Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
4162ebfa
Commit
4162ebfa
authored
May 17, 2013
by
yao
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add OpticalFlowDual_TVL1_OCL function
parent
7d904146
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
1038 additions
and
10 deletions
+1038
-10
ocl.hpp
modules/ocl/include/opencv2/ocl/ocl.hpp
+93
-0
arithm.cpp
modules/ocl/src/arithm.cpp
+7
-0
tvl1flow.cl
modules/ocl/src/opencl/tvl1flow.cl
+407
-0
tvl1flow.cpp
modules/ocl/src/tvl1flow.cpp
+476
-0
test_optflow.cpp
modules/ocl/test/test_optflow.cpp
+55
-10
No files found.
modules/ocl/include/opencv2/ocl/ocl.hpp
View file @
4162ebfa
...
...
@@ -407,6 +407,9 @@ namespace cv
//! computes element-wise product of the two arrays (c = a * b)
// supports all types except CV_8SC1,CV_8SC2,CV8SC3 and CV_8SC4
CV_EXPORTS
void
multiply
(
const
oclMat
&
a
,
const
oclMat
&
b
,
oclMat
&
c
,
double
scale
=
1
);
//! multiplies matrix to a number (dst = scalar * src)
// supports CV_32FC1 only
CV_EXPORTS
void
multiply
(
double
scalar
,
const
oclMat
&
src
,
oclMat
&
dst
);
//! computes element-wise quotient of the two arrays (c = a / b)
// supports all types except CV_8SC1,CV_8SC2,CV8SC3 and CV_8SC4
CV_EXPORTS
void
divide
(
const
oclMat
&
a
,
const
oclMat
&
b
,
oclMat
&
c
,
double
scale
=
1
);
...
...
@@ -1372,6 +1375,7 @@ namespace cv
private
:
oclMat
minSSD
,
leBuf
,
riBuf
;
};
class
CV_EXPORTS
StereoBeliefPropagation
{
public
:
...
...
@@ -1402,6 +1406,7 @@ namespace cv
std
::
vector
<
oclMat
>
datas
;
oclMat
out
;
};
class
CV_EXPORTS
StereoConstantSpaceBP
{
public
:
...
...
@@ -1440,6 +1445,94 @@ namespace cv
oclMat
temp
;
oclMat
out
;
};
// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
//
// see reference:
// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
class
CV_EXPORTS
OpticalFlowDual_TVL1_OCL
{
public
:
OpticalFlowDual_TVL1_OCL
();
void
operator
()(
const
oclMat
&
I0
,
const
oclMat
&
I1
,
oclMat
&
flowx
,
oclMat
&
flowy
);
void
collectGarbage
();
/**
* Time step of the numerical scheme.
*/
double
tau
;
/**
* Weight parameter for the data term, attachment parameter.
* This is the most relevant parameter, which determines the smoothness of the output.
* The smaller this parameter is, the smoother the solutions we obtain.
* It depends on the range of motions of the images, so its value should be adapted to each image sequence.
*/
double
lambda
;
/**
* Weight parameter for (u - v)^2, tightness parameter.
* It serves as a link between the attachment and the regularization terms.
* In theory, it should have a small value in order to maintain both parts in correspondence.
* The method is stable for a large range of values of this parameter.
*/
double
theta
;
/**
* Number of scales used to create the pyramid of images.
*/
int
nscales
;
/**
* Number of warpings per scale.
* Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
* This is a parameter that assures the stability of the method.
* It also affects the running time, so it is a compromise between speed and accuracy.
*/
int
warps
;
/**
* Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
* A small value will yield more accurate solutions at the expense of a slower convergence.
*/
double
epsilon
;
/**
* Stopping criterion iterations number used in the numerical scheme.
*/
int
iterations
;
bool
useInitialFlow
;
private
:
void
procOneScale
(
const
oclMat
&
I0
,
const
oclMat
&
I1
,
oclMat
&
u1
,
oclMat
&
u2
);
std
::
vector
<
oclMat
>
I0s
;
std
::
vector
<
oclMat
>
I1s
;
std
::
vector
<
oclMat
>
u1s
;
std
::
vector
<
oclMat
>
u2s
;
oclMat
I1x_buf
;
oclMat
I1y_buf
;
oclMat
I1w_buf
;
oclMat
I1wx_buf
;
oclMat
I1wy_buf
;
oclMat
grad_buf
;
oclMat
rho_c_buf
;
oclMat
p11_buf
;
oclMat
p12_buf
;
oclMat
p21_buf
;
oclMat
p22_buf
;
oclMat
diff_buf
;
oclMat
norm_buf
;
};
}
}
#if defined _MSC_VER && _MSC_VER >= 1200
...
...
modules/ocl/src/arithm.cpp
View file @
4162ebfa
...
...
@@ -22,6 +22,7 @@
// Jiang Liyuan, jlyuan001.good@163.com
// Rock Li, Rock.Li@amd.com
// Zailong Wu, bullet@yeah.net
// Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
...
...
@@ -286,6 +287,7 @@ void cv::ocl::multiply(const oclMat &src1, const oclMat &src2, oclMat &dst, doub
else
arithmetic_run
<
float
>
(
src1
,
src2
,
dst
,
"arithm_mul"
,
&
arithm_mul
,
(
void
*
)(
&
scalar
));
}
void
cv
::
ocl
::
divide
(
const
oclMat
&
src1
,
const
oclMat
&
src2
,
oclMat
&
dst
,
double
scalar
)
{
...
...
@@ -468,6 +470,11 @@ void cv::ocl::subtract(const Scalar &src2, const oclMat &src1, oclMat &dst, cons
const
char
**
kernelString
=
mask
.
data
?
&
arithm_add_scalar_mask
:
&
arithm_add_scalar
;
arithmetic_scalar
(
src1
,
src2
,
dst
,
mask
,
kernelName
,
kernelString
,
-
1
);
}
void
cv
::
ocl
::
multiply
(
double
scalar
,
const
oclMat
&
src
,
oclMat
&
dst
)
{
string
kernelName
=
"arithm_muls"
;
arithmetic_scalar_run
(
src
,
dst
,
kernelName
,
&
arithm_mul
,
scalar
);
}
void
cv
::
ocl
::
divide
(
double
scalar
,
const
oclMat
&
src
,
oclMat
&
dst
)
{
if
(
!
src
.
clCxt
->
supportsFeature
(
Context
::
CL_DOUBLE
))
...
...
modules/ocl/src/opencl/tvl1flow.cl
0 → 100644
View file @
4162ebfa
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//
IMPORTANT:
READ
BEFORE
DOWNLOADING,
COPYING,
INSTALLING
OR
USING.
//
//
By
downloading,
copying,
installing
or
using
the
software
you
agree
to
this
license.
//
If
you
do
not
agree
to
this
license,
do
not
download,
install,
//
copy
or
use
the
software.
//
//
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2010-2012,
Multicoreware,
Inc.,
all
rights
reserved.
//
Copyright
(
C
)
2010-2012,
Advanced
Micro
Devices,
Inc.,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
@Authors
//
Jin
Ma
jin@multicorewareinc.com
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
oclMaterials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
as
is
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//M*/
__kernel
void
centeredGradientKernel
(
__global
const
float*
src,
int
src_col,
int
src_row,
int
src_step,
__global
float*
dx,
__global
float*
dy,
int
dx_step
)
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
if
((
x
<
src_col
)
&&
(
y
<
src_row
))
{
int
src_x1
=
(
x
+
1
)
<
(
src_col
-1
)
?
(
x
+
1
)
:
(
src_col
-
1
)
;
int
src_x2
=
(
x
-
1
)
>
0
?
(
x
-1
)
:
0
;
//if
(
src[y
*
src_step
+
src_x1]
==
src[y
*
src_step+
src_x2]
)
//{
//
printf
(
"y = %d\n"
,
y
)
;
//
printf
(
"src_x1 = %d\n"
,
src_x1
)
;
//
printf
(
"src_x2 = %d\n"
,
src_x2
)
;
//}
dx[y
*
dx_step+
x]
=
0.5f
*
(
src[y
*
src_step
+
src_x1]
-
src[y
*
src_step+
src_x2]
)
;
int
src_y1
=
(
y+1
)
<
(
src_row
-
1
)
?
(
y
+
1
)
:
(
src_row
-
1
)
;
int
src_y2
=
(
y
-
1
)
>
0
?
(
y
-
1
)
:
0
;
dy[y
*
dx_step+
x]
=
0.5f
*
(
src[src_y1
*
src_step
+
x]
-
src[src_y2
*
src_step+
x]
)
;
}
}
float
bicubicCoeff
(
float
x_
)
{
float
x
=
fabs
(
x_
)
;
if
(
x
<=
1.0f
)
{
return
x
*
x
*
(
1.5f
*
x
-
2.5f
)
+
1.0f
;
}
else
if
(
x
<
2.0f
)
{
return
x
*
(
x
*
(
-0.5f
*
x
+
2.5f
)
-
4.0f
)
+
2.0f
;
}
else
{
return
0.0f
;
}
}
__kernel
void
warpBackwardKernel
(
__global
const
float*
I0,
int
I0_step,
int
I0_col,
int
I0_row,
image2d_t
tex_I1,
image2d_t
tex_I1x,
image2d_t
tex_I1y,
__global
const
float*
u1,
int
u1_step,
__global
const
float*
u2,
__global
float*
I1w,
__global
float*
I1wx,
/*int
I1wx_step,*/
__global
float*
I1wy,
/*int
I1wy_step,*/
__global
float*
grad,
/*int
grad_step,*/
__global
float*
rho,
int
I1w_step,
int
u2_step,
int
u1_offset_x,
int
u1_offset_y,
int
u2_offset_x,
int
u2_offset_y
)
{
const
int
x
=
get_global_id
(
0
)
;
const
int
y
=
get_global_id
(
1
)
;
if
(
x
<
I0_col&&y
<
I0_row
)
{
//const
float
u1Val
=
u1
(
y,
x
)
;
const
float
u1Val
=
u1[
(
y
+
u1_offset_y
)
*
u1_step
+
x
+
u1_offset_x]
;
//const
float
u2Val
=
u2
(
y,
x
)
;
const
float
u2Val
=
u2[
(
y
+
u2_offset_y
)
*
u2_step
+
x
+
u2_offset_x]
;
const
float
wx
=
x
+
u1Val
;
const
float
wy
=
y
+
u2Val
;
const
int
xmin
=
ceil
(
wx
-
2.0f
)
;
const
int
xmax
=
floor
(
wx
+
2.0f
)
;
const
int
ymin
=
ceil
(
wy
-
2.0f
)
;
const
int
ymax
=
floor
(
wy
+
2.0f
)
;
float
sum
=
0.0f
;
float
sumx
=
0.0f
;
float
sumy
=
0.0f
;
float
wsum
=
0.0f
;
sampler_t
sampleri
=
CLK_NORMALIZED_COORDS_FALSE
| CLK_ADDRESS_CLAMP_TO_EDGE |
CLK_FILTER_NEAREST
;
for
(
int
cy
=
ymin
; cy <= ymax; ++cy)
{
for
(
int
cx
=
xmin
; cx <= xmax; ++cx)
{
const
float
w
=
bicubicCoeff
(
wx
-
cx
)
*
bicubicCoeff
(
wy
-
cy
)
;
//sum
+=
w
*
tex2D
(
tex_I1
,
cx,
cy
)
;
int2
cood
=
(
int2
)(
cx,
cy
)
;
sum
+=
w
*
read_imagef
(
tex_I1,
sampleri,
cood
)
.
x
;
//sumx
+=
w
*
tex2D
(
tex_I1x,
cx,
cy
)
;
sumx
+=
w
*
read_imagef
(
tex_I1x,
sampleri,
cood
)
.
x
;
//sumy
+=
w
*
tex2D
(
tex_I1y,
cx,
cy
)
;
sumy
+=
w
*
read_imagef
(
tex_I1y,
sampleri,
cood
)
.
x
;
wsum
+=
w
;
}
}
const
float
coeff
=
1.0f
/
wsum
;
const
float
I1wVal
=
sum
*
coeff
;
const
float
I1wxVal
=
sumx
*
coeff
;
const
float
I1wyVal
=
sumy
*
coeff
;
I1w[y
*
I1w_step
+
x]
=
I1wVal
;
I1wx[y
*
I1w_step
+
x]
=
I1wxVal
;
I1wy[y
*
I1w_step
+
x]
=
I1wyVal
;
const
float
Ix2
=
I1wxVal
*
I1wxVal
;
const
float
Iy2
=
I1wyVal
*
I1wyVal
;
//
store
the
|Grad(I1)|^2
grad[y
*
I1w_step
+
x]
=
Ix2
+
Iy2
;
//
compute
the
constant
part
of
the
rho
function
const
float
I0Val
=
I0[y
*
I0_step
+
x]
;
rho[y
*
I1w_step
+
x]
=
I1wVal
-
I1wxVal
*
u1Val
-
I1wyVal
*
u2Val
-
I0Val
;
}
}
float
readImage
(
__global
const
float
*image,
const
int
x,
const
int
y,
const
int
rows,
const
int
cols,
const
int
elemCntPerRow
)
{
int
i0
=
clamp
(
x,
0
,
cols
-
1
)
;
int
j0
=
clamp
(
y,
0
,
rows
-
1
)
;
int
i1
=
clamp
(
x
+
1
,
0
,
cols
-
1
)
;
int
j1
=
clamp
(
y
+
1
,
0
,
rows
-
1
)
;
return
image[j0
*
elemCntPerRow
+
i0]
;
}
__kernel
void
warpBackwardKernelNoImage2d
(
__global
const
float*
I0,
int
I0_step,
int
I0_col,
int
I0_row,
__global
const
float*
tex_I1,
__global
const
float*
tex_I1x,
__global
const
float*
tex_I1y,
__global
const
float*
u1,
int
u1_step,
__global
const
float*
u2,
__global
float*
I1w,
__global
float*
I1wx,
/*int
I1wx_step,*/
__global
float*
I1wy,
/*int
I1wy_step,*/
__global
float*
grad,
/*int
grad_step,*/
__global
float*
rho,
int
I1w_step,
int
u2_step,
int
I1_step,
int
I1x_step
)
{
const
int
x
=
get_global_id
(
0
)
;
const
int
y
=
get_global_id
(
1
)
;
if
(
x
<
I0_col&&y
<
I0_row
)
{
//const
float
u1Val
=
u1
(
y,
x
)
;
const
float
u1Val
=
u1[y
*
u1_step
+
x]
;
//const
float
u2Val
=
u2
(
y,
x
)
;
const
float
u2Val
=
u2[y
*
u2_step
+
x]
;
const
float
wx
=
x
+
u1Val
;
const
float
wy
=
y
+
u2Val
;
const
int
xmin
=
ceil
(
wx
-
2.0f
)
;
const
int
xmax
=
floor
(
wx
+
2.0f
)
;
const
int
ymin
=
ceil
(
wy
-
2.0f
)
;
const
int
ymax
=
floor
(
wy
+
2.0f
)
;
float
sum
=
0.0f
;
float
sumx
=
0.0f
;
float
sumy
=
0.0f
;
float
wsum
=
0.0f
;
for
(
int
cy
=
ymin
; cy <= ymax; ++cy)
{
for
(
int
cx
=
xmin
; cx <= xmax; ++cx)
{
const
float
w
=
bicubicCoeff
(
wx
-
cx
)
*
bicubicCoeff
(
wy
-
cy
)
;
int2
cood
=
(
int2
)(
cx,
cy
)
;
sum
+=
w
*
readImage
(
tex_I1,
cood.x,
cood.y,
I0_col,
I0_row,
I1_step
)
;
sumx
+=
w
*
readImage
(
tex_I1x,
cood.x,
cood.y,
I0_col,
I0_row,
I1x_step
)
;
sumy
+=
w
*
readImage
(
tex_I1y,
cood.x,
cood.y,
I0_col,
I0_row,
I1x_step
)
;
wsum
+=
w
;
}
}
const
float
coeff
=
1.0f
/
wsum
;
const
float
I1wVal
=
sum
*
coeff
;
const
float
I1wxVal
=
sumx
*
coeff
;
const
float
I1wyVal
=
sumy
*
coeff
;
I1w[y
*
I1w_step
+
x]
=
I1wVal
;
I1wx[y
*
I1w_step
+
x]
=
I1wxVal
;
I1wy[y
*
I1w_step
+
x]
=
I1wyVal
;
const
float
Ix2
=
I1wxVal
*
I1wxVal
;
const
float
Iy2
=
I1wyVal
*
I1wyVal
;
//
store
the
|Grad(I1)|^2
grad[y
*
I1w_step
+
x]
=
Ix2
+
Iy2
;
//
compute
the
constant
part
of
the
rho
function
const
float
I0Val
=
I0[y
*
I0_step
+
x]
;
rho[y
*
I1w_step
+
x]
=
I1wVal
-
I1wxVal
*
u1Val
-
I1wyVal
*
u2Val
-
I0Val
;
}
}
__kernel
void
estimateDualVariablesKernel
(
__global
const
float*
u1,
int
u1_col,
int
u1_row,
int
u1_step,
__global
const
float*
u2,
__global
float*
p11,
int
p11_step,
__global
float*
p12,
__global
float*
p21,
__global
float*
p22,
const
float
taut,
int
u2_step,
int
u1_offset_x,
int
u1_offset_y,
int
u2_offset_x,
int
u2_offset_y
)
{
//const
int
x
=
blockIdx.x
*
blockDim.x
+
threadIdx.x
;
//const
int
y
=
blockIdx.y
*
blockDim.y
+
threadIdx.y
;
const
int
x
=
get_global_id
(
0
)
;
const
int
y
=
get_global_id
(
1
)
;
if
(
x
<
u1_col
&&
y
<
u1_row
)
{
int
src_x1
=
(
x
+
1
)
<
(
u1_col
-
1
)
?
(
x
+
1
)
:
(
u1_col
-
1
)
;
const
float
u1x
=
u1[
(
y
+
u1_offset_y
)
*
u1_step
+
src_x1
+
u1_offset_x]
-
u1[
(
y
+
u1_offset_y
)
*
u1_step
+
x
+
u1_offset_x]
;
int
src_y1
=
(
y
+
1
)
<
(
u1_row
-
1
)
?
(
y
+
1
)
:
(
u1_row
-
1
)
;
const
float
u1y
=
u1[
(
src_y1
+
u1_offset_y
)
*
u1_step
+
x
+
u1_offset_x]
-
u1[
(
y
+
u1_offset_y
)
*
u1_step
+
x
+
u1_offset_x]
;
int
src_x2
=
(
x
+
1
)
<
(
u1_col
-
1
)
?
(
x
+
1
)
:
(
u1_col
-
1
)
;
const
float
u2x
=
u2[
(
y
+
u2_offset_y
)
*
u2_step
+
src_x2
+
u2_offset_x]
-
u2[
(
y
+
u2_offset_y
)
*
u2_step
+
x
+
u2_offset_x]
;
int
src_y2
=
(
y
+
1
)
<
(
u1_row
-
1
)
?
(
y
+
1
)
:
(
u1_row
-
1
)
;
const
float
u2y
=
u2[
(
src_y2
+
u2_offset_y
)
*
u2_step
+
x
+
u2_offset_x]
-
u2[
(
y
+
u2_offset_y
)
*
u2_step
+
x
+
u2_offset_x]
;
const
float
g1
=
hypot
(
u1x,
u1y
)
;
const
float
g2
=
hypot
(
u2x,
u2y
)
;
const
float
ng1
=
1.0f
+
taut
*
g1
;
const
float
ng2
=
1.0f
+
taut
*
g2
;
p11[y
*
p11_step
+
x]
=
(
p11[y
*
p11_step
+
x]
+
taut
*
u1x
)
/
ng1
;
p12[y
*
p11_step
+
x]
=
(
p12[y
*
p11_step
+
x]
+
taut
*
u1y
)
/
ng1
;
p21[y
*
p11_step
+
x]
=
(
p21[y
*
p11_step
+
x]
+
taut
*
u2x
)
/
ng2
;
p22[y
*
p11_step
+
x]
=
(
p22[y
*
p11_step
+
x]
+
taut
*
u2y
)
/
ng2
;
}
}
float
divergence
(
__global
const
float*
v1,
__global
const
float*
v2,
int
y,
int
x,
int
v1_step,
int
v2_step
)
{
if
(
x
>
0
&&
y
>
0
)
{
const
float
v1x
=
v1[y
*
v1_step
+
x]
-
v1[y
*
v1_step
+
x
-
1]
;
const
float
v2y
=
v2[y
*
v2_step
+
x]
-
v2[
(
y
-
1
)
*
v2_step
+
x]
;
return
v1x
+
v2y
;
}
else
{
if
(
y
>
0
)
return
v1[y
*
v1_step
+
0]
+
v2[y
*
v2_step
+
0]
-
v2[
(
y
-
1
)
*
v2_step
+
0]
;
else
{
if
(
x
>
0
)
return
v1[0
*
v1_step
+
x]
-
v1[0
*
v1_step
+
x
-
1]
+
v2[0
*
v2_step
+
x]
;
else
return
v1[0
*
v1_step
+
0]
+
v2[0
*
v2_step
+
0]
;
}
}
}
__kernel
void
estimateUKernel
(
__global
const
float*
I1wx,
int
I1wx_col,
int
I1wx_row,
int
I1wx_step,
__global
const
float*
I1wy,
/*int
I1wy_step,*/
__global
const
float*
grad,
/*int
grad_step,*/
__global
const
float*
rho_c,
/*int
rho_c_step,*/
__global
const
float*
p11,
/*int
p11_step,*/
__global
const
float*
p12,
/*int
p12_step,*/
__global
const
float*
p21,
/*int
p21_step,*/
__global
const
float*
p22,
/*int
p22_step,*/
__global
float*
u1,
int
u1_step,
__global
float*
u2,
__global
float*
error,
const
float
l_t,
const
float
theta,
int
u2_step,
int
u1_offset_x,
int
u1_offset_y,
int
u2_offset_x,
int
u2_offset_y
)
{
//const
int
x
=
blockIdx.x
*
blockDim.x
+
threadIdx.x
;
//const
int
y
=
blockIdx.y
*
blockDim.y
+
threadIdx.y
;
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
if
(
x
<
I1wx_col
&&
y
<
I1wx_row
)
{
const
float
I1wxVal
=
I1wx[y
*
I1wx_step
+
x]
;
const
float
I1wyVal
=
I1wy[y
*
I1wx_step
+
x]
;
const
float
gradVal
=
grad[y
*
I1wx_step
+
x]
;
const
float
u1OldVal
=
u1[
(
y
+
u1_offset_y
)
*
u1_step
+
x
+
u1_offset_x]
;
const
float
u2OldVal
=
u2[
(
y
+
u2_offset_y
)
*
u2_step
+
x
+
u2_offset_x]
;
const
float
rho
=
rho_c[y
*
I1wx_step
+
x]
+
(
I1wxVal
*
u1OldVal
+
I1wyVal
*
u2OldVal
)
;
//
estimate
the
values
of
the
variable
(
v1,
v2
)
(
thresholding
operator
TH
)
float
d1
=
0.0f
;
float
d2
=
0.0f
;
if
(
rho
<
-l_t
*
gradVal
)
{
d1
=
l_t
*
I1wxVal
;
d2
=
l_t
*
I1wyVal
;
}
else
if
(
rho
>
l_t
*
gradVal
)
{
d1
=
-l_t
*
I1wxVal
;
d2
=
-l_t
*
I1wyVal
;
}
else
if
(
gradVal
>
1.192092896e-07f
)
{
const
float
fi
=
-rho
/
gradVal
;
d1
=
fi
*
I1wxVal
;
d2
=
fi
*
I1wyVal
;
}
const
float
v1
=
u1OldVal
+
d1
;
const
float
v2
=
u2OldVal
+
d2
;
//
compute
the
divergence
of
the
dual
variable
(
p1,
p2
)
const
float
div_p1
=
divergence
(
p11,
p12,
y,
x,
I1wx_step,
I1wx_step
)
;
const
float
div_p2
=
divergence
(
p21,
p22,
y,
x,
I1wx_step,
I1wx_step
)
;
//
estimate
the
values
of
the
optical
flow
(
u1,
u2
)
const
float
u1NewVal
=
v1
+
theta
*
div_p1
;
const
float
u2NewVal
=
v2
+
theta
*
div_p2
;
u1[
(
y
+
u1_offset_y
)
*
u1_step
+
x
+
u1_offset_x]
=
u1NewVal
;
u2[
(
y
+
u2_offset_y
)
*
u2_step
+
x
+
u2_offset_x]
=
u2NewVal
;
const
float
n1
=
(
u1OldVal
-
u1NewVal
)
*
(
u1OldVal
-
u1NewVal
)
;
const
float
n2
=
(
u2OldVal
-
u2NewVal
)
*
(
u2OldVal
-
u2NewVal
)
;
error[y
*
I1wx_step
+
x]
=
n1
+
n2
;
}
}
modules/ocl/src/tvl1flow.cpp
0 → 100644
View file @
4162ebfa
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jin Ma, jin@multicorewareinc.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using
namespace
std
;
using
namespace
cv
;
using
namespace
cv
::
ocl
;
namespace
cv
{
namespace
ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern
const
char
*
tvl1flow
;
}
}
cv
::
ocl
::
OpticalFlowDual_TVL1_OCL
::
OpticalFlowDual_TVL1_OCL
()
{
tau
=
0.25
;
lambda
=
0.15
;
theta
=
0.3
;
nscales
=
5
;
warps
=
5
;
epsilon
=
0.01
;
iterations
=
300
;
useInitialFlow
=
false
;
}
void
cv
::
ocl
::
OpticalFlowDual_TVL1_OCL
::
operator
()(
const
oclMat
&
I0
,
const
oclMat
&
I1
,
oclMat
&
flowx
,
oclMat
&
flowy
)
{
CV_Assert
(
I0
.
type
()
==
CV_8UC1
||
I0
.
type
()
==
CV_32FC1
);
CV_Assert
(
I0
.
size
()
==
I1
.
size
()
);
CV_Assert
(
I0
.
type
()
==
I1
.
type
()
);
CV_Assert
(
!
useInitialFlow
||
(
flowx
.
size
()
==
I0
.
size
()
&&
flowx
.
type
()
==
CV_32FC1
&&
flowy
.
size
()
==
flowx
.
size
()
&&
flowy
.
type
()
==
flowx
.
type
())
);
CV_Assert
(
nscales
>
0
);
// allocate memory for the pyramid structure
I0s
.
resize
(
nscales
);
I1s
.
resize
(
nscales
);
u1s
.
resize
(
nscales
);
u2s
.
resize
(
nscales
);
//I0s_step == I1s_step
I0
.
convertTo
(
I0s
[
0
],
CV_32F
,
I0
.
depth
()
==
CV_8U
?
1.0
:
255.0
);
I1
.
convertTo
(
I1s
[
0
],
CV_32F
,
I1
.
depth
()
==
CV_8U
?
1.0
:
255.0
);
if
(
!
useInitialFlow
)
{
flowx
.
create
(
I0
.
size
(),
CV_32FC1
);
flowy
.
create
(
I0
.
size
(),
CV_32FC1
);
}
//u1s_step != u2s_step
u1s
[
0
]
=
flowx
;
u2s
[
0
]
=
flowy
;
I1x_buf
.
create
(
I0
.
size
(),
CV_32FC1
);
I1y_buf
.
create
(
I0
.
size
(),
CV_32FC1
);
I1w_buf
.
create
(
I0
.
size
(),
CV_32FC1
);
I1wx_buf
.
create
(
I0
.
size
(),
CV_32FC1
);
I1wy_buf
.
create
(
I0
.
size
(),
CV_32FC1
);
grad_buf
.
create
(
I0
.
size
(),
CV_32FC1
);
rho_c_buf
.
create
(
I0
.
size
(),
CV_32FC1
);
p11_buf
.
create
(
I0
.
size
(),
CV_32FC1
);
p12_buf
.
create
(
I0
.
size
(),
CV_32FC1
);
p21_buf
.
create
(
I0
.
size
(),
CV_32FC1
);
p22_buf
.
create
(
I0
.
size
(),
CV_32FC1
);
diff_buf
.
create
(
I0
.
size
(),
CV_32FC1
);
// create the scales
for
(
int
s
=
1
;
s
<
nscales
;
++
s
)
{
ocl
::
pyrDown
(
I0s
[
s
-
1
],
I0s
[
s
]);
ocl
::
pyrDown
(
I1s
[
s
-
1
],
I1s
[
s
]);
if
(
I0s
[
s
].
cols
<
16
||
I0s
[
s
].
rows
<
16
)
{
nscales
=
s
;
break
;
}
if
(
useInitialFlow
)
{
ocl
::
pyrDown
(
u1s
[
s
-
1
],
u1s
[
s
]);
ocl
::
pyrDown
(
u2s
[
s
-
1
],
u2s
[
s
]);
//ocl::multiply(u1s[s], Scalar::all(0.5), u1s[s]);
multiply
(
0.5
,
u1s
[
s
],
u1s
[
s
]);
//ocl::multiply(u2s[s], Scalar::all(0.5), u2s[s]);
multiply
(
0.5
,
u1s
[
s
],
u2s
[
s
]);
}
}
// pyramidal structure for computing the optical flow
for
(
int
s
=
nscales
-
1
;
s
>=
0
;
--
s
)
{
// compute the optical flow at the current scale
procOneScale
(
I0s
[
s
],
I1s
[
s
],
u1s
[
s
],
u2s
[
s
]);
// if this was the last scale, finish now
if
(
s
==
0
)
break
;
// otherwise, upsample the optical flow
// zoom the optical flow for the next finer scale
ocl
::
resize
(
u1s
[
s
],
u1s
[
s
-
1
],
I0s
[
s
-
1
].
size
());
ocl
::
resize
(
u2s
[
s
],
u2s
[
s
-
1
],
I0s
[
s
-
1
].
size
());
// scale the optical flow with the appropriate zoom factor
multiply
(
2
,
u1s
[
s
-
1
],
u1s
[
s
-
1
]);
multiply
(
2
,
u2s
[
s
-
1
],
u2s
[
s
-
1
]);
}
}
namespace
ocl_tvl1flow
{
void
centeredGradient
(
const
oclMat
&
src
,
oclMat
&
dx
,
oclMat
&
dy
);
void
warpBackward
(
const
oclMat
&
I0
,
const
oclMat
&
I1
,
oclMat
&
I1x
,
oclMat
&
I1y
,
oclMat
&
u1
,
oclMat
&
u2
,
oclMat
&
I1w
,
oclMat
&
I1wx
,
oclMat
&
I1wy
,
oclMat
&
grad
,
oclMat
&
rho
);
void
estimateU
(
oclMat
&
I1wx
,
oclMat
&
I1wy
,
oclMat
&
grad
,
oclMat
&
rho_c
,
oclMat
&
p11
,
oclMat
&
p12
,
oclMat
&
p21
,
oclMat
&
p22
,
oclMat
&
u1
,
oclMat
&
u2
,
oclMat
&
error
,
float
l_t
,
float
theta
);
void
estimateDualVariables
(
oclMat
&
u1
,
oclMat
&
u2
,
oclMat
&
p11
,
oclMat
&
p12
,
oclMat
&
p21
,
oclMat
&
p22
,
float
taut
);
}
void
cv
::
ocl
::
OpticalFlowDual_TVL1_OCL
::
procOneScale
(
const
oclMat
&
I0
,
const
oclMat
&
I1
,
oclMat
&
u1
,
oclMat
&
u2
)
{
using
namespace
ocl_tvl1flow
;
const
double
scaledEpsilon
=
epsilon
*
epsilon
*
I0
.
size
().
area
();
CV_DbgAssert
(
I1
.
size
()
==
I0
.
size
()
);
CV_DbgAssert
(
I1
.
type
()
==
I0
.
type
()
);
CV_DbgAssert
(
u1
.
empty
()
||
u1
.
size
()
==
I0
.
size
()
);
CV_DbgAssert
(
u2
.
size
()
==
u1
.
size
()
);
if
(
u1
.
empty
())
{
u1
.
create
(
I0
.
size
(),
CV_32FC1
);
u1
.
setTo
(
Scalar
::
all
(
0
));
u2
.
create
(
I0
.
size
(),
CV_32FC1
);
u2
.
setTo
(
Scalar
::
all
(
0
));
}
oclMat
I1x
=
I1x_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
oclMat
I1y
=
I1y_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
centeredGradient
(
I1
,
I1x
,
I1y
);
oclMat
I1w
=
I1w_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
oclMat
I1wx
=
I1wx_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
oclMat
I1wy
=
I1wy_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
oclMat
grad
=
grad_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
oclMat
rho_c
=
rho_c_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
oclMat
p11
=
p11_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
oclMat
p12
=
p12_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
oclMat
p21
=
p21_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
oclMat
p22
=
p22_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
p11
.
setTo
(
Scalar
::
all
(
0
));
p12
.
setTo
(
Scalar
::
all
(
0
));
p21
.
setTo
(
Scalar
::
all
(
0
));
p22
.
setTo
(
Scalar
::
all
(
0
));
oclMat
diff
=
diff_buf
(
Rect
(
0
,
0
,
I0
.
cols
,
I0
.
rows
));
const
float
l_t
=
static_cast
<
float
>
(
lambda
*
theta
);
const
float
taut
=
static_cast
<
float
>
(
tau
/
theta
);
for
(
int
warpings
=
0
;
warpings
<
warps
;
++
warpings
)
{
warpBackward
(
I0
,
I1
,
I1x
,
I1y
,
u1
,
u2
,
I1w
,
I1wx
,
I1wy
,
grad
,
rho_c
);
double
error
=
numeric_limits
<
double
>::
max
();
for
(
int
n
=
0
;
error
>
scaledEpsilon
&&
n
<
iterations
;
++
n
)
{
estimateU
(
I1wx
,
I1wy
,
grad
,
rho_c
,
p11
,
p12
,
p21
,
p22
,
u1
,
u2
,
diff
,
l_t
,
static_cast
<
float
>
(
theta
));
error
=
ocl
::
sum
(
diff
)[
0
];
estimateDualVariables
(
u1
,
u2
,
p11
,
p12
,
p21
,
p22
,
taut
);
}
}
}
void
cv
::
ocl
::
OpticalFlowDual_TVL1_OCL
::
collectGarbage
()
{
I0s
.
clear
();
I1s
.
clear
();
u1s
.
clear
();
u2s
.
clear
();
I1x_buf
.
release
();
I1y_buf
.
release
();
I1w_buf
.
release
();
I1wx_buf
.
release
();
I1wy_buf
.
release
();
grad_buf
.
release
();
rho_c_buf
.
release
();
p11_buf
.
release
();
p12_buf
.
release
();
p21_buf
.
release
();
p22_buf
.
release
();
diff_buf
.
release
();
norm_buf
.
release
();
}
void
ocl_tvl1flow
::
centeredGradient
(
const
oclMat
&
src
,
oclMat
&
dx
,
oclMat
&
dy
)
{
Context
*
clCxt
=
src
.
clCxt
;
size_t
localThreads
[
3
]
=
{
32
,
8
,
1
};
size_t
globalThreads
[
3
]
=
{
src
.
cols
,
src
.
rows
,
1
};
int
srcElementSize
=
src
.
elemSize
();
int
src_step
=
src
.
step
/
srcElementSize
;
int
dElememntSize
=
dx
.
elemSize
();
int
dx_step
=
dx
.
step
/
dElememntSize
;
string
kernelName
=
"centeredGradientKernel"
;
vector
<
pair
<
size_t
,
const
void
*>
>
args
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
src
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src
.
cols
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src
.
rows
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
dx
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
dy
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
dx_step
));
openCLExecuteKernel
(
clCxt
,
&
tvl1flow
,
kernelName
,
globalThreads
,
localThreads
,
args
,
-
1
,
-
1
);
}
void
ocl_tvl1flow
::
estimateDualVariables
(
oclMat
&
u1
,
oclMat
&
u2
,
oclMat
&
p11
,
oclMat
&
p12
,
oclMat
&
p21
,
oclMat
&
p22
,
float
taut
)
{
Context
*
clCxt
=
u1
.
clCxt
;
size_t
localThread
[]
=
{
32
,
8
,
1
};
size_t
globalThread
[]
=
{
u1
.
cols
,
u1
.
rows
,
1
};
int
u1_element_size
=
u1
.
elemSize
();
int
u1_step
=
u1
.
step
/
u1_element_size
;
int
u2_element_size
=
u2
.
elemSize
();
int
u2_step
=
u2
.
step
/
u2_element_size
;
int
p11_element_size
=
p11
.
elemSize
();
int
p11_step
=
p11
.
step
/
p11_element_size
;
int
u1_offset_y
=
u1
.
offset
/
u1
.
step
;
int
u1_offset_x
=
u1
.
offset
%
u1
.
step
;
u1_offset_x
=
u1_offset_x
/
u1
.
elemSize
();
int
u2_offset_y
=
u2
.
offset
/
u2
.
step
;
int
u2_offset_x
=
u2
.
offset
%
u2
.
step
;
u2_offset_x
=
u2_offset_x
/
u2
.
elemSize
();
string
kernelName
=
"estimateDualVariablesKernel"
;
vector
<
pair
<
size_t
,
const
void
*>
>
args
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
u1
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u1
.
cols
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u1
.
rows
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u1_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
u2
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
p11
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
p11_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
p12
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
p21
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
p22
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_float
),
(
void
*
)
&
taut
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u2_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u1_offset_x
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u1_offset_y
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u2_offset_x
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u2_offset_y
));
openCLExecuteKernel
(
clCxt
,
&
tvl1flow
,
kernelName
,
globalThread
,
localThread
,
args
,
-
1
,
-
1
);
}
void
ocl_tvl1flow
::
estimateU
(
oclMat
&
I1wx
,
oclMat
&
I1wy
,
oclMat
&
grad
,
oclMat
&
rho_c
,
oclMat
&
p11
,
oclMat
&
p12
,
oclMat
&
p21
,
oclMat
&
p22
,
oclMat
&
u1
,
oclMat
&
u2
,
oclMat
&
error
,
float
l_t
,
float
theta
)
{
Context
*
clCxt
=
I1wx
.
clCxt
;
size_t
localThread
[]
=
{
32
,
8
,
1
};
size_t
globalThread
[]
=
{
I1wx
.
cols
,
I1wx
.
rows
,
1
};
int
I1wx_element_size
=
I1wx
.
elemSize
();
int
I1wx_step
=
I1wx
.
step
/
I1wx_element_size
;
int
u1_element_size
=
u1
.
elemSize
();
int
u1_step
=
u1
.
step
/
u1_element_size
;
int
u2_element_size
=
u2
.
elemSize
();
int
u2_step
=
u2
.
step
/
u2_element_size
;
int
u1_offset_y
=
u1
.
offset
/
u1
.
step
;
int
u1_offset_x
=
u1
.
offset
%
u1
.
step
;
u1_offset_x
=
u1_offset_x
/
u1
.
elemSize
();
int
u2_offset_y
=
u2
.
offset
/
u2
.
step
;
int
u2_offset_x
=
u2
.
offset
%
u2
.
step
;
u2_offset_x
=
u2_offset_x
/
u2
.
elemSize
();
string
kernelName
=
"estimateUKernel"
;
vector
<
pair
<
size_t
,
const
void
*>
>
args
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
I1wx
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
I1wx
.
cols
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
I1wx
.
rows
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
I1wx_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
I1wy
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
grad
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
rho_c
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
p11
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
p12
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
p21
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
p22
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
u1
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u1_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
u2
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
error
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_float
),
(
void
*
)
&
l_t
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_float
),
(
void
*
)
&
theta
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u2_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u1_offset_x
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u1_offset_y
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u2_offset_x
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u2_offset_y
));
openCLExecuteKernel
(
clCxt
,
&
tvl1flow
,
kernelName
,
globalThread
,
localThread
,
args
,
-
1
,
-
1
);
}
void
ocl_tvl1flow
::
warpBackward
(
const
oclMat
&
I0
,
const
oclMat
&
I1
,
oclMat
&
I1x
,
oclMat
&
I1y
,
oclMat
&
u1
,
oclMat
&
u2
,
oclMat
&
I1w
,
oclMat
&
I1wx
,
oclMat
&
I1wy
,
oclMat
&
grad
,
oclMat
&
rho
)
{
Context
*
clCxt
=
I0
.
clCxt
;
const
bool
isImgSupported
=
support_image2d
(
clCxt
);
CV_Assert
(
isImgSupported
);
int
u1ElementSize
=
u1
.
elemSize
();
int
u1Step
=
u1
.
step
/
u1ElementSize
;
int
u2ElementSize
=
u2
.
elemSize
();
int
u2Step
=
u2
.
step
/
u2ElementSize
;
int
I0ElementSize
=
I0
.
elemSize
();
int
I0Step
=
I0
.
step
/
I0ElementSize
;
int
I1w_element_size
=
I1w
.
elemSize
();
int
I1w_step
=
I1w
.
step
/
I1w_element_size
;
int
u1_offset_y
=
u1
.
offset
/
u1
.
step
;
int
u1_offset_x
=
u1
.
offset
%
u1
.
step
;
u1_offset_x
=
u1_offset_x
/
u1
.
elemSize
();
int
u2_offset_y
=
u2
.
offset
/
u2
.
step
;
int
u2_offset_x
=
u2
.
offset
%
u2
.
step
;
u2_offset_x
=
u2_offset_x
/
u2
.
elemSize
();
size_t
localThread
[]
=
{
32
,
8
,
1
};
size_t
globalThread
[]
=
{
I0
.
cols
,
I0
.
rows
,
1
};
cl_mem
I1_tex
;
cl_mem
I1x_tex
;
cl_mem
I1y_tex
;
I1_tex
=
bindTexture
(
I1
);
I1x_tex
=
bindTexture
(
I1x
);
I1y_tex
=
bindTexture
(
I1y
);
string
kernelName
=
"warpBackwardKernel"
;
vector
<
pair
<
size_t
,
const
void
*>
>
args
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
I0
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
I0Step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
I0
.
cols
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
I0
.
rows
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
I1_tex
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
I1x_tex
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
I1y_tex
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
u1
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u1Step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
u2
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
I1w
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
I1wx
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
I1wy
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
grad
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
rho
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
I1w_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u2Step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u1_offset_x
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u1_offset_y
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u2_offset_x
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
u2_offset_y
));
openCLExecuteKernel
(
clCxt
,
&
tvl1flow
,
kernelName
,
globalThread
,
localThread
,
args
,
-
1
,
-
1
);
}
\ No newline at end of file
modules/ocl/test/test_
pyrlk
.cpp
→
modules/ocl/test/test_
optflow
.cpp
View file @
4162ebfa
/
*M/
//////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
...
...
@@ -7,12 +7,16 @@
// copy or use the software.
//
//
//
Intel
License Agreement
//
License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
...
...
@@ -21,9 +25,9 @@
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other
m
aterials provided with the distribution.
// and/or other
oclM
aterials provided with the distribution.
//
// * The name of
Intel Corporation
may not be used to endorse or promote products
// * The name of
the copyright holders
may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
...
...
@@ -51,6 +55,47 @@ using namespace testing;
using
namespace
std
;
extern
string
workdir
;
//////////////////////////////////////////////////////////////////////////
PARAM_TEST_CASE
(
TVL1
,
bool
)
{
bool
useRoi
;
virtual
void
SetUp
()
{
useRoi
=
GET_PARAM
(
0
);
}
};
TEST_P
(
TVL1
,
Accuracy
)
{
cv
::
Mat
frame0
=
readImage
(
workdir
+
"../gpu/rubberwhale1.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame0
.
empty
());
cv
::
Mat
frame1
=
readImage
(
workdir
+
"../gpu/rubberwhale2.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame1
.
empty
());
cv
::
ocl
::
OpticalFlowDual_TVL1_OCL
d_alg
;
cv
::
RNG
&
rng
=
TS
::
ptr
()
->
get_rng
();
cv
::
Mat
flowx
=
randomMat
(
rng
,
frame0
.
size
(),
CV_32FC1
,
0
,
0
,
useRoi
);
cv
::
Mat
flowy
=
randomMat
(
rng
,
frame0
.
size
(),
CV_32FC1
,
0
,
0
,
useRoi
);
cv
::
ocl
::
oclMat
d_flowx
(
flowx
),
d_flowy
(
flowy
);
d_alg
(
oclMat
(
frame0
),
oclMat
(
frame1
),
d_flowx
,
d_flowy
);
cv
::
Ptr
<
cv
::
DenseOpticalFlow
>
alg
=
cv
::
createOptFlow_DualTVL1
();
cv
::
Mat
flow
;
alg
->
calc
(
frame0
,
frame1
,
flow
);
cv
::
Mat
gold
[
2
];
cv
::
split
(
flow
,
gold
);
EXPECT_MAT_SIMILAR
(
gold
[
0
],
d_flowx
,
3e-3
);
EXPECT_MAT_SIMILAR
(
gold
[
1
],
d_flowy
,
3e-3
);
}
INSTANTIATE_TEST_CASE_P
(
OCL_Video
,
TVL1
,
Values
(
true
,
false
));
/////////////////////////////////////////////////////////////////////////////////////////////////
// PyrLKOpticalFlow
PARAM_TEST_CASE
(
Sparse
,
bool
,
bool
)
{
...
...
@@ -60,7 +105,7 @@ PARAM_TEST_CASE(Sparse, bool, bool)
virtual
void
SetUp
()
{
UseSmart
=
GET_PARAM
(
0
);
useGray
=
GET_PARAM
(
0
);
useGray
=
GET_PARAM
(
1
);
}
};
...
...
@@ -147,9 +192,9 @@ TEST_P(Sparse, Mat)
}
INSTANTIATE_TEST_CASE_P
(
Video
,
Sparse
,
Combine
(
Values
(
false
,
true
),
Values
(
fals
e
)));
INSTANTIATE_TEST_CASE_P
(
OCL_
Video
,
Sparse
,
Combine
(
Values
(
false
,
true
),
Values
(
false
,
tru
e
)));
#endif // HAVE_OPENCL
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment