Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
41c0a383
Commit
41c0a383
authored
Feb 10, 2016
by
Marina Noskova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fixed test samples for tests with different borders
Added new test (separating two points)
parent
bfdca05f
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
84 additions
and
38 deletions
+84
-38
svmsgd.cpp
modules/ml/src/svmsgd.cpp
+1
-1
test_save_load.cpp
modules/ml/test/test_save_load.cpp
+1
-4
test_svmsgd.cpp
modules/ml/test/test_svmsgd.cpp
+80
-31
train_svmsgd.cpp
samples/cpp/train_svmsgd.cpp
+2
-2
No files found.
modules/ml/src/svmsgd.cpp
View file @
41c0a383
...
...
@@ -146,7 +146,7 @@ Ptr<SVMSGD> SVMSGD::create()
std
::
pair
<
bool
,
bool
>
SVMSGDImpl
::
areClassesEmpty
(
Mat
responses
)
{
CV_Assert
(
responses
.
cols
==
1
);
CV_Assert
(
responses
.
cols
==
1
||
responses
.
rows
==
1
);
std
::
pair
<
bool
,
bool
>
emptyInClasses
(
true
,
true
);
int
limit_index
=
responses
.
rows
;
...
...
modules/ml/test/test_save_load.cpp
View file @
41c0a383
...
...
@@ -160,10 +160,7 @@ TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); }
TEST
(
ML_Boost
,
save_load
)
{
CV_SLMLTest
test
(
CV_BOOST
);
test
.
safe_run
();
}
TEST
(
ML_RTrees
,
save_load
)
{
CV_SLMLTest
test
(
CV_RTREES
);
test
.
safe_run
();
}
TEST
(
DISABLED_ML_ERTrees
,
save_load
)
{
CV_SLMLTest
test
(
CV_ERTREES
);
test
.
safe_run
();
}
TEST
(
MV_SVMSGD
,
save_load
){
CV_SLMLTest
test
(
CV_SVMSGD
);
test
.
safe_run
();
}
TEST
(
MV_SVMSGD
,
save_load
){
CV_SLMLTest
test
(
CV_SVMSGD
);
test
.
safe_run
();
}
class
CV_LegacyTest
:
public
cvtest
::
BaseTest
{
...
...
modules/ml/test/test_svmsgd.cpp
View file @
41c0a383
...
...
@@ -58,39 +58,40 @@ public:
UNIFORM_DIFFERENT_SCALES
};
CV_SVMSGDTrainTest
(
Mat
_weights
,
float
shift
,
TrainDataType
type
,
double
precision
=
0.01
);
CV_SVMSGDTrainTest
(
const
Mat
&
_weights
,
float
shift
,
TrainDataType
type
,
double
precision
=
0.01
);
private
:
virtual
void
run
(
int
start_from
);
static
float
decisionFunction
(
const
Mat
&
sample
,
const
Mat
&
weights
,
float
shift
);
void
makeTrainData
(
Mat
weights
,
float
shift
);
void
makeTestData
(
Mat
weights
,
float
shift
);
void
generateSame
ScaleData
(
Mat
&
samples
);
void
generateDifferent
ScalesData
(
Mat
&
samples
,
float
shif
t
);
void
generateSame
Borders
(
int
featureCount
);
void
generateDifferent
Borders
(
int
featureCoun
t
);
TrainDataType
type
;
double
precision
;
std
::
vector
<
std
::
pair
<
float
,
float
>
>
borders
;
cv
::
Ptr
<
TrainData
>
data
;
cv
::
Mat
testSamples
;
cv
::
Mat
testResponses
;
static
const
int
TEST_VALUE_LIMIT
=
500
;
};
void
CV_SVMSGDTrainTest
::
generateSame
ScaleData
(
Mat
&
samples
)
void
CV_SVMSGDTrainTest
::
generateSame
Borders
(
int
featureCount
)
{
float
lowerLimit
=
-
TEST_VALUE_LIMIT
;
float
upperLimit
=
TEST_VALUE_LIMIT
;
cv
::
RNG
rng
(
0
);
rng
.
fill
(
samples
,
RNG
::
UNIFORM
,
lowerLimit
,
upperLimit
);
for
(
int
featureIndex
=
0
;
featureIndex
<
featureCount
;
featureIndex
++
)
{
borders
.
push_back
(
std
::
pair
<
float
,
float
>
(
lowerLimit
,
upperLimit
));
}
}
void
CV_SVMSGDTrainTest
::
generateDifferent
ScalesData
(
Mat
&
samples
,
float
shif
t
)
void
CV_SVMSGDTrainTest
::
generateDifferent
Borders
(
int
featureCoun
t
)
{
int
featureCount
=
samples
.
cols
;
float
lowerLimit
=
-
TEST_VALUE_LIMIT
;
float
upperLimit
=
TEST_VALUE_LIMIT
;
cv
::
RNG
rng
(
10
);
cv
::
RNG
rng
(
0
);
for
(
int
featureIndex
=
0
;
featureIndex
<
featureCount
;
featureIndex
++
)
{
...
...
@@ -98,11 +99,11 @@ void CV_SVMSGDTrainTest::generateDifferentScalesData(Mat &samples, float shift)
if
(
crit
>
0
)
{
rng
.
fill
(
samples
.
col
(
featureIndex
),
RNG
::
UNIFORM
,
lowerLimit
-
shift
,
upperLimit
-
shift
);
borders
.
push_back
(
std
::
pair
<
float
,
float
>
(
lowerLimit
,
upperLimit
)
);
}
else
{
rng
.
fill
(
samples
.
col
(
featureIndex
),
RNG
::
UNIFORM
,
lowerLimit
/
10
,
upperLimit
/
10
);
borders
.
push_back
(
std
::
pair
<
float
,
float
>
(
lowerLimit
/
1000
,
upperLimit
/
1000
)
);
}
}
}
...
...
@@ -111,21 +112,16 @@ void CV_SVMSGDTrainTest::makeTrainData(Mat weights, float shift)
{
int
datasize
=
100000
;
int
featureCount
=
weights
.
cols
;
RNG
rng
(
0
);
cv
::
Mat
samples
=
cv
::
Mat
::
zeros
(
datasize
,
featureCount
,
CV_32FC1
);
cv
::
Mat
responses
=
cv
::
Mat
::
zeros
(
datasize
,
1
,
CV_32FC1
);
switch
(
type
)
for
(
int
featureIndex
=
0
;
featureIndex
<
featureCount
;
featureIndex
++
)
{
case
UNIFORM_SAME_SCALE
:
generateSameScaleData
(
samples
);
break
;
case
UNIFORM_DIFFERENT_SCALES
:
generateDifferentScalesData
(
samples
,
shift
);
break
;
default
:
CV_Error
(
CV_StsBadArg
,
"Unknown train data type"
);
rng
.
fill
(
samples
.
col
(
featureIndex
),
RNG
::
UNIFORM
,
borders
[
featureIndex
].
first
,
borders
[
featureIndex
].
second
);
}
cv
::
Mat
responses
=
cv
::
Mat
::
zeros
(
datasize
,
1
,
CV_32FC1
);
for
(
int
sampleIndex
=
0
;
sampleIndex
<
datasize
;
sampleIndex
++
)
{
responses
.
at
<
float
>
(
sampleIndex
)
=
decisionFunction
(
samples
.
row
(
sampleIndex
),
weights
,
shift
)
>
0
?
1
:
-
1
;
...
...
@@ -138,14 +134,14 @@ void CV_SVMSGDTrainTest::makeTestData(Mat weights, float shift)
{
int
testSamplesCount
=
100000
;
int
featureCount
=
weights
.
cols
;
float
lowerLimit
=
-
TEST_VALUE_LIMIT
;
float
upperLimit
=
TEST_VALUE_LIMIT
;
cv
::
RNG
rng
(
0
);
testSamples
.
create
(
testSamplesCount
,
featureCount
,
CV_32FC1
);
rng
.
fill
(
testSamples
,
RNG
::
UNIFORM
,
lowerLimit
,
upperLimit
);
for
(
int
featureIndex
=
0
;
featureIndex
<
featureCount
;
featureIndex
++
)
{
rng
.
fill
(
testSamples
.
col
(
featureIndex
),
RNG
::
UNIFORM
,
borders
[
featureIndex
].
first
,
borders
[
featureIndex
].
second
);
}
testResponses
.
create
(
testSamplesCount
,
1
,
CV_32FC1
);
for
(
int
i
=
0
;
i
<
testSamplesCount
;
i
++
)
...
...
@@ -154,10 +150,25 @@ void CV_SVMSGDTrainTest::makeTestData(Mat weights, float shift)
}
}
CV_SVMSGDTrainTest
::
CV_SVMSGDTrainTest
(
Mat
weights
,
float
shift
,
TrainDataType
_type
,
double
_precision
)
CV_SVMSGDTrainTest
::
CV_SVMSGDTrainTest
(
const
Mat
&
weights
,
float
shift
,
TrainDataType
_type
,
double
_precision
)
{
type
=
_type
;
precision
=
_precision
;
int
featureCount
=
weights
.
cols
;
switch
(
type
)
{
case
UNIFORM_SAME_SCALE
:
generateSameBorders
(
featureCount
);
break
;
case
UNIFORM_DIFFERENT_SCALES
:
generateDifferentBorders
(
featureCount
);
break
;
default
:
CV_Error
(
CV_StsBadArg
,
"Unknown train data type"
);
}
makeTrainData
(
weights
,
shift
);
makeTestData
(
weights
,
shift
);
}
...
...
@@ -271,7 +282,7 @@ TEST(ML_SVMSGD, trainDifferentScales5)
float
shift
=
0
;
makeWeightsAndShift
(
featureCount
,
weights
,
shift
);
CV_SVMSGDTrainTest
test
(
weights
,
shift
,
CV_SVMSGDTrainTest
::
UNIFORM_DIFFERENT_SCALES
,
0.0
5
);
CV_SVMSGDTrainTest
test
(
weights
,
shift
,
CV_SVMSGDTrainTest
::
UNIFORM_DIFFERENT_SCALES
,
0.0
1
);
test
.
safe_run
();
}
...
...
@@ -284,6 +295,44 @@ TEST(ML_SVMSGD, trainDifferentScales100)
float
shift
=
0
;
makeWeightsAndShift
(
featureCount
,
weights
,
shift
);
CV_SVMSGDTrainTest
test
(
weights
,
shift
,
CV_SVMSGDTrainTest
::
UNIFORM_DIFFERENT_SCALES
,
0.
10
);
CV_SVMSGDTrainTest
test
(
weights
,
shift
,
CV_SVMSGDTrainTest
::
UNIFORM_DIFFERENT_SCALES
,
0.
01
);
test
.
safe_run
();
}
TEST
(
ML_SVMSGD
,
twoPoints
)
{
Mat
samples
(
2
,
2
,
CV_32FC1
);
samples
.
at
<
float
>
(
0
,
0
)
=
0
;
samples
.
at
<
float
>
(
0
,
1
)
=
0
;
samples
.
at
<
float
>
(
1
,
0
)
=
1000
;
samples
.
at
<
float
>
(
1
,
1
)
=
1
;
Mat
responses
(
2
,
1
,
CV_32FC1
);
responses
.
at
<
float
>
(
0
)
=
-
1
;
responses
.
at
<
float
>
(
1
)
=
1
;
cv
::
Ptr
<
TrainData
>
trainData
=
TrainData
::
create
(
samples
,
cv
::
ml
::
ROW_SAMPLE
,
responses
);
Mat
realWeights
(
1
,
2
,
CV_32FC1
);
realWeights
.
at
<
float
>
(
0
)
=
1000
;
realWeights
.
at
<
float
>
(
1
)
=
1
;
float
realShift
=
-
500000.5
;
float
normRealWeights
=
norm
(
realWeights
);
realWeights
/=
normRealWeights
;
realShift
/=
normRealWeights
;
cv
::
Ptr
<
SVMSGD
>
svmsgd
=
SVMSGD
::
create
();
svmsgd
->
setOptimalParameters
();
svmsgd
->
train
(
trainData
);
Mat
foundWeights
=
svmsgd
->
getWeights
();
float
foundShift
=
svmsgd
->
getShift
();
float
normFoundWeights
=
norm
(
foundWeights
);
foundWeights
/=
normFoundWeights
;
foundShift
/=
normFoundWeights
;
CV_Assert
((
norm
(
foundWeights
-
realWeights
)
<
0.001
)
&&
(
abs
((
foundShift
-
realShift
)
/
realShift
)
<
0.05
));
}
samples/cpp/train_svmsgd.cpp
View file @
41c0a383
...
...
@@ -48,8 +48,8 @@ bool doTrain( const Mat samples, const Mat responses, Mat &weights, float &shift
cv
::
Ptr
<
SVMSGD
>
svmsgd
=
SVMSGD
::
create
();
svmsgd
->
setOptimalParameters
();
cv
::
Ptr
<
TrainData
>
train
_d
ata
=
TrainData
::
create
(
samples
,
cv
::
ml
::
ROW_SAMPLE
,
responses
);
svmsgd
->
train
(
train
_d
ata
);
cv
::
Ptr
<
TrainData
>
train
D
ata
=
TrainData
::
create
(
samples
,
cv
::
ml
::
ROW_SAMPLE
,
responses
);
svmsgd
->
train
(
train
D
ata
);
if
(
svmsgd
->
isTrained
())
{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment