
for
(
int
depth
=
CV_8U
;
depth
<=
CV_64F
;
++
depth
)
int
depth_end
;
int
major
,
minor
;
cv
::
gpu
::
getComputeCapability
(
getDevice
(),
major
,
minor
);
if
(
minor
>=
1
)
depth_end
=
CV_64F
;
else
depth_end
=
CV_32F
;
for
(
int
depth
=
CV_8U
;
depth
<=
depth_end
;
++
depth
)
{
int
rows
=
1
,
cols
=
3
;
test
(
rows
,
cols
,
depth
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment