Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
42f7329c
Commit
42f7329c
authored
Sep 07, 2012
by
Philipp Wagner
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of
git://code.opencv.org/opencv
parents
cfa250ef
f268af8e
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
0 additions
and
20 deletions
+0
-20
makeswig.sh
modules/highgui/src/makeswig.sh
+0
-2
legacy.hpp
modules/legacy/include/opencv2/legacy/legacy.hpp
+0
-2
ml.hpp
modules/ml/include/opencv2/ml/ml.hpp
+0
-16
No files found.
modules/highgui/src/makeswig.sh
deleted
100644 → 0
View file @
cfa250ef
swig
-DSKIP_INCLUDES
-python
-small
highgui.i
gcc
-I
/usr/include/python2.3/
-I
../../cxcore/include
-D
CV_NO_BACKWARD_COMPATIBILITY
-c
highgui_wrap.c
modules/legacy/include/opencv2/legacy/legacy.hpp
View file @
42f7329c
...
@@ -1787,7 +1787,6 @@ public:
...
@@ -1787,7 +1787,6 @@ public:
virtual
float
predict
(
const
CvMat
*
sample
,
CV_OUT
CvMat
*
probs
)
const
;
virtual
float
predict
(
const
CvMat
*
sample
,
CV_OUT
CvMat
*
probs
)
const
;
#ifndef SWIG
CV_WRAP
CvEM
(
const
cv
::
Mat
&
samples
,
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
CV_WRAP
CvEM
(
const
cv
::
Mat
&
samples
,
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
CvEMParams
params
=
CvEMParams
()
);
CvEMParams
params
=
CvEMParams
()
);
...
@@ -1806,7 +1805,6 @@ public:
...
@@ -1806,7 +1805,6 @@ public:
CV_WRAP
cv
::
Mat
getProbs
()
const
;
CV_WRAP
cv
::
Mat
getProbs
()
const
;
CV_WRAP
inline
double
getLikelihood
()
const
{
return
emObj
.
isTrained
()
?
logLikelihood
:
DBL_MAX
;
}
CV_WRAP
inline
double
getLikelihood
()
const
{
return
emObj
.
isTrained
()
?
logLikelihood
:
DBL_MAX
;
}
#endif
CV_WRAP
virtual
void
clear
();
CV_WRAP
virtual
void
clear
();
...
...
modules/ml/include/opencv2/ml/ml.hpp
View file @
42f7329c
...
@@ -201,14 +201,12 @@ public:
...
@@ -201,14 +201,12 @@ public:
virtual
float
predict
(
const
CvMat
*
samples
,
CV_OUT
CvMat
*
results
=
0
)
const
;
virtual
float
predict
(
const
CvMat
*
samples
,
CV_OUT
CvMat
*
results
=
0
)
const
;
CV_WRAP
virtual
void
clear
();
CV_WRAP
virtual
void
clear
();
#ifndef SWIG
CV_WRAP
CvNormalBayesClassifier
(
const
cv
::
Mat
&
trainData
,
const
cv
::
Mat
&
responses
,
CV_WRAP
CvNormalBayesClassifier
(
const
cv
::
Mat
&
trainData
,
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
()
);
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
()
);
CV_WRAP
virtual
bool
train
(
const
cv
::
Mat
&
trainData
,
const
cv
::
Mat
&
responses
,
CV_WRAP
virtual
bool
train
(
const
cv
::
Mat
&
trainData
,
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
bool
update
=
false
);
bool
update
=
false
);
CV_WRAP
virtual
float
predict
(
const
cv
::
Mat
&
samples
,
CV_OUT
cv
::
Mat
*
results
=
0
)
const
;
CV_WRAP
virtual
float
predict
(
const
cv
::
Mat
&
samples
,
CV_OUT
cv
::
Mat
*
results
=
0
)
const
;
#endif
virtual
void
write
(
CvFileStorage
*
storage
,
const
char
*
name
)
const
;
virtual
void
write
(
CvFileStorage
*
storage
,
const
char
*
name
)
const
;
virtual
void
read
(
CvFileStorage
*
storage
,
CvFileNode
*
node
);
virtual
void
read
(
CvFileStorage
*
storage
,
CvFileNode
*
node
);
...
@@ -249,7 +247,6 @@ public:
...
@@ -249,7 +247,6 @@ public:
virtual
float
find_nearest
(
const
CvMat
*
samples
,
int
k
,
CV_OUT
CvMat
*
results
=
0
,
virtual
float
find_nearest
(
const
CvMat
*
samples
,
int
k
,
CV_OUT
CvMat
*
results
=
0
,
const
float
**
neighbors
=
0
,
CV_OUT
CvMat
*
neighborResponses
=
0
,
CV_OUT
CvMat
*
dist
=
0
)
const
;
const
float
**
neighbors
=
0
,
CV_OUT
CvMat
*
neighborResponses
=
0
,
CV_OUT
CvMat
*
dist
=
0
)
const
;
#ifndef SWIG
CV_WRAP
CvKNearest
(
const
cv
::
Mat
&
trainData
,
const
cv
::
Mat
&
responses
,
CV_WRAP
CvKNearest
(
const
cv
::
Mat
&
trainData
,
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
bool
isRegression
=
false
,
int
max_k
=
32
);
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
bool
isRegression
=
false
,
int
max_k
=
32
);
...
@@ -262,7 +259,6 @@ public:
...
@@ -262,7 +259,6 @@ public:
cv
::
Mat
*
dist
=
0
)
const
;
cv
::
Mat
*
dist
=
0
)
const
;
CV_WRAP
virtual
float
find_nearest
(
const
cv
::
Mat
&
samples
,
int
k
,
CV_OUT
cv
::
Mat
&
results
,
CV_WRAP
virtual
float
find_nearest
(
const
cv
::
Mat
&
samples
,
int
k
,
CV_OUT
cv
::
Mat
&
results
,
CV_OUT
cv
::
Mat
&
neighborResponses
,
CV_OUT
cv
::
Mat
&
dists
)
const
;
CV_OUT
cv
::
Mat
&
neighborResponses
,
CV_OUT
cv
::
Mat
&
dists
)
const
;
#endif
virtual
void
clear
();
virtual
void
clear
();
int
get_max_k
()
const
;
int
get_max_k
()
const
;
...
@@ -490,7 +486,6 @@ public:
...
@@ -490,7 +486,6 @@ public:
virtual
float
predict
(
const
CvMat
*
sample
,
bool
returnDFVal
=
false
)
const
;
virtual
float
predict
(
const
CvMat
*
sample
,
bool
returnDFVal
=
false
)
const
;
virtual
float
predict
(
const
CvMat
*
samples
,
CV_OUT
CvMat
*
results
)
const
;
virtual
float
predict
(
const
CvMat
*
samples
,
CV_OUT
CvMat
*
results
)
const
;
#ifndef SWIG
CV_WRAP
CvSVM
(
const
cv
::
Mat
&
trainData
,
const
cv
::
Mat
&
responses
,
CV_WRAP
CvSVM
(
const
cv
::
Mat
&
trainData
,
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
CvSVMParams
params
=
CvSVMParams
()
);
CvSVMParams
params
=
CvSVMParams
()
);
...
@@ -511,7 +506,6 @@ public:
...
@@ -511,7 +506,6 @@ public:
bool
balanced
=
false
);
bool
balanced
=
false
);
CV_WRAP
virtual
float
predict
(
const
cv
::
Mat
&
sample
,
bool
returnDFVal
=
false
)
const
;
CV_WRAP
virtual
float
predict
(
const
cv
::
Mat
&
sample
,
bool
returnDFVal
=
false
)
const
;
CV_WRAP_AS
(
predict_all
)
virtual
void
predict
(
cv
::
InputArray
samples
,
cv
::
OutputArray
results
)
const
;
CV_WRAP_AS
(
predict_all
)
virtual
void
predict
(
cv
::
InputArray
samples
,
cv
::
OutputArray
results
)
const
;
#endif
CV_WRAP
virtual
int
get_support_vector_count
()
const
;
CV_WRAP
virtual
int
get_support_vector_count
()
const
;
virtual
const
float
*
get_support_vector
(
int
i
)
const
;
virtual
const
float
*
get_support_vector
(
int
i
)
const
;
...
@@ -868,7 +862,6 @@ public:
...
@@ -868,7 +862,6 @@ public:
virtual
CvDTreeNode
*
predict
(
const
CvMat
*
sample
,
const
CvMat
*
missingDataMask
=
0
,
virtual
CvDTreeNode
*
predict
(
const
CvMat
*
sample
,
const
CvMat
*
missingDataMask
=
0
,
bool
preprocessedInput
=
false
)
const
;
bool
preprocessedInput
=
false
)
const
;
#ifndef SWIG
CV_WRAP
virtual
bool
train
(
const
cv
::
Mat
&
trainData
,
int
tflag
,
CV_WRAP
virtual
bool
train
(
const
cv
::
Mat
&
trainData
,
int
tflag
,
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
varType
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
varType
=
cv
::
Mat
(),
...
@@ -878,7 +871,6 @@ public:
...
@@ -878,7 +871,6 @@ public:
CV_WRAP
virtual
CvDTreeNode
*
predict
(
const
cv
::
Mat
&
sample
,
const
cv
::
Mat
&
missingDataMask
=
cv
::
Mat
(),
CV_WRAP
virtual
CvDTreeNode
*
predict
(
const
cv
::
Mat
&
sample
,
const
cv
::
Mat
&
missingDataMask
=
cv
::
Mat
(),
bool
preprocessedInput
=
false
)
const
;
bool
preprocessedInput
=
false
)
const
;
CV_WRAP
virtual
cv
::
Mat
getVarImportance
();
CV_WRAP
virtual
cv
::
Mat
getVarImportance
();
#endif
virtual
const
CvMat
*
get_var_importance
();
virtual
const
CvMat
*
get_var_importance
();
CV_WRAP
virtual
void
clear
();
CV_WRAP
virtual
void
clear
();
...
@@ -1011,7 +1003,6 @@ public:
...
@@ -1011,7 +1003,6 @@ public:
virtual
float
predict
(
const
CvMat
*
sample
,
const
CvMat
*
missing
=
0
)
const
;
virtual
float
predict
(
const
CvMat
*
sample
,
const
CvMat
*
missing
=
0
)
const
;
virtual
float
predict_prob
(
const
CvMat
*
sample
,
const
CvMat
*
missing
=
0
)
const
;
virtual
float
predict_prob
(
const
CvMat
*
sample
,
const
CvMat
*
missing
=
0
)
const
;
#ifndef SWIG
CV_WRAP
virtual
bool
train
(
const
cv
::
Mat
&
trainData
,
int
tflag
,
CV_WRAP
virtual
bool
train
(
const
cv
::
Mat
&
trainData
,
int
tflag
,
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
varType
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
varType
=
cv
::
Mat
(),
...
@@ -1020,7 +1011,6 @@ public:
...
@@ -1020,7 +1011,6 @@ public:
CV_WRAP
virtual
float
predict
(
const
cv
::
Mat
&
sample
,
const
cv
::
Mat
&
missing
=
cv
::
Mat
()
)
const
;
CV_WRAP
virtual
float
predict
(
const
cv
::
Mat
&
sample
,
const
cv
::
Mat
&
missing
=
cv
::
Mat
()
)
const
;
CV_WRAP
virtual
float
predict_prob
(
const
cv
::
Mat
&
sample
,
const
cv
::
Mat
&
missing
=
cv
::
Mat
()
)
const
;
CV_WRAP
virtual
float
predict_prob
(
const
cv
::
Mat
&
sample
,
const
cv
::
Mat
&
missing
=
cv
::
Mat
()
)
const
;
CV_WRAP
virtual
cv
::
Mat
getVarImportance
();
CV_WRAP
virtual
cv
::
Mat
getVarImportance
();
#endif
CV_WRAP
virtual
void
clear
();
CV_WRAP
virtual
void
clear
();
...
@@ -1107,13 +1097,11 @@ public:
...
@@ -1107,13 +1097,11 @@ public:
const
CvMat
*
sampleIdx
=
0
,
const
CvMat
*
varType
=
0
,
const
CvMat
*
sampleIdx
=
0
,
const
CvMat
*
varType
=
0
,
const
CvMat
*
missingDataMask
=
0
,
const
CvMat
*
missingDataMask
=
0
,
CvRTParams
params
=
CvRTParams
());
CvRTParams
params
=
CvRTParams
());
#ifndef SWIG
CV_WRAP
virtual
bool
train
(
const
cv
::
Mat
&
trainData
,
int
tflag
,
CV_WRAP
virtual
bool
train
(
const
cv
::
Mat
&
trainData
,
int
tflag
,
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
varType
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
varType
=
cv
::
Mat
(),
const
cv
::
Mat
&
missingDataMask
=
cv
::
Mat
(),
const
cv
::
Mat
&
missingDataMask
=
cv
::
Mat
(),
CvRTParams
params
=
CvRTParams
());
CvRTParams
params
=
CvRTParams
());
#endif
virtual
bool
train
(
CvMLData
*
data
,
CvRTParams
params
=
CvRTParams
()
);
virtual
bool
train
(
CvMLData
*
data
,
CvRTParams
params
=
CvRTParams
()
);
protected
:
protected
:
virtual
std
::
string
getName
()
const
;
virtual
std
::
string
getName
()
const
;
...
@@ -1220,7 +1208,6 @@ public:
...
@@ -1220,7 +1208,6 @@ public:
CvMat
*
weak_responses
=
0
,
CvSlice
slice
=
CV_WHOLE_SEQ
,
CvMat
*
weak_responses
=
0
,
CvSlice
slice
=
CV_WHOLE_SEQ
,
bool
raw_mode
=
false
,
bool
return_sum
=
false
)
const
;
bool
raw_mode
=
false
,
bool
return_sum
=
false
)
const
;
#ifndef SWIG
CV_WRAP
CvBoost
(
const
cv
::
Mat
&
trainData
,
int
tflag
,
CV_WRAP
CvBoost
(
const
cv
::
Mat
&
trainData
,
int
tflag
,
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
varType
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
varType
=
cv
::
Mat
(),
...
@@ -1237,7 +1224,6 @@ public:
...
@@ -1237,7 +1224,6 @@ public:
CV_WRAP
virtual
float
predict
(
const
cv
::
Mat
&
sample
,
const
cv
::
Mat
&
missing
=
cv
::
Mat
(),
CV_WRAP
virtual
float
predict
(
const
cv
::
Mat
&
sample
,
const
cv
::
Mat
&
missing
=
cv
::
Mat
(),
const
cv
::
Range
&
slice
=
cv
::
Range
::
all
(),
bool
rawMode
=
false
,
const
cv
::
Range
&
slice
=
cv
::
Range
::
all
(),
bool
rawMode
=
false
,
bool
returnSum
=
false
)
const
;
bool
returnSum
=
false
)
const
;
#endif
virtual
float
calc_error
(
CvMLData
*
_data
,
int
type
,
std
::
vector
<
float
>
*
resp
=
0
);
// type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
virtual
float
calc_error
(
CvMLData
*
_data
,
int
type
,
std
::
vector
<
float
>
*
resp
=
0
);
// type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
...
@@ -1904,7 +1890,6 @@ public:
...
@@ -1904,7 +1890,6 @@ public:
int
flags
=
0
);
int
flags
=
0
);
virtual
float
predict
(
const
CvMat
*
inputs
,
CV_OUT
CvMat
*
outputs
)
const
;
virtual
float
predict
(
const
CvMat
*
inputs
,
CV_OUT
CvMat
*
outputs
)
const
;
#ifndef SWIG
CV_WRAP
CvANN_MLP
(
const
cv
::
Mat
&
layerSizes
,
CV_WRAP
CvANN_MLP
(
const
cv
::
Mat
&
layerSizes
,
int
activateFunc
=
CvANN_MLP
::
SIGMOID_SYM
,
int
activateFunc
=
CvANN_MLP
::
SIGMOID_SYM
,
double
fparam1
=
0
,
double
fparam2
=
0
);
double
fparam1
=
0
,
double
fparam2
=
0
);
...
@@ -1919,7 +1904,6 @@ public:
...
@@ -1919,7 +1904,6 @@ public:
int
flags
=
0
);
int
flags
=
0
);
CV_WRAP
virtual
float
predict
(
const
cv
::
Mat
&
inputs
,
CV_OUT
cv
::
Mat
&
outputs
)
const
;
CV_WRAP
virtual
float
predict
(
const
cv
::
Mat
&
inputs
,
CV_OUT
cv
::
Mat
&
outputs
)
const
;
#endif
CV_WRAP
virtual
void
clear
();
CV_WRAP
virtual
void
clear
();
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment