Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
455349a0
Commit
455349a0
authored
Jun 06, 2012
by
Alexander Mordvintsev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
comments for digits.py sample
parent
03a14bb5
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
61 additions
and
52 deletions
+61
-52
common.py
samples/python2/common.py
+20
-0
digits.py
samples/python2/digits.py
+41
-52
No files found.
samples/python2/common.py
View file @
455349a0
...
@@ -2,6 +2,7 @@ import numpy as np
...
@@ -2,6 +2,7 @@ import numpy as np
import
cv2
import
cv2
import
os
import
os
from
contextlib
import
contextmanager
from
contextlib
import
contextmanager
import
itertools
as
it
image_extensions
=
[
'.bmp'
,
'.jpg'
,
'.jpeg'
,
'.png'
,
'.tif'
,
'.tiff'
,
'.pbm'
,
'.pgm'
,
'.ppm'
]
image_extensions
=
[
'.bmp'
,
'.jpg'
,
'.jpeg'
,
'.png'
,
'.tif'
,
'.tiff'
,
'.pbm'
,
'.pgm'
,
'.ppm'
]
...
@@ -170,3 +171,22 @@ class RectSelector:
...
@@ -170,3 +171,22 @@ class RectSelector:
return
return
x0
,
y0
,
x1
,
y1
=
self
.
drag_rect
x0
,
y0
,
x1
,
y1
=
self
.
drag_rect
cv2
.
rectangle
(
vis
,
(
x0
,
y0
),
(
x1
,
y1
),
(
0
,
255
,
0
),
2
)
cv2
.
rectangle
(
vis
,
(
x0
,
y0
),
(
x1
,
y1
),
(
0
,
255
,
0
),
2
)
def
grouper
(
n
,
iterable
,
fillvalue
=
None
):
'''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
args
=
[
iter
(
iterable
)]
*
n
return
it
.
izip_longest
(
fillvalue
=
fillvalue
,
*
args
)
def
mosaic
(
w
,
imgs
):
'''Make a grid from images.
w -- number of grid columns
imgs -- images (must have same size and format)
'''
imgs
=
iter
(
imgs
)
img0
=
imgs
.
next
()
pad
=
np
.
zeros_like
(
img0
)
imgs
=
it
.
chain
([
img0
],
imgs
)
rows
=
grouper
(
w
,
imgs
,
pad
)
return
np
.
vstack
(
map
(
np
.
hstack
,
rows
))
samples/python2/digits.py
View file @
455349a0
import
numpy
as
np
import
cv2
import
itertools
as
it
'''
'''
from scipy.io import loadmat
Neural network digit recognition sample.
Usage:
digits.py
m = loadmat('ex4data1.mat')
Sample loads a dataset of handwritten digits from 'digits.png'.
X = m['X'].reshape(-1, 20, 20)
Then it trains a neural network classifier on it and evaluates
X = np.transpose(X, (0, 2, 1))
its classification accuracy.
img = np.vstack(map(np.hstack, X.reshape(-1, 100, 20, 20)))
img = np.uint8(np.clip(img, 0, 1)*255)
cv2.imwrite('digits.png', img)
'''
'''
import
numpy
as
np
import
cv2
from
common
import
mosaic
def
unroll_responses
(
responses
,
class_n
):
def
unroll_responses
(
responses
,
class_n
):
'''[1, 0, 2, ...] -> [[0, 1, 0], [1, 0, 0], [0, 0, 1], ...]'''
sample_n
=
len
(
responses
)
sample_n
=
len
(
responses
)
new_responses
=
np
.
zeros
((
sample_n
,
class_n
),
np
.
float32
)
new_responses
=
np
.
zeros
((
sample_n
,
class_n
),
np
.
float32
)
new_responses
[
np
.
arange
(
sample_n
),
responses
]
=
1
new_responses
[
np
.
arange
(
sample_n
),
responses
]
=
1
return
new_responses
return
new_responses
SZ
=
20
SZ
=
20
# size of each digit is SZ x SZ
CLASS_N
=
10
digits_img
=
cv2
.
imread
(
'digits.png'
,
0
)
digits_img
=
cv2
.
imread
(
'digits.png'
,
0
)
# prepare dataset
h
,
w
=
digits_img
.
shape
h
,
w
=
digits_img
.
shape
digits
=
[
np
.
hsplit
(
row
,
w
/
SZ
)
for
row
in
np
.
vsplit
(
digits_img
,
h
/
SZ
)]
digits
=
[
np
.
hsplit
(
row
,
w
/
SZ
)
for
row
in
np
.
vsplit
(
digits_img
,
h
/
SZ
)]
digits
=
np
.
float32
(
digits
)
.
reshape
(
-
1
,
SZ
*
SZ
)
digits
=
np
.
float32
(
digits
)
.
reshape
(
-
1
,
SZ
*
SZ
)
N
=
len
(
digits
)
N
=
len
(
digits
)
labels
=
np
.
repeat
(
np
.
arange
(
10
),
N
/
10
)
labels
=
np
.
repeat
(
np
.
arange
(
CLASS_N
),
N
/
CLASS_N
)
# split it onto train and test subsets
shuffle
=
np
.
random
.
permutation
(
N
)
shuffle
=
np
.
random
.
permutation
(
N
)
train_n
=
int
(
0.9
*
N
)
train_n
=
int
(
0.9
*
N
)
digits_train
,
digits_test
=
np
.
split
(
digits
[
shuffle
],
[
train_n
])
digits_train
,
digits_test
=
np
.
split
(
digits
[
shuffle
],
[
train_n
])
labels_train
,
labels_test
=
np
.
split
(
labels
[
shuffle
],
[
train_n
])
labels_train
,
labels_test
=
np
.
split
(
labels
[
shuffle
],
[
train_n
])
labels_train_unrolled
=
unroll_responses
(
labels_train
,
10
)
# train model
model
=
cv2
.
ANN_MLP
()
model
=
cv2
.
ANN_MLP
()
layer_sizes
=
np
.
int32
([
SZ
*
SZ
,
25
,
10
])
layer_sizes
=
np
.
int32
([
SZ
*
SZ
,
25
,
CLASS_N
])
model
.
create
(
layer_sizes
)
model
.
create
(
layer_sizes
)
params
=
dict
(
term_crit
=
(
cv2
.
TERM_CRITERIA_COUNT
,
100
,
0.01
),
# CvANN_MLP_TrainParams::BACKPROP,0.001
params
=
dict
(
term_crit
=
(
cv2
.
TERM_CRITERIA_COUNT
,
300
,
0.01
),
train_method
=
cv2
.
ANN_MLP_TRAIN_PARAMS_BACKPROP
,
train_method
=
cv2
.
ANN_MLP_TRAIN_PARAMS_BACKPROP
,
bp_dw_scale
=
0.001
,
bp_dw_scale
=
0.001
,
bp_moment_scale
=
0.0
)
bp_moment_scale
=
0.0
)
print
'training...'
print
'training...'
labels_train_unrolled
=
unroll_responses
(
labels_train
,
CLASS_N
)
model
.
train
(
digits_train
,
labels_train_unrolled
,
None
,
params
=
params
)
model
.
train
(
digits_train
,
labels_train_unrolled
,
None
,
params
=
params
)
model
.
save
(
'dig_nn.dat'
)
model
.
save
(
'dig_nn.dat'
)
model
.
load
(
'dig_nn.dat'
)
model
.
load
(
'dig_nn.dat'
)
ret
,
resp
=
model
.
predict
(
digits_test
)
def
evaluate
(
model
,
samples
,
labels
):
resp
=
resp
.
argmax
(
-
1
)
'''Evaluates classifier preformance on a given labeled samples set.'''
error_mask
=
(
resp
==
labels_test
)
ret
,
resp
=
model
.
predict
(
samples
)
print
error_mask
.
mean
()
resp
=
resp
.
argmax
(
-
1
)
error_mask
=
(
resp
==
labels
)
def
grouper
(
n
,
iterable
,
fillvalue
=
None
):
accuracy
=
error_mask
.
mean
()
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
return
accuracy
,
error_mask
args
=
[
iter
(
iterable
)]
*
n
return
it
.
izip_longest
(
fillvalue
=
fillvalue
,
*
args
)
# evaluate model
train_accuracy
,
_
=
evaluate
(
model
,
digits_train
,
labels_train
)
def
mosaic
(
w
,
imgs
):
print
'train accuracy: '
,
train_accuracy
imgs
=
iter
(
imgs
)
test_accuracy
,
test_error_mask
=
evaluate
(
model
,
digits_test
,
labels_test
)
img0
=
imgs
.
next
()
print
'test accuracy: '
,
test_accuracy
pad
=
np
.
zeros_like
(
img0
)
imgs
=
it
.
chain
([
img0
],
imgs
)
# visualize test results
rows
=
grouper
(
w
,
imgs
,
pad
)
vis
=
[]
return
np
.
vstack
(
map
(
np
.
hstack
,
rows
))
for
img
,
flag
in
zip
(
digits_test
,
test_error_mask
):
img
=
np
.
uint8
(
img
)
.
reshape
(
SZ
,
SZ
)
test_img
=
np
.
uint8
(
digits_test
)
.
reshape
(
-
1
,
SZ
,
SZ
)
def
vis_resp
(
img
,
flag
):
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_GRAY2BGR
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_GRAY2BGR
)
if
not
flag
:
if
not
flag
:
img
[
...
,:
2
]
=
0
img
[
...
,:
2
]
=
0
return
img
vis
.
append
(
img
)
vis
=
mosaic
(
25
,
vis
)
test_img
=
mosaic
(
25
,
it
.
starmap
(
vis_resp
,
it
.
izip
(
test_img
,
error_mask
)))
cv2
.
imshow
(
'test'
,
vis
)
cv2
.
imshow
(
'test'
,
test_img
)
cv2
.
waitKey
()
cv2
.
waitKey
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment