Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
436d7e4e
Commit
436d7e4e
authored
Dec 19, 2017
by
Li Peng
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add depthwise convolution kernel
Signed-off-by:
Li Peng
<
peng.li@intel.com
>
parent
910d7dab
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
160 additions
and
4 deletions
+160
-4
ocl4dnn.hpp
modules/dnn/src/ocl4dnn/include/ocl4dnn.hpp
+5
-0
ocl4dnn_conv_spatial.cpp
modules/dnn/src/ocl4dnn/src/ocl4dnn_conv_spatial.cpp
+98
-2
conv_layer_spatial.cl
modules/dnn/src/opencl/conv_layer_spatial.cl
+57
-2
No files found.
modules/dnn/src/ocl4dnn/include/ocl4dnn.hpp
View file @
436d7e4e
...
...
@@ -215,6 +215,9 @@ class OCL4DNNConvSpatial
bool
createGEMMLikeConvKernel
(
int32_t
blockWidth
,
int32_t
blockHeight
,
int32_t
blockDepth
);
bool
createDWConvKernel
(
int32_t
blockWidth
,
int32_t
blockHeight
,
int32_t
blockDepth
);
void
CreateSubBuffer
(
const
UMat
&
buffer
,
UMat
&
sub_buffer
,
int32_t
offset
,
int32_t
size
,
bool
write_only
);
bool
convolve
(
const
UMat
&
bottom
,
UMat
&
top
,
...
...
@@ -282,6 +285,8 @@ class OCL4DNNConvSpatial
int32_t
M_
;
bool
tuned_
;
bool
dwconv_
;
std
::
string
key_
,
key_sanitized_
;
std
::
string
short_key_
;
std
::
string
kernel_name_
;
...
...
modules/dnn/src/ocl4dnn/src/ocl4dnn_conv_spatial.cpp
View file @
436d7e4e
...
...
@@ -103,6 +103,7 @@ OCL4DNNConvSpatial<Dtype>::OCL4DNNConvSpatial(OCL4DNNConvConfig config)
top_dim_
=
num_output_
*
output_w_
*
output_h_
;
cache_path_
=
utils
::
getConfigurationParameterString
(
"OPENCV_OCL4DNN_CONFIG_PATH"
,
""
);
dwconv_
=
(
num_output_
==
channels_
&&
channels_
==
group_
);
use_cache_path_
=
false
;
if
(
!
cache_path_
.
empty
())
...
...
@@ -203,7 +204,8 @@ void OCL4DNNConvSpatial<Dtype>::collectCommonInformation()
typedef
enum
{
KERNEL_TYPE_INTEL_IDLF
=
2
,
KERNEL_TYPE_BASIC
=
4
,
KERNEL_TYPE_GEMM_LIKE
=
5
KERNEL_TYPE_GEMM_LIKE
=
5
,
KERNEL_TYPE_DWCONV
=
6
}
ocl4dnnConvSpatialKernelType_t
;
template
<
typename
Dtype
>
...
...
@@ -313,6 +315,7 @@ void OCL4DNNConvSpatial<Dtype>::setupKernelDetails(int32_t kernelType,
if
(
clOptionSupport
(
"-cl-no-subgroup-ifp"
))
options_
<<
" -cl-no-subgroup-ifp "
;
addDef
(
"KERNEL_GEMM_LIKE"
);
addDef
(
"INPUT_DEPTH"
,
channels_
);
addDef
(
"WIDTH1"
,
M_
);
addDef
(
"OUT_PADDING_LEFT"
,
0
);
...
...
@@ -329,6 +332,28 @@ void OCL4DNNConvSpatial<Dtype>::setupKernelDetails(int32_t kernelType,
setFusionDefine
(
fused_activ_
,
fused_eltwise_
);
src_
=
ocl
::
dnn
::
conv_layer_spatial_oclsrc
;
}
else
if
(
kernelType
==
KERNEL_TYPE_DWCONV
)
{
kernelUKey
=
generateSpecificKey
(
KERNEL_TYPE_DWCONV
,
blockM
,
blockK
,
blockN
);
kernel_name_
=
"DWCONV_"
;
kernel_name_
+=
kernelUKey
.
c_str
();
options_
<<
" -cl-fast-relaxed-math "
;
if
(
clOptionSupport
(
"-cl-no-subgroup-ifp"
))
options_
<<
" -cl-no-subgroup-ifp "
;
addDef
(
"KERNEL_DWCONV"
);
addDef
(
"KERNEL_SIZE"
,
kernel_w_
*
kernel_h_
);
addDef
(
"KERNEL_W"
,
kernel_w_
);
addDef
(
"KERNEL_H"
,
kernel_h_
);
addDef
(
"APPLY_BIAS"
,
bias_term_
);
addDef
(
"OUTPUT_Z"
,
num_output_
*
num_
);
addDef
(
"CHANNELS"
,
num_output_
);
setFusionDefine
(
fused_activ_
,
fused_eltwise_
);
options_
<<
" -D DWCONV="
<<
kernel_name_
;
src_
=
cv
::
ocl
::
dnn
::
conv_layer_spatial_oclsrc
;
}
}
template
<
typename
Dtype
>
...
...
@@ -906,6 +931,33 @@ bool OCL4DNNConvSpatial<float>::convolve(const UMat &bottom, UMat &top,
return
false
;
}
}
}
else
if
(
config
->
kernelType
==
KERNEL_TYPE_DWCONV
)
{
ocl
::
Kernel
kernel
(
config
->
kernelName
.
c_str
(),
program
);
if
(
kernel
.
empty
())
return
false
;
cl_uint
argIdx
=
0
;
setFusionArg
(
fused_activ_
,
fused_eltwise_
,
kernel
,
argIdx
);
kernel
.
set
(
argIdx
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
bottom
));
kernel
.
set
(
argIdx
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
weight
));
if
(
bias_term_
)
kernel
.
set
(
argIdx
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
bias
));
kernel
.
set
(
argIdx
++
,
ocl
::
KernelArg
::
PtrWriteOnly
(
top
));
kernel
.
set
(
argIdx
++
,
(
uint16_t
)
width_
);
kernel
.
set
(
argIdx
++
,
(
uint16_t
)
height_
);
kernel
.
set
(
argIdx
++
,
(
uint16_t
)
output_w_
);
kernel
.
set
(
argIdx
++
,
(
uint16_t
)
output_h_
);
size_t
global_size
[
3
];
global_size
[
0
]
=
output_w_
;
global_size
[
1
]
=
output_h_
;
global_size
[
2
]
=
num_output_
*
num_
;
if
(
!
kernel
.
run
(
3
,
global_size
,
NULL
,
false
))
{
std
::
cout
<<
"DWCONV kernel run failed."
<<
std
::
endl
;
return
false
;
}
}
else
{
for
(
int32_t
n
=
0
;
n
<
numImages
;
++
n
)
{
for
(
int32_t
g
=
0
;
g
<
group_
;
++
g
)
{
...
...
@@ -1222,6 +1274,39 @@ bool OCL4DNNConvSpatial<float>::createIDLFKernel(int32_t blockWidth,
return
false
;
}
template
<>
bool
OCL4DNNConvSpatial
<
float
>::
createDWConvKernel
(
int32_t
blockWidth
,
int32_t
blockHeight
,
int32_t
blockDepth
)
{
if
(
!
dwconv_
)
return
false
;
int
workItemOutput
[
3
]
=
{
1
,
1
,
1
};
size_t
local_size
[
3
]
=
{
1
,
1
,
1
};
size_t
global_size
[
3
];
global_size
[
0
]
=
divUp
(
output_w_
,
workItemOutput
[
0
]);
global_size
[
1
]
=
divUp
(
output_h_
,
workItemOutput
[
1
]);
global_size
[
2
]
=
divUp
(
M_
*
num_
,
workItemOutput
[
2
]);
kernelType_
=
KERNEL_TYPE_DWCONV
;
blockM_
=
blockWidth
;
blockK_
=
blockHeight
;
blockN_
=
blockDepth
;
setupKernel
();
ocl
::
Program
program
=
compileKernel
();
if
(
program
.
ptr
())
{
kernelQueue
.
push_back
(
makePtr
<
kernelConfig
>
(
kernel_name_
,
&
global_size
[
0
],
&
local_size
[
0
],
&
workItemOutput
[
0
],
false
,
KERNEL_TYPE_DWCONV
));
return
true
;
}
else
return
false
;
}
template
<>
bool
OCL4DNNConvSpatial
<
float
>::
createConvolutionKernel
(
int32_t
kernelType
,
int32_t
blockWidth
,
...
...
@@ -1238,6 +1323,8 @@ bool OCL4DNNConvSpatial<float>::createConvolutionKernel(int32_t kernelType,
return
createBasicKernel
(
blockWidth
,
blockHeight
,
blockDepth
);
else
if
(
kernelType
==
KERNEL_TYPE_GEMM_LIKE
)
return
createGEMMLikeConvKernel
(
blockWidth
,
blockHeight
,
blockDepth
);
else
if
(
kernelType
==
KERNEL_TYPE_DWCONV
)
return
createDWConvKernel
(
blockWidth
,
blockHeight
,
blockDepth
);
else
CV_Assert
(
0
&&
"Internal error"
);
return
false
;
...
...
@@ -1246,7 +1333,16 @@ bool OCL4DNNConvSpatial<float>::createConvolutionKernel(int32_t kernelType,
template
<>
void
OCL4DNNConvSpatial
<
float
>::
generateTunerItems
(
std
::
vector
<
cv
::
Ptr
<
tunerParam
>
>
&
tunerItems
)
{
if
(
ocl
::
Device
::
getDefault
().
intelSubgroupsSupport
())
{
if
(
ocl
::
Device
::
getDefault
().
intelSubgroupsSupport
())
{
//depth_wise kernels
if
(
dwconv_
)
{
tunerItems
.
push_back
(
makePtr
<
tunerParam
>
(
KERNEL_TYPE_DWCONV
,
1
,
1
,
1
));
if
(
group_
>
8
)
return
;
}
/* IDLF kernels are using Intel specific extension which make
them intel only. */
// Generates static key_
...
...
modules/dnn/src/opencl/conv_layer_spatial.cl
View file @
436d7e4e
...
...
@@ -383,7 +383,7 @@ convolve_simd(
}
}
#el
se //
KERNEL_GEMM_LIKE
#el
if defined
KERNEL_GEMM_LIKE
#if APPLY_BIAS
// Dtype bias[4];
...
...
@@ -1501,4 +1501,59 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
INTERLEAVED_SIMD16_OUTPUT
(
dst,
out_offset,
0
)
;
}
#
endif
#
endif
//
KERNEL_BASIC/IDLF/GEMM_LIKE
#
elif
defined
KERNEL_DWCONV
__kernel
void
DWCONV
(
ELTWISE_DATA_ARG
NEGATIVE_SLOPE_ARG
__global
Dtype*
image_data,
__global
Dtype*
kernel_data,
BIAS_KERNEL_ARG
__global
Dtype*
convolved_image,
const
ushort
input_width,
const
ushort
input_height,
const
ushort
output_width,
const
ushort
output_height
)
{
const
int
outputX
=
get_global_id
(
0
)
;
const
int
outputY
=
get_global_id
(
1
)
;
const
int
outputZ
=
get_global_id
(
2
)
;
if
(
outputX
<
output_width
&&
outputY
<
output_height
)
{
Dtype
sum
=
0.
;
const
int
org_y
=
outputY
*
STRIDE_Y
-
INPUT_PAD_H
;
const
int
org_x
=
outputX
*
STRIDE_X
-
INPUT_PAD_W
;
const
int
currentKernelOffset
=
KERNEL_SIZE*
(
outputZ%CHANNELS
)
;
const
int
biasIndex=outputZ%CHANNELS
;
const
int
local_image_offset
=
org_y*input_width
+
org_x
;
const
int
imageSize
=
input_width*input_height
;
__global
Dtype*
image_dataPtrFloat
=
(
image_data
+
(
imageSize*outputZ
+
local_image_offset
))
;
__global
Dtype*
kernel_dataPtrFloat
=
(
kernel_data
+
(
currentKernelOffset
))
;
for
(
int
y
=
0
; y < KERNEL_H; y++)
{
for
(
int
x
=
0
; x < KERNEL_W; x++)
{
if
(
!
(
org_y
+
y
*
DILATION_Y
>=
0
&&
org_y
+
y
*
DILATION_Y
<
input_height
&&
org_x
+
x
*
DILATION_X
>=
0
&&
org_x
+
x
*
DILATION_X
<
input_width
))
{
continue
;
}
sum
+=
image_dataPtrFloat[x
*
DILATION_X]
*
kernel_dataPtrFloat[x]
;
}
image_dataPtrFloat
+=
input_width
*
DILATION_Y
;
kernel_dataPtrFloat
+=
KERNEL_W
;
}
#
if
APPLY_BIAS
int
offset
=
outputZ*output_height*output_width
+
outputY*output_width
+
outputX
;
ACTIVATION_FUNCTION
(
convolved_image,
offset,
sum
+
biases_base[biasIndex],
biasIndex
)
;
#
else
int
offset
=
outputZ*output_height*output_width
+
outputY*output_width
+
outputX
;
ACTIVATION_FUNCTION
(
convolved_image,
offset,
sum,
biasIndex
)
;
#
endif
}
}
#
endif
//
KERNEL_BASIC/IDLF/GEMM_LIKE/DWCONV
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment