Commit 4632d658 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

doxygenated core and imgproc modules (C++ API only)

parent 201d4a06
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -1474,6 +1474,13 @@ inline LineIterator LineIterator::operator ++(int)
++(*this);
return it;
}
inline Point LineIterator::pos() const
{
Point p;
p.y = (ptr - ptr0)/step;
p.x = ((ptr - ptr0) - p.y*step)/elemSize;
return p;
}
#if 0
template<typename _Tp> inline VectorCommaInitializer_<_Tp>::
......
......@@ -227,6 +227,10 @@ LineIterator::LineIterator(const Mat& img, Point pt1, Point pt2,
minusStep = bt_pix;
count = dx + dy + 1;
}
this->ptr0 = img.data;
this->step = (int)step;
this->elemSize = bt_pix;
}
static void
......
......@@ -51,53 +51,172 @@
namespace cv
{
//! various border interpolation methods
enum { BORDER_REPLICATE=IPL_BORDER_REPLICATE, BORDER_CONSTANT=IPL_BORDER_CONSTANT,
BORDER_REFLECT=IPL_BORDER_REFLECT, BORDER_REFLECT_101=IPL_BORDER_REFLECT_101,
BORDER_REFLECT101=BORDER_REFLECT_101, BORDER_WRAP=IPL_BORDER_WRAP,
BORDER_TRANSPARENT, BORDER_DEFAULT=BORDER_REFLECT_101, BORDER_ISOLATED=16 };
//! 1D interpolation function: returns coordinate of the "donor" pixel for the specified location p.
CV_EXPORTS int borderInterpolate( int p, int len, int borderType );
/*!
The Base Class for 1D or Row-wise Filters
This is the base class for linear or non-linear filters that process 1D data.
In particular, such filters are used for the "horizontal" filtering parts in separable filters.
Several functions in OpenCV return Ptr<BaseRowFilter> for the specific types of filters,
and those pointers can be used directly or within cv::FilterEngine.
*/
class CV_EXPORTS BaseRowFilter
{
public:
//! the default constructor
BaseRowFilter();
//! the destructor
virtual ~BaseRowFilter();
//! the filtering operator. Must be overrided in the derived classes. The horizontal border interpolation is done outside of the class.
virtual void operator()(const uchar* src, uchar* dst,
int width, int cn) = 0;
int ksize, anchor;
};
/*!
The Base Class for Column-wise Filters
This is the base class for linear or non-linear filters that process columns of 2D arrays.
Such filters are used for the "vertical" filtering parts in separable filters.
Several functions in OpenCV return Ptr<BaseColumnFilter> for the specific types of filters,
and those pointers can be used directly or within cv::FilterEngine.
Unlike cv::BaseRowFilter, cv::BaseColumnFilter may have some context information,
i.e. box filter keeps the sliding sum of elements. To reset the state BaseColumnFilter::reset()
must be called (e.g. the method is called by cv::FilterEngine)
*/
class CV_EXPORTS BaseColumnFilter
{
public:
//! the default constructor
BaseColumnFilter();
//! the destructor
virtual ~BaseColumnFilter();
//! the filtering operator. Must be overrided in the derived classes. The vertical border interpolation is done outside of the class.
virtual void operator()(const uchar** src, uchar* dst, int dststep,
int dstcount, int width) = 0;
//! resets the internal buffers, if any
virtual void reset();
int ksize, anchor;
};
/*!
The Base Class for Non-Separable 2D Filters.
This is the base class for linear or non-linear 2D filters.
Several functions in OpenCV return Ptr<BaseFilter> for the specific types of filters,
and those pointers can be used directly or within cv::FilterEngine.
Similar to cv::BaseColumnFilter, the class may have some context information,
that should be reset using BaseFilter::reset() method before processing the new array.
*/
class CV_EXPORTS BaseFilter
{
public:
//! the default constructor
BaseFilter();
//! the destructor
virtual ~BaseFilter();
//! the filtering operator. The horizontal and the vertical border interpolation is done outside of the class.
virtual void operator()(const uchar** src, uchar* dst, int dststep,
int dstcount, int width, int cn) = 0;
//! resets the internal buffers, if any
virtual void reset();
Size ksize;
Point anchor;
};
/*!
The Main Class for Image Filtering.
The class can be used to apply an arbitrary filtering operation to an image.
It contains all the necessary intermediate buffers, it computes extrapolated values
of the "virtual" pixels outside of the image etc.
Pointers to the initialized cv::FilterEngine instances
are returned by various OpenCV functions, such as cv::createSeparableLinearFilter(),
cv::createLinearFilter(), cv::createGaussianFilter(), cv::createDerivFilter(),
cv::createBoxFilter() and cv::createMorphologyFilter().
Using the class you can process large images by parts and build complex pipelines
that include filtering as some of the stages. If all you need is to apply some pre-defined
filtering operation, you may use cv::filter2D(), cv::erode(), cv::dilate() etc.
functions that create FilterEngine internally.
Here is the example on how to use the class to implement Laplacian operator, which is the sum of
second-order derivatives. More complex variant for different types is implemented in cv::Laplacian().
\code
void laplace_f(const Mat& src, Mat& dst)
{
CV_Assert( src.type() == CV_32F );
// make sure the destination array has the proper size and type
dst.create(src.size(), src.type());
// get the derivative and smooth kernels for d2I/dx2.
// for d2I/dy2 we could use the same kernels, just swapped
Mat kd, ks;
getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
// let's process 10 source rows at once
int DELTA = std::min(10, src.rows);
Ptr<FilterEngine> Fxx = createSeparableLinearFilter(src.type(),
dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
Ptr<FilterEngine> Fyy = createSeparableLinearFilter(src.type(),
dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
int y = Fxx->start(src), dsty = 0, dy = 0;
Fyy->start(src);
const uchar* sptr = src.data + y*src.step;
// allocate the buffers for the spatial image derivatives;
// the buffers need to have more than DELTA rows, because at the
// last iteration the output may take max(kd.rows-1,ks.rows-1)
// rows more than the input.
Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() );
Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() );
// inside the loop we always pass DELTA rows to the filter
// (note that the "proceed" method takes care of possibe overflow, since
// it was given the actual image height in the "start" method)
// on output we can get:
// * < DELTA rows (the initial buffer accumulation stage)
// * = DELTA rows (settled state in the middle)
// * > DELTA rows (then the input image is over, but we generate
// "virtual" rows using the border mode and filter them)
// this variable number of output rows is dy.
// dsty is the current output row.
// sptr is the pointer to the first input row in the portion to process
for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy )
{
Fxx->proceed( sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step );
dy = Fyy->proceed( sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step );
if( dy > 0 )
{
Mat dstripe = dst.rowRange(dsty, dsty + dy);
add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe);
}
}
}
\endcode
*/
class CV_EXPORTS FilterEngine
{
public:
//! the default constructor
FilterEngine();
//! the full constructor. Either _filter2D or both _rowFilter and _columnFilter must be non-empty.
FilterEngine(const Ptr<BaseFilter>& _filter2D,
const Ptr<BaseRowFilter>& _rowFilter,
const Ptr<BaseColumnFilter>& _columnFilter,
......@@ -105,23 +224,31 @@ public:
int _rowBorderType=BORDER_REPLICATE,
int _columnBorderType=-1,
const Scalar& _borderValue=Scalar());
//! the destructor
virtual ~FilterEngine();
//! reinitializes the engine. The previously assigned filters are released.
void init(const Ptr<BaseFilter>& _filter2D,
const Ptr<BaseRowFilter>& _rowFilter,
const Ptr<BaseColumnFilter>& _columnFilter,
int srcType, int dstType, int bufType,
int _rowBorderType=BORDER_REPLICATE, int _columnBorderType=-1,
const Scalar& _borderValue=Scalar());
//! starts filtering of the specified ROI of an image of size wholeSize.
virtual int start(Size wholeSize, Rect roi, int maxBufRows=-1);
//! starts filtering of the specified ROI of the specified image.
virtual int start(const Mat& src, const Rect& srcRoi=Rect(0,0,-1,-1),
bool isolated=false, int maxBufRows=-1);
//! processes the next srcCount rows of the image.
virtual int proceed(const uchar* src, int srcStep, int srcCount,
uchar* dst, int dstStep);
//! applies filter to the specified ROI of the image. if srcRoi=(0,0,-1,-1), the whole image is filtered.
virtual void apply( const Mat& src, Mat& dst,
const Rect& srcRoi=Rect(0,0,-1,-1),
Point dstOfs=Point(0,0),
bool isolated=false);
//! returns true if the filter is separable
bool isSeparable() const { return (const BaseFilter*)filter2D == 0; }
//! returns the number
int remainingInputRows() const;
int remainingOutputRows() const;
......@@ -147,25 +274,31 @@ public:
Ptr<BaseColumnFilter> columnFilter;
};
//! type of the kernel
enum { KERNEL_GENERAL=0, KERNEL_SYMMETRICAL=1, KERNEL_ASYMMETRICAL=2,
KERNEL_SMOOTH=4, KERNEL_INTEGER=8 };
//! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients.
CV_EXPORTS int getKernelType(const Mat& kernel, Point anchor);
//! returns the primitive row filter with the specified kernel
CV_EXPORTS Ptr<BaseRowFilter> getLinearRowFilter(int srcType, int bufType,
const Mat& kernel, int anchor,
int symmetryType);
//! returns the primitive column filter with the specified kernel
CV_EXPORTS Ptr<BaseColumnFilter> getLinearColumnFilter(int bufType, int dstType,
const Mat& kernel, int anchor,
int symmetryType, double delta=0,
int bits=0);
//! returns 2D filter with the specified kernel
CV_EXPORTS Ptr<BaseFilter> getLinearFilter(int srcType, int dstType,
const Mat& kernel,
Point anchor=Point(-1,-1),
double delta=0, int bits=0);
//! returns the separable linear filter engine
CV_EXPORTS Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstType,
const Mat& rowKernel, const Mat& columnKernel,
Point _anchor=Point(-1,-1), double delta=0,
......@@ -173,69 +306,87 @@ CV_EXPORTS Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstTyp
int _columnBorderType=-1,
const Scalar& _borderValue=Scalar());
//! returns the non-separable linear filter engine
CV_EXPORTS Ptr<FilterEngine> createLinearFilter(int srcType, int dstType,
const Mat& kernel, Point _anchor=Point(-1,-1),
double delta=0, int _rowBorderType=BORDER_DEFAULT,
int _columnBorderType=-1, const Scalar& _borderValue=Scalar());
//! returns the Gaussian kernel with the specified parameters
CV_EXPORTS Mat getGaussianKernel( int ksize, double sigma, int ktype=CV_64F );
//! returns the Gaussian filter engine
CV_EXPORTS Ptr<FilterEngine> createGaussianFilter( int type, Size ksize,
double sigma1, double sigma2=0,
int borderType=BORDER_DEFAULT);
//! initializes kernels of the generalized Sobel operator
CV_EXPORTS void getDerivKernels( Mat& kx, Mat& ky, int dx, int dy, int ksize,
bool normalize=false, int ktype=CV_32F );
//! returns filter engine for the generalized Sobel operator
CV_EXPORTS Ptr<FilterEngine> createDerivFilter( int srcType, int dstType,
int dx, int dy, int ksize,
int borderType=BORDER_DEFAULT );
//! returns horizontal 1D box filter
CV_EXPORTS Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType,
int ksize, int anchor=-1);
//! returns vertical 1D box filter
CV_EXPORTS Ptr<BaseColumnFilter> getColumnSumFilter(int sumType, int dstType,
int ksize, int anchor=-1,
double scale=1);
//! returns box filter engine
CV_EXPORTS Ptr<FilterEngine> createBoxFilter( int srcType, int dstType, Size ksize,
Point anchor=Point(-1,-1),
bool normalize=true,
int borderType=BORDER_DEFAULT);
//! type of morphological operation
enum { MORPH_ERODE=0, MORPH_DILATE=1, MORPH_OPEN=2, MORPH_CLOSE=3,
MORPH_GRADIENT=4, MORPH_TOPHAT=5, MORPH_BLACKHAT=6 };
//! returns horizontal 1D morphological filter
CV_EXPORTS Ptr<BaseRowFilter> getMorphologyRowFilter(int op, int type, int ksize, int anchor=-1);
//! returns vertical 1D morphological filter
CV_EXPORTS Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int anchor=-1);
//! returns 2D morphological filter
CV_EXPORTS Ptr<BaseFilter> getMorphologyFilter(int op, int type, const Mat& kernel,
Point anchor=Point(-1,-1));
//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }
//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
CV_EXPORTS Ptr<FilterEngine> createMorphologyFilter(int op, int type, const Mat& kernel,
Point anchor=Point(-1,-1), int _rowBorderType=BORDER_CONSTANT,
int _columnBorderType=-1,
const Scalar& _borderValue=morphologyDefaultBorderValue());
//! shape of the structuring element
enum { MORPH_RECT=0, MORPH_CROSS=1, MORPH_ELLIPSE=2 };
//! returns structuring element of the specified shape and size
CV_EXPORTS Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1));
template<> CV_EXPORTS void Ptr<IplConvKernel>::delete_obj();
//! copies 2D array to a larger destination array with extrapolation of the outer part of src using the specified border mode
CV_EXPORTS void copyMakeBorder( const Mat& src, Mat& dst,
int top, int bottom, int left, int right,
int borderType, const Scalar& value=Scalar() );
//! smooths the image using median filter.
CV_EXPORTS void medianBlur( const Mat& src, Mat& dst, int ksize );
//! smooths the image using Gaussian filter.
CV_EXPORTS void GaussianBlur( const Mat& src, Mat& dst, Size ksize,
double sigma1, double sigma2=0,
int borderType=BORDER_DEFAULT );
//! smooths the image using bilateral filter
CV_EXPORTS void bilateralFilter( const Mat& src, Mat& dst, int d,
double sigmaColor, double sigmaSpace,
int borderType=BORDER_DEFAULT );
//! smooths the image using the box filter. Each pixel is processed in O(1) time
CV_EXPORTS void boxFilter( const Mat& src, Mat& dst, int ddepth,
Size ksize, Point anchor=Point(-1,-1),
bool normalize=true,
int borderType=BORDER_DEFAULT );
//! a synonym for normalized box filter
static inline void blur( const Mat& src, Mat& dst,
Size ksize, Point anchor=Point(-1,-1),
int borderType=BORDER_DEFAULT )
......@@ -243,94 +394,127 @@ static inline void blur( const Mat& src, Mat& dst,
boxFilter( src, dst, -1, ksize, anchor, true, borderType );
}
//! applies non-separable 2D linear filter to the image
CV_EXPORTS void filter2D( const Mat& src, Mat& dst, int ddepth,
const Mat& kernel, Point anchor=Point(-1,-1),
double delta=0, int borderType=BORDER_DEFAULT );
//! applies separable 2D linear filter to the image
CV_EXPORTS void sepFilter2D( const Mat& src, Mat& dst, int ddepth,
const Mat& kernelX, const Mat& kernelY,
Point anchor=Point(-1,-1),
double delta=0, int borderType=BORDER_DEFAULT );
//! applies generalized Sobel operator to the image
CV_EXPORTS void Sobel( const Mat& src, Mat& dst, int ddepth,
int dx, int dy, int ksize=3,
double scale=1, double delta=0,
int borderType=BORDER_DEFAULT );
//! applies the vertical or horizontal Scharr operator to the image
CV_EXPORTS void Scharr( const Mat& src, Mat& dst, int ddepth,
int dx, int dy, double scale=1, double delta=0,
int borderType=BORDER_DEFAULT );
//! applies Laplacian operator to the image
CV_EXPORTS void Laplacian( const Mat& src, Mat& dst, int ddepth,
int ksize=1, double scale=1, double delta=0,
int borderType=BORDER_DEFAULT );
//! applies Canny edge detector and produces the edge map.
CV_EXPORTS void Canny( const Mat& image, Mat& edges,
double threshold1, double threshold2,
int apertureSize=3, bool L2gradient=false );
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
CV_EXPORTS void cornerMinEigenVal( const Mat& src, Mat& dst,
int blockSize, int ksize=3,
int borderType=BORDER_DEFAULT );
//! computes Harris cornerness criteria at each image pixel
CV_EXPORTS void cornerHarris( const Mat& src, Mat& dst, int blockSize,
int ksize, double k,
int borderType=BORDER_DEFAULT );
//! computes both eigenvalues and the eigenvectors of 2x2 derivative covariation matrix at each pixel. The output is stored as 6-channel matrix.
CV_EXPORTS void cornerEigenValsAndVecs( const Mat& src, Mat& dst,
int blockSize, int ksize,
int borderType=BORDER_DEFAULT );
//! computes another complex cornerness criteria at each pixel
CV_EXPORTS void preCornerDetect( const Mat& src, Mat& dst, int ksize,
int borderType=BORDER_DEFAULT );
//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria
CV_EXPORTS void cornerSubPix( const Mat& image, vector<Point2f>& corners,
Size winSize, Size zeroZone,
TermCriteria criteria );
//! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima
CV_EXPORTS void goodFeaturesToTrack( const Mat& image, vector<Point2f>& corners,
int maxCorners, double qualityLevel, double minDistance,
const Mat& mask=Mat(), int blockSize=3,
bool useHarrisDetector=false, double k=0.04 );
//! finds lines in the black-n-white image using the standard or pyramid Hough transform
CV_EXPORTS void HoughLines( const Mat& image, vector<Vec2f>& lines,
double rho, double theta, int threshold,
double srn=0, double stn=0 );
//! finds line segments in the black-n-white image using probabalistic Hough transform
CV_EXPORTS void HoughLinesP( Mat& image, vector<Vec4i>& lines,
double rho, double theta, int threshold,
double minLineLength=0, double maxLineGap=0 );
//! finds circles in the grayscale image using 2+1 gradient Hough transform
CV_EXPORTS void HoughCircles( const Mat& image, vector<Vec3f>& circles,
int method, double dp, double minDist,
double param1=100, double param2=100,
int minRadius=0, int maxRadius=0 );
//! erodes the image (applies the local minimum operator)
CV_EXPORTS void erode( const Mat& src, Mat& dst, const Mat& kernel,
Point anchor=Point(-1,-1), int iterations=1,
int borderType=BORDER_CONSTANT,
const Scalar& borderValue=morphologyDefaultBorderValue() );
//! dilates the image (applies the local maximum operator)
CV_EXPORTS void dilate( const Mat& src, Mat& dst, const Mat& kernel,
Point anchor=Point(-1,-1), int iterations=1,
int borderType=BORDER_CONSTANT,
const Scalar& borderValue=morphologyDefaultBorderValue() );
//! applies an advanced morphological operation to the image
CV_EXPORTS void morphologyEx( const Mat& src, Mat& dst, int op, const Mat& kernel,
Point anchor=Point(-1,-1), int iterations=1,
int borderType=BORDER_CONSTANT,
const Scalar& borderValue=morphologyDefaultBorderValue() );
enum { INTER_NEAREST=0, INTER_LINEAR=1, INTER_CUBIC=2, INTER_AREA=3,
INTER_LANCZOS4=4, INTER_MAX=7, WARP_INVERSE_MAP=16 };
//! interpolation algorithm
enum
{
INTER_NEAREST=0, //!< nearest neighbor interpolation
INTER_LINEAR=1, //!< bilinear interpolation
INTER_CUBIC=2, //!< bicubic interpolation
INTER_AREA=3, //!< area-based (or super) interpolation
INTER_LANCZOS4=4, //!< Lanczos interpolation over 8x8 neighborhood
INTER_MAX=7,
WARP_INVERSE_MAP=16
};
//! resizes the image
CV_EXPORTS void resize( const Mat& src, Mat& dst,
Size dsize, double fx=0, double fy=0,
int interpolation=INTER_LINEAR );
//! warps the image using affine transformation
CV_EXPORTS void warpAffine( const Mat& src, Mat& dst,
const Mat& M, Size dsize,
int flags=INTER_LINEAR,
int borderMode=BORDER_CONSTANT,
const Scalar& borderValue=Scalar());
//! warps the image using perspective transformation
CV_EXPORTS void warpPerspective( const Mat& src, Mat& dst,
const Mat& M, Size dsize,
int flags=INTER_LINEAR,
......@@ -340,213 +524,302 @@ CV_EXPORTS void warpPerspective( const Mat& src, Mat& dst,
enum { INTER_BITS=5, INTER_BITS2=INTER_BITS*2,
INTER_TAB_SIZE=(1<<INTER_BITS),
INTER_TAB_SIZE2=INTER_TAB_SIZE*INTER_TAB_SIZE };
//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format
CV_EXPORTS void remap( const Mat& src, Mat& dst, const Mat& map1, const Mat& map2,
int interpolation, int borderMode=BORDER_CONSTANT,
const Scalar& borderValue=Scalar());
//! converts maps for remap from floating-point to fixed-point format or backwards
CV_EXPORTS void convertMaps( const Mat& map1, const Mat& map2, Mat& dstmap1, Mat& dstmap2,
int dstmap1type, bool nninterpolation=false );
//! returns 2x3 affine transformation matrix for the planar rotation.
CV_EXPORTS Mat getRotationMatrix2D( Point2f center, double angle, double scale );
//! returns 3x3 perspective transformation for the corresponding 4 point pairs.
CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] );
//! returns 2x3 affine transformation for the corresponding 3 point pairs.
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
//! computes 2x3 affine transformation matrix that is inverse to the specified 2x3 affine transformation.
CV_EXPORTS void invertAffineTransform(const Mat& M, Mat& iM);
//! extracts rectangle from the image at sub-pixel location
CV_EXPORTS void getRectSubPix( const Mat& image, Size patchSize,
Point2f center, Mat& patch, int patchType=-1 );
//! computes the integral image
CV_EXPORTS void integral( const Mat& src, Mat& sum, int sdepth=-1 );
//! computes the integral image and integral for the squared image
CV_EXPORTS void integral( const Mat& src, Mat& sum, Mat& sqsum, int sdepth=-1 );
//! computes the integral image, integral for the squared image and the tilted integral image
CV_EXPORTS void integral( const Mat& src, Mat& sum, Mat& sqsum, Mat& tilted, int sdepth=-1 );
//! adds image to the accumulator (dst += src). Unlike cv::add, dst and src can have different types.
CV_EXPORTS void accumulate( const Mat& src, Mat& dst, const Mat& mask=Mat() );
//! adds squared src image to the accumulator (dst += src*src).
CV_EXPORTS void accumulateSquare( const Mat& src, Mat& dst, const Mat& mask=Mat() );
//! adds product of the 2 images to the accumulator (dst += src1*src2).
CV_EXPORTS void accumulateProduct( const Mat& src1, const Mat& src2,
Mat& dst, const Mat& mask=Mat() );
//! updates the running average (dst = dst*(1-alpha) + src*alpha)
CV_EXPORTS void accumulateWeighted( const Mat& src, Mat& dst,
double alpha, const Mat& mask=Mat() );
//! type of the threshold operation
enum { THRESH_BINARY=0, THRESH_BINARY_INV=1, THRESH_TRUNC=2, THRESH_TOZERO=3,
THRESH_TOZERO_INV=4, THRESH_MASK=7, THRESH_OTSU=8 };
//! applies fixed threshold to the image
CV_EXPORTS double threshold( const Mat& src, Mat& dst, double thresh, double maxval, int type );
//! adaptive threshold algorithm
enum { ADAPTIVE_THRESH_MEAN_C=0, ADAPTIVE_THRESH_GAUSSIAN_C=1 };
//! applies variable (adaptive) threshold to the image
CV_EXPORTS void adaptiveThreshold( const Mat& src, Mat& dst, double maxValue,
int adaptiveMethod, int thresholdType,
int blockSize, double C );
//! smooths and downsamples the image
CV_EXPORTS void pyrDown( const Mat& src, Mat& dst, const Size& dstsize=Size());
//! upsamples and smoothes the image
CV_EXPORTS void pyrUp( const Mat& src, Mat& dst, const Size& dstsize=Size());
//! builds the gaussian pyramid using pyrDown() as a basic operation
CV_EXPORTS void buildPyramid( const Mat& src, vector<Mat>& dst, int maxlevel );
//! corrects lens distortion for the given camera matrix and distortion coefficients
CV_EXPORTS void undistort( const Mat& src, Mat& dst, const Mat& cameraMatrix,
const Mat& distCoeffs, const Mat& newCameraMatrix=Mat() );
//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image
CV_EXPORTS void initUndistortRectifyMap( const Mat& cameraMatrix, const Mat& distCoeffs,
const Mat& R, const Mat& newCameraMatrix,
Size size, int m1type, Mat& map1, Mat& map2 );
//! returns the default new camera matrix (by default it is the same as cameraMatrix unless centerPricipalPoint=true)
CV_EXPORTS Mat getDefaultNewCameraMatrix( const Mat& cameraMatrix, Size imgsize=Size(),
bool centerPrincipalPoint=false );
//! returns points' coordinates after lens distortion correction
CV_EXPORTS void undistortPoints( const Mat& src, vector<Point2f>& dst,
const Mat& cameraMatrix, const Mat& distCoeffs,
const Mat& R=Mat(), const Mat& P=Mat());
//! returns points' coordinates after lens distortion correction
CV_EXPORTS void undistortPoints( const Mat& src, Mat& dst,
const Mat& cameraMatrix, const Mat& distCoeffs,
const Mat& R=Mat(), const Mat& P=Mat());
template<> CV_EXPORTS void Ptr<CvHistogram>::delete_obj();
//! computes the joint dense histogram for a set of images.
CV_EXPORTS void calcHist( const Mat* images, int nimages,
const int* channels, const Mat& mask,
MatND& hist, int dims, const int* histSize,
const float** ranges, bool uniform=true,
bool accumulate=false );
//! computes the joint sparse histogram for a set of images.
CV_EXPORTS void calcHist( const Mat* images, int nimages,
const int* channels, const Mat& mask,
SparseMat& hist, int dims, const int* histSize,
const float** ranges, bool uniform=true,
bool accumulate=false );
//! computes back projection for the set of images
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
const int* channels, const MatND& hist,
Mat& backProject, const float** ranges,
double scale=1, bool uniform=true );
//! computes back projection for the set of images
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
const int* channels, const SparseMat& hist,
Mat& backProject, const float** ranges,
double scale=1, bool uniform=true );
//! compares two histograms stored in dense arrays
CV_EXPORTS double compareHist( const MatND& H1, const MatND& H2, int method );
//! compares two histograms stored in sparse arrays
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
//! normalizes the grayscale image brightness and contrast by normalizing its histogram
CV_EXPORTS void equalizeHist( const Mat& src, Mat& dst );
//! segments the image using watershed algorithm
CV_EXPORTS void watershed( const Mat& image, Mat& markers );
enum { GC_BGD = 0, // background
GC_FGD = 1, // foreground
GC_PR_BGD = 2, // most probably background
GC_PR_FGD = 3 // most probably foreground
//! class of the pixel in GrabCut algorithm
enum { GC_BGD = 0, //!< background
GC_FGD = 1, //!< foreground
GC_PR_BGD = 2, //!< most probably background
GC_PR_FGD = 3 //!< most probably foreground
};
//! GrabCut algorithm flags
enum { GC_INIT_WITH_RECT = 0,
GC_INIT_WITH_MASK = 1,
GC_EVAL = 2
};
//! segments the image using GrabCut algorithm
CV_EXPORTS void grabCut( const Mat& img, Mat& mask, Rect rect,
Mat& bgdModel, Mat& fgdModel,
int iterCount, int mode = GC_EVAL );
enum { INPAINT_NS=0, INPAINT_TELEA=1 };
//! the inpainting algorithm
enum
{
INPAINT_NS=0, // Navier-Stokes algorithm
INPAINT_TELEA=1 // A. Telea algorithm
};
//! restores the damaged image areas using one of the available intpainting algorithms
CV_EXPORTS void inpaint( const Mat& src, const Mat& inpaintMask,
Mat& dst, double inpaintRange, int flags );
//! builds the discrete Voronoi diagram
CV_EXPORTS void distanceTransform( const Mat& src, Mat& dst, Mat& labels,
int distanceType, int maskSize );
//! computes the distance transform map
CV_EXPORTS void distanceTransform( const Mat& src, Mat& dst,
int distanceType, int maskSize );
enum { FLOODFILL_FIXED_RANGE = 1 << 16,
FLOODFILL_MASK_ONLY = 1 << 17 };
//! fills the semi-uniform image region starting from the specified seed point
CV_EXPORTS int floodFill( Mat& image,
Point seedPoint, Scalar newVal, Rect* rect=0,
Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
int flags=4 );
//! fills the semi-uniform image region and/or the mask starting from the specified seed point
CV_EXPORTS int floodFill( Mat& image, Mat& mask,
Point seedPoint, Scalar newVal, Rect* rect=0,
Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
int flags=4 );
//! converts image from one color space to another
CV_EXPORTS void cvtColor( const Mat& src, Mat& dst, int code, int dstCn=0 );
//! raster image moments
class CV_EXPORTS Moments
{
public:
//! the default constructor
Moments();
//! the full constructor
Moments(double m00, double m10, double m01, double m20, double m11,
double m02, double m30, double m21, double m12, double m03 );
//! the conversion from CvMoments
Moments( const CvMoments& moments );
//! the conversion to CvMoments
operator CvMoments() const;
double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03; // spatial moments
double mu20, mu11, mu02, mu30, mu21, mu12, mu03; // central moments
double nu20, nu11, nu02, nu30, nu21, nu12, nu03; // central normalized moments
//! spatial moments
double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;
//! central moments
double mu20, mu11, mu02, mu30, mu21, mu12, mu03;
//! central normalized moments
double nu20, nu11, nu02, nu30, nu21, nu12, nu03;
};
//! computes moments of the rasterized shape or a vector of points
CV_EXPORTS Moments moments( const Mat& array, bool binaryImage=false );
//! computes 7 Hu invariants from the moments
CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
//! type of the template matching operation
enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 };
//! computes the proximity map for the raster template and the image where the template is searched for
CV_EXPORTS void matchTemplate( const Mat& image, const Mat& templ, Mat& result, int method );
enum { RETR_EXTERNAL=0, RETR_LIST=1, RETR_CCOMP=2, RETR_TREE=3 };
//! mode of the contour retrieval algorithm
enum
{
RETR_EXTERNAL=0, //!< retrieve only the most external (top-level) contours
RETR_LIST=1, //!< retrieve all the contours without any hierarchical information
RETR_CCOMP=2, //!< retrieve the connected components (that can possibly be nested)
RETR_TREE=3 //!< retrieve all the contours and the whole hierarchy
};
enum { CHAIN_APPROX_NONE=0, CHAIN_APPROX_SIMPLE=1,
CHAIN_APPROX_TC89_L1=2, CHAIN_APPROX_TC89_KCOS=3 };
//! the contour approximation algorithm
enum
{
CHAIN_APPROX_NONE=0,
CHAIN_APPROX_SIMPLE=1,
CHAIN_APPROX_TC89_L1=2,
CHAIN_APPROX_TC89_KCOS=3
};
//! retrieves contours and the hierarchical information from black-n-white image.
CV_EXPORTS void findContours( Mat& image, vector<vector<Point> >& contours,
vector<Vec4i>& hierarchy, int mode,
int method, Point offset=Point());
//! retrieves contours from black-n-white image.
CV_EXPORTS void findContours( Mat& image, vector<vector<Point> >& contours,
int mode, int method, Point offset=Point());
//! draws contours in the image
CV_EXPORTS void drawContours( Mat& image, const vector<vector<Point> >& contours,
int contourIdx, const Scalar& color,
int thickness=1, int lineType=8,
const vector<Vec4i>& hierarchy=vector<Vec4i>(),
int maxLevel=INT_MAX, Point offset=Point() );
//! approximates contour or a curve using Douglas-Peucker algorithm
CV_EXPORTS void approxPolyDP( const Mat& curve,
vector<Point>& approxCurve,
double epsilon, bool closed );
//! approximates contour or a curve using Douglas-Peucker algorithm
CV_EXPORTS void approxPolyDP( const Mat& curve,
vector<Point2f>& approxCurve,
double epsilon, bool closed );
//! computes the contour perimeter (closed=true) or a curve length
CV_EXPORTS double arcLength( const Mat& curve, bool closed );
//! computes the bounding rectangle for a contour
CV_EXPORTS Rect boundingRect( const Mat& points );
CV_EXPORTS double contourArea( const Mat& contour, bool oriented=false );
//! computes the contour area
CV_EXPORTS double contourArea( const Mat& contour, bool oriented=false );
//! computes the minimal rotated rectangle for a set of points
CV_EXPORTS RotatedRect minAreaRect( const Mat& points );
//! computes the minimal enclosing circle for a set of points
CV_EXPORTS void minEnclosingCircle( const Mat& points,
Point2f& center, float& radius );
//! matches two contours using one of the available algorithms
CV_EXPORTS double matchShapes( const Mat& contour1,
const Mat& contour2,
int method, double parameter );
//! computes convex hull for a set of 2D points.
CV_EXPORTS void convexHull( const Mat& points, vector<int>& hull, bool clockwise=false );
//! computes convex hull for a set of 2D points.
CV_EXPORTS void convexHull( const Mat& points, vector<Point>& hull, bool clockwise=false );
//! computes convex hull for a set of 2D points.
CV_EXPORTS void convexHull( const Mat& points, vector<Point2f>& hull, bool clockwise=false );
//! returns true iff the contour is convex. Does not support contours with self-intersection
CV_EXPORTS bool isContourConvex( const Mat& contour );
//! fits ellipse to the set of 2D points
CV_EXPORTS RotatedRect fitEllipse( const Mat& points );
//! fits line to the set of 2D points using M-estimator algorithm
CV_EXPORTS void fitLine( const Mat& points, Vec4f& line, int distType,
double param, double reps, double aeps );
//! fits line to the set of 3D points using M-estimator algorithm
CV_EXPORTS void fitLine( const Mat& points, Vec6f& line, int distType,
double param, double reps, double aeps );
//! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary
CV_EXPORTS double pointPolygonTest( const Mat& contour,
Point2f pt, bool measureDist );
//! estimates the best-fit affine transformation that maps one 2D point set to another or one image to another.
CV_EXPORTS Mat estimateRigidTransform( const Mat& A, const Mat& B,
bool fullAffine );
//! computes the best-fit affine transformation that maps one 3D point set to another (RANSAC algorithm is used)
CV_EXPORTS int estimateAffine3D(const Mat& from, const Mat& to, Mat& out,
vector<uchar>& outliers,
double param1 = 3.0, double param2 = 0.99);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment