Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
40b1dc12
Commit
40b1dc12
authored
Sep 07, 2018
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #12464 from alalek:fix_contrib_1754
parents
8eba3c1e
b50c70bb
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
918 additions
and
922 deletions
+918
-922
test_descriptors_invariance.cpp
modules/features2d/test/test_descriptors_invariance.cpp
+3
-153
test_descriptors_invariance.impl.hpp
modules/features2d/test/test_descriptors_invariance.impl.hpp
+174
-0
test_descriptors_regression.cpp
modules/features2d/test/test_descriptors_regression.cpp
+6
-330
test_descriptors_regression.impl.hpp
modules/features2d/test/test_descriptors_regression.impl.hpp
+298
-0
test_detectors_invariance.cpp
modules/features2d/test/test_detectors_invariance.cpp
+3
-206
test_detectors_invariance.impl.hpp
modules/features2d/test/test_detectors_invariance.impl.hpp
+227
-0
test_detectors_regression.cpp
modules/features2d/test/test_detectors_regression.cpp
+6
-233
test_detectors_regression.impl.hpp
modules/features2d/test/test_detectors_regression.impl.hpp
+201
-0
No files found.
modules/features2d/test/test_descriptors_invariance.cpp
View file @
40b1dc12
...
...
@@ -5,163 +5,13 @@
#include "test_precomp.hpp"
#include "test_invariance_utils.hpp"
namespace
opencv_test
{
namespace
{
#include "test_descriptors_invariance.impl.hpp"
#define SHOW_DEBUG_LOG 1
namespace
opencv_test
{
namespace
{
typedef
tuple
<
std
::
string
,
Ptr
<
FeatureDetector
>
,
Ptr
<
DescriptorExtractor
>
,
float
>
String_FeatureDetector_DescriptorExtractor_Float_t
;
const
static
std
::
string
IMAGE_TSUKUBA
=
"features2d/tsukuba.png"
;
const
static
std
::
string
IMAGE_BIKES
=
"detectors_descriptors_evaluation/images_datasets/bikes/img1.png"
;
#define Value(...) Values(String_FeatureDetector_DescriptorExtractor_Float_t(__VA_ARGS__))
static
void
rotateKeyPoints
(
const
vector
<
KeyPoint
>&
src
,
const
Mat
&
H
,
float
angle
,
vector
<
KeyPoint
>&
dst
)
{
// suppose that H is rotation given from rotateImage() and angle has value passed to rotateImage()
vector
<
Point2f
>
srcCenters
,
dstCenters
;
KeyPoint
::
convert
(
src
,
srcCenters
);
perspectiveTransform
(
srcCenters
,
dstCenters
,
H
);
dst
=
src
;
for
(
size_t
i
=
0
;
i
<
dst
.
size
();
i
++
)
{
dst
[
i
].
pt
=
dstCenters
[
i
];
float
dstAngle
=
src
[
i
].
angle
+
angle
;
if
(
dstAngle
>=
360.
f
)
dstAngle
-=
360.
f
;
dst
[
i
].
angle
=
dstAngle
;
}
}
class
DescriptorInvariance
:
public
TestWithParam
<
String_FeatureDetector_DescriptorExtractor_Float_t
>
{
protected
:
virtual
void
SetUp
()
{
// Read test data
const
std
::
string
filename
=
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
get
<
0
>
(
GetParam
());
image0
=
imread
(
filename
);
ASSERT_FALSE
(
image0
.
empty
())
<<
"couldn't read input image"
;
featureDetector
=
get
<
1
>
(
GetParam
());
descriptorExtractor
=
get
<
2
>
(
GetParam
());
minInliersRatio
=
get
<
3
>
(
GetParam
());
}
Ptr
<
FeatureDetector
>
featureDetector
;
Ptr
<
DescriptorExtractor
>
descriptorExtractor
;
float
minInliersRatio
;
Mat
image0
;
};
typedef
DescriptorInvariance
DescriptorScaleInvariance
;
typedef
DescriptorInvariance
DescriptorRotationInvariance
;
TEST_P
(
DescriptorRotationInvariance
,
rotation
)
{
Mat
image1
,
mask1
;
const
int
borderSize
=
16
;
Mat
mask0
(
image0
.
size
(),
CV_8UC1
,
Scalar
(
0
));
mask0
(
Rect
(
borderSize
,
borderSize
,
mask0
.
cols
-
2
*
borderSize
,
mask0
.
rows
-
2
*
borderSize
)).
setTo
(
Scalar
(
255
));
vector
<
KeyPoint
>
keypoints0
;
Mat
descriptors0
;
featureDetector
->
detect
(
image0
,
keypoints0
,
mask0
);
std
::
cout
<<
"Keypoints: "
<<
keypoints0
.
size
()
<<
std
::
endl
;
EXPECT_GE
(
keypoints0
.
size
(),
15u
);
descriptorExtractor
->
compute
(
image0
,
keypoints0
,
descriptors0
);
BFMatcher
bfmatcher
(
descriptorExtractor
->
defaultNorm
());
const
float
minIntersectRatio
=
0.5
f
;
const
int
maxAngle
=
360
,
angleStep
=
15
;
for
(
int
angle
=
0
;
angle
<
maxAngle
;
angle
+=
angleStep
)
{
Mat
H
=
rotateImage
(
image0
,
mask0
,
static_cast
<
float
>
(
angle
),
image1
,
mask1
);
vector
<
KeyPoint
>
keypoints1
;
rotateKeyPoints
(
keypoints0
,
H
,
static_cast
<
float
>
(
angle
),
keypoints1
);
Mat
descriptors1
;
descriptorExtractor
->
compute
(
image1
,
keypoints1
,
descriptors1
);
vector
<
DMatch
>
descMatches
;
bfmatcher
.
match
(
descriptors0
,
descriptors1
,
descMatches
);
int
descInliersCount
=
0
;
for
(
size_t
m
=
0
;
m
<
descMatches
.
size
();
m
++
)
{
const
KeyPoint
&
transformed_p0
=
keypoints1
[
descMatches
[
m
].
queryIdx
];
const
KeyPoint
&
p1
=
keypoints1
[
descMatches
[
m
].
trainIdx
];
if
(
calcIntersectRatio
(
transformed_p0
.
pt
,
0.5
f
*
transformed_p0
.
size
,
p1
.
pt
,
0.5
f
*
p1
.
size
)
>=
minIntersectRatio
)
{
descInliersCount
++
;
}
}
float
descInliersRatio
=
static_cast
<
float
>
(
descInliersCount
)
/
keypoints0
.
size
();
EXPECT_GE
(
descInliersRatio
,
minInliersRatio
);
#if SHOW_DEBUG_LOG
std
::
cout
<<
"angle = "
<<
angle
<<
", inliers = "
<<
descInliersCount
<<
", descInliersRatio = "
<<
static_cast
<
float
>
(
descInliersCount
)
/
keypoints0
.
size
()
<<
std
::
endl
;
#endif
}
}
TEST_P
(
DescriptorScaleInvariance
,
scale
)
{
vector
<
KeyPoint
>
keypoints0
;
featureDetector
->
detect
(
image0
,
keypoints0
);
std
::
cout
<<
"Keypoints: "
<<
keypoints0
.
size
()
<<
std
::
endl
;
EXPECT_GE
(
keypoints0
.
size
(),
15u
);
Mat
descriptors0
;
descriptorExtractor
->
compute
(
image0
,
keypoints0
,
descriptors0
);
BFMatcher
bfmatcher
(
descriptorExtractor
->
defaultNorm
());
for
(
int
scaleIdx
=
1
;
scaleIdx
<=
3
;
scaleIdx
++
)
{
float
scale
=
1.
f
+
scaleIdx
*
0.5
f
;
Mat
image1
;
resize
(
image0
,
image1
,
Size
(),
1.
/
scale
,
1.
/
scale
,
INTER_LINEAR_EXACT
);
vector
<
KeyPoint
>
keypoints1
;
scaleKeyPoints
(
keypoints0
,
keypoints1
,
1.0
f
/
scale
);
Mat
descriptors1
;
descriptorExtractor
->
compute
(
image1
,
keypoints1
,
descriptors1
);
vector
<
DMatch
>
descMatches
;
bfmatcher
.
match
(
descriptors0
,
descriptors1
,
descMatches
);
const
float
minIntersectRatio
=
0.5
f
;
int
descInliersCount
=
0
;
for
(
size_t
m
=
0
;
m
<
descMatches
.
size
();
m
++
)
{
const
KeyPoint
&
transformed_p0
=
keypoints0
[
descMatches
[
m
].
queryIdx
];
const
KeyPoint
&
p1
=
keypoints0
[
descMatches
[
m
].
trainIdx
];
if
(
calcIntersectRatio
(
transformed_p0
.
pt
,
0.5
f
*
transformed_p0
.
size
,
p1
.
pt
,
0.5
f
*
p1
.
size
)
>=
minIntersectRatio
)
{
descInliersCount
++
;
}
}
float
descInliersRatio
=
static_cast
<
float
>
(
descInliersCount
)
/
keypoints0
.
size
();
EXPECT_GE
(
descInliersRatio
,
minInliersRatio
);
#if SHOW_DEBUG_LOG
std
::
cout
<<
"scale = "
<<
scale
<<
", inliers = "
<<
descInliersCount
<<
", descInliersRatio = "
<<
static_cast
<
float
>
(
descInliersCount
)
/
keypoints0
.
size
()
<<
std
::
endl
;
#endif
}
}
#define Value(...) Values(make_tuple(__VA_ARGS__))
/*
* Descriptors's rotation invariance check
...
...
modules/features2d/test/test_descriptors_invariance.impl.hpp
0 → 100644
View file @
40b1dc12
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_invariance_utils.hpp"
namespace
opencv_test
{
namespace
{
#define SHOW_DEBUG_LOG 1
typedef
tuple
<
std
::
string
,
Ptr
<
FeatureDetector
>
,
Ptr
<
DescriptorExtractor
>
,
float
>
String_FeatureDetector_DescriptorExtractor_Float_t
;
static
void
rotateKeyPoints
(
const
vector
<
KeyPoint
>&
src
,
const
Mat
&
H
,
float
angle
,
vector
<
KeyPoint
>&
dst
)
{
// suppose that H is rotation given from rotateImage() and angle has value passed to rotateImage()
vector
<
Point2f
>
srcCenters
,
dstCenters
;
KeyPoint
::
convert
(
src
,
srcCenters
);
perspectiveTransform
(
srcCenters
,
dstCenters
,
H
);
dst
=
src
;
for
(
size_t
i
=
0
;
i
<
dst
.
size
();
i
++
)
{
dst
[
i
].
pt
=
dstCenters
[
i
];
float
dstAngle
=
src
[
i
].
angle
+
angle
;
if
(
dstAngle
>=
360.
f
)
dstAngle
-=
360.
f
;
dst
[
i
].
angle
=
dstAngle
;
}
}
class
DescriptorInvariance
:
public
TestWithParam
<
String_FeatureDetector_DescriptorExtractor_Float_t
>
{
protected
:
virtual
void
SetUp
()
{
// Read test data
const
std
::
string
filename
=
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
get
<
0
>
(
GetParam
());
image0
=
imread
(
filename
);
ASSERT_FALSE
(
image0
.
empty
())
<<
"couldn't read input image"
;
featureDetector
=
get
<
1
>
(
GetParam
());
descriptorExtractor
=
get
<
2
>
(
GetParam
());
minInliersRatio
=
get
<
3
>
(
GetParam
());
}
Ptr
<
FeatureDetector
>
featureDetector
;
Ptr
<
DescriptorExtractor
>
descriptorExtractor
;
float
minInliersRatio
;
Mat
image0
;
};
typedef
DescriptorInvariance
DescriptorScaleInvariance
;
typedef
DescriptorInvariance
DescriptorRotationInvariance
;
TEST_P
(
DescriptorRotationInvariance
,
rotation
)
{
Mat
image1
,
mask1
;
const
int
borderSize
=
16
;
Mat
mask0
(
image0
.
size
(),
CV_8UC1
,
Scalar
(
0
));
mask0
(
Rect
(
borderSize
,
borderSize
,
mask0
.
cols
-
2
*
borderSize
,
mask0
.
rows
-
2
*
borderSize
)).
setTo
(
Scalar
(
255
));
vector
<
KeyPoint
>
keypoints0
;
Mat
descriptors0
;
featureDetector
->
detect
(
image0
,
keypoints0
,
mask0
);
std
::
cout
<<
"Keypoints: "
<<
keypoints0
.
size
()
<<
std
::
endl
;
EXPECT_GE
(
keypoints0
.
size
(),
15u
);
descriptorExtractor
->
compute
(
image0
,
keypoints0
,
descriptors0
);
BFMatcher
bfmatcher
(
descriptorExtractor
->
defaultNorm
());
const
float
minIntersectRatio
=
0.5
f
;
const
int
maxAngle
=
360
,
angleStep
=
15
;
for
(
int
angle
=
0
;
angle
<
maxAngle
;
angle
+=
angleStep
)
{
Mat
H
=
rotateImage
(
image0
,
mask0
,
static_cast
<
float
>
(
angle
),
image1
,
mask1
);
vector
<
KeyPoint
>
keypoints1
;
rotateKeyPoints
(
keypoints0
,
H
,
static_cast
<
float
>
(
angle
),
keypoints1
);
Mat
descriptors1
;
descriptorExtractor
->
compute
(
image1
,
keypoints1
,
descriptors1
);
vector
<
DMatch
>
descMatches
;
bfmatcher
.
match
(
descriptors0
,
descriptors1
,
descMatches
);
int
descInliersCount
=
0
;
for
(
size_t
m
=
0
;
m
<
descMatches
.
size
();
m
++
)
{
const
KeyPoint
&
transformed_p0
=
keypoints1
[
descMatches
[
m
].
queryIdx
];
const
KeyPoint
&
p1
=
keypoints1
[
descMatches
[
m
].
trainIdx
];
if
(
calcIntersectRatio
(
transformed_p0
.
pt
,
0.5
f
*
transformed_p0
.
size
,
p1
.
pt
,
0.5
f
*
p1
.
size
)
>=
minIntersectRatio
)
{
descInliersCount
++
;
}
}
float
descInliersRatio
=
static_cast
<
float
>
(
descInliersCount
)
/
keypoints0
.
size
();
EXPECT_GE
(
descInliersRatio
,
minInliersRatio
);
#if SHOW_DEBUG_LOG
std
::
cout
<<
"angle = "
<<
angle
<<
", inliers = "
<<
descInliersCount
<<
", descInliersRatio = "
<<
static_cast
<
float
>
(
descInliersCount
)
/
keypoints0
.
size
()
<<
std
::
endl
;
#endif
}
}
TEST_P
(
DescriptorScaleInvariance
,
scale
)
{
vector
<
KeyPoint
>
keypoints0
;
featureDetector
->
detect
(
image0
,
keypoints0
);
std
::
cout
<<
"Keypoints: "
<<
keypoints0
.
size
()
<<
std
::
endl
;
EXPECT_GE
(
keypoints0
.
size
(),
15u
);
Mat
descriptors0
;
descriptorExtractor
->
compute
(
image0
,
keypoints0
,
descriptors0
);
BFMatcher
bfmatcher
(
descriptorExtractor
->
defaultNorm
());
for
(
int
scaleIdx
=
1
;
scaleIdx
<=
3
;
scaleIdx
++
)
{
float
scale
=
1.
f
+
scaleIdx
*
0.5
f
;
Mat
image1
;
resize
(
image0
,
image1
,
Size
(),
1.
/
scale
,
1.
/
scale
,
INTER_LINEAR_EXACT
);
vector
<
KeyPoint
>
keypoints1
;
scaleKeyPoints
(
keypoints0
,
keypoints1
,
1.0
f
/
scale
);
Mat
descriptors1
;
descriptorExtractor
->
compute
(
image1
,
keypoints1
,
descriptors1
);
vector
<
DMatch
>
descMatches
;
bfmatcher
.
match
(
descriptors0
,
descriptors1
,
descMatches
);
const
float
minIntersectRatio
=
0.5
f
;
int
descInliersCount
=
0
;
for
(
size_t
m
=
0
;
m
<
descMatches
.
size
();
m
++
)
{
const
KeyPoint
&
transformed_p0
=
keypoints0
[
descMatches
[
m
].
queryIdx
];
const
KeyPoint
&
p1
=
keypoints0
[
descMatches
[
m
].
trainIdx
];
if
(
calcIntersectRatio
(
transformed_p0
.
pt
,
0.5
f
*
transformed_p0
.
size
,
p1
.
pt
,
0.5
f
*
p1
.
size
)
>=
minIntersectRatio
)
{
descInliersCount
++
;
}
}
float
descInliersRatio
=
static_cast
<
float
>
(
descInliersCount
)
/
keypoints0
.
size
();
EXPECT_GE
(
descInliersRatio
,
minInliersRatio
);
#if SHOW_DEBUG_LOG
std
::
cout
<<
"scale = "
<<
scale
<<
", inliers = "
<<
descInliersCount
<<
", descInliersRatio = "
<<
static_cast
<
float
>
(
descInliersCount
)
/
keypoints0
.
size
()
<<
std
::
endl
;
#endif
}
}
#undef SHOW_DEBUG_LOG
}}
// namespace
namespace
std
{
using
namespace
opencv_test
;
static
inline
void
PrintTo
(
const
String_FeatureDetector_DescriptorExtractor_Float_t
&
v
,
std
::
ostream
*
os
)
{
*
os
<<
"(
\"
"
<<
get
<
0
>
(
v
)
<<
"
\"
, "
<<
get
<
3
>
(
v
)
<<
")"
;
}
}
// namespace
modules/features2d/test/test_descriptors_regression.cpp
View file @
40b1dc12
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_precomp.hpp"
namespace
opencv_test
{
namespace
{
const
string
FEATURES2D_DIR
=
"features2d"
;
const
string
IMAGE_FILENAME
=
"tsukuba.png"
;
const
string
DESCRIPTOR_DIR
=
FEATURES2D_DIR
+
"/descriptor_extractors"
;
}}
// namespace
/****************************************************************************************\
* Regression tests for descriptor extractors. *
\****************************************************************************************/
static
void
writeMatInBin
(
const
Mat
&
mat
,
const
string
&
filename
)
{
FILE
*
f
=
fopen
(
filename
.
c_str
(),
"wb"
);
if
(
f
)
{
CV_Assert
(
4
==
sizeof
(
int
));
int
type
=
mat
.
type
();
fwrite
(
(
void
*
)
&
mat
.
rows
,
sizeof
(
int
),
1
,
f
);
fwrite
(
(
void
*
)
&
mat
.
cols
,
sizeof
(
int
),
1
,
f
);
fwrite
(
(
void
*
)
&
type
,
sizeof
(
int
),
1
,
f
);
int
dataSize
=
(
int
)(
mat
.
step
*
mat
.
rows
);
fwrite
(
(
void
*
)
&
dataSize
,
sizeof
(
int
),
1
,
f
);
fwrite
(
(
void
*
)
mat
.
ptr
(),
1
,
dataSize
,
f
);
fclose
(
f
);
}
}
static
Mat
readMatFromBin
(
const
string
&
filename
)
{
FILE
*
f
=
fopen
(
filename
.
c_str
(),
"rb"
);
if
(
f
)
{
CV_Assert
(
4
==
sizeof
(
int
));
int
rows
,
cols
,
type
,
dataSize
;
size_t
elements_read1
=
fread
(
(
void
*
)
&
rows
,
sizeof
(
int
),
1
,
f
);
size_t
elements_read2
=
fread
(
(
void
*
)
&
cols
,
sizeof
(
int
),
1
,
f
);
size_t
elements_read3
=
fread
(
(
void
*
)
&
type
,
sizeof
(
int
),
1
,
f
);
size_t
elements_read4
=
fread
(
(
void
*
)
&
dataSize
,
sizeof
(
int
),
1
,
f
);
CV_Assert
(
elements_read1
==
1
&&
elements_read2
==
1
&&
elements_read3
==
1
&&
elements_read4
==
1
);
int
step
=
dataSize
/
rows
/
CV_ELEM_SIZE
(
type
);
CV_Assert
(
step
>=
cols
);
Mat
returnMat
=
Mat
(
rows
,
step
,
type
).
colRange
(
0
,
cols
);
size_t
elements_read
=
fread
(
returnMat
.
ptr
(),
1
,
dataSize
,
f
);
CV_Assert
(
elements_read
==
(
size_t
)(
dataSize
));
fclose
(
f
);
return
returnMat
;
}
return
Mat
();
}
template
<
class
Distance
>
class
CV_DescriptorExtractorTest
:
public
cvtest
::
BaseTest
{
public
:
typedef
typename
Distance
::
ValueType
ValueType
;
typedef
typename
Distance
::
ResultType
DistanceType
;
CV_DescriptorExtractorTest
(
const
string
_name
,
DistanceType
_maxDist
,
const
Ptr
<
DescriptorExtractor
>&
_dextractor
,
Distance
d
=
Distance
(),
Ptr
<
FeatureDetector
>
_detector
=
Ptr
<
FeatureDetector
>
())
:
name
(
_name
),
maxDist
(
_maxDist
),
dextractor
(
_dextractor
),
distance
(
d
)
,
detector
(
_detector
)
{}
~
CV_DescriptorExtractorTest
()
{
}
protected
:
virtual
void
createDescriptorExtractor
()
{}
void
compareDescriptors
(
const
Mat
&
validDescriptors
,
const
Mat
&
calcDescriptors
)
{
if
(
validDescriptors
.
size
!=
calcDescriptors
.
size
||
validDescriptors
.
type
()
!=
calcDescriptors
.
type
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Valid and computed descriptors matrices must have the same size and type.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
CV_Assert
(
DataType
<
ValueType
>::
type
==
validDescriptors
.
type
()
);
int
dimension
=
validDescriptors
.
cols
;
DistanceType
curMaxDist
=
0
;
size_t
exact_count
=
0
,
failed_count
=
0
;
for
(
int
y
=
0
;
y
<
validDescriptors
.
rows
;
y
++
)
{
DistanceType
dist
=
distance
(
validDescriptors
.
ptr
<
ValueType
>
(
y
),
calcDescriptors
.
ptr
<
ValueType
>
(
y
),
dimension
);
if
(
dist
==
0
)
exact_count
++
;
if
(
dist
>
curMaxDist
)
{
if
(
dist
>
maxDist
)
failed_count
++
;
curMaxDist
=
dist
;
}
#if 0
if (dist > 0)
{
std::cout << "i=" << y << " fail_count=" << failed_count << " dist=" << dist << std::endl;
std::cout << "valid: " << validDescriptors.row(y) << std::endl;
std::cout << " calc: " << calcDescriptors.row(y) << std::endl;
}
#endif
}
float
exact_percents
=
(
100
*
(
float
)
exact_count
/
validDescriptors
.
rows
);
float
failed_percents
=
(
100
*
(
float
)
failed_count
/
validDescriptors
.
rows
);
std
::
stringstream
ss
;
ss
<<
"Exact count (dist == 0): "
<<
exact_count
<<
" ("
<<
(
int
)
exact_percents
<<
"%)"
<<
std
::
endl
<<
"Failed count (dist > "
<<
maxDist
<<
"): "
<<
failed_count
<<
" ("
<<
(
int
)
failed_percents
<<
"%)"
<<
std
::
endl
<<
"Max distance between valid and computed descriptors ("
<<
validDescriptors
.
size
()
<<
"): "
<<
curMaxDist
;
EXPECT_LE
(
failed_percents
,
20.0
f
);
std
::
cout
<<
ss
.
str
()
<<
std
::
endl
;
}
void
emptyDataTest
()
{
assert
(
dextractor
);
// One image.
Mat
image
;
vector
<
KeyPoint
>
keypoints
;
Mat
descriptors
;
try
{
dextractor
->
compute
(
image
,
keypoints
,
descriptors
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"compute() on empty image and empty keypoints must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
}
RNG
rng
;
image
=
cvtest
::
randomMat
(
rng
,
Size
(
50
,
50
),
CV_8UC3
,
0
,
255
,
false
);
try
{
dextractor
->
compute
(
image
,
keypoints
,
descriptors
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"compute() on nonempty image and empty keypoints must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
}
// Several images.
vector
<
Mat
>
images
;
vector
<
vector
<
KeyPoint
>
>
keypointsCollection
;
vector
<
Mat
>
descriptorsCollection
;
try
{
dextractor
->
compute
(
images
,
keypointsCollection
,
descriptorsCollection
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"compute() on empty images and empty keypoints collection must not generate exception (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
}
}
void
regressionTest
()
{
assert
(
dextractor
);
// Read the test image.
string
imgFilename
=
string
(
ts
->
get_data_path
())
+
FEATURES2D_DIR
+
"/"
+
IMAGE_FILENAME
;
Mat
img
=
imread
(
imgFilename
);
if
(
img
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Image %s can not be read.
\n
"
,
imgFilename
.
c_str
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
const
std
::
string
keypoints_filename
=
string
(
ts
->
get_data_path
())
+
(
detector
.
empty
()
?
(
FEATURES2D_DIR
+
"/"
+
std
::
string
(
"keypoints.xml.gz"
))
:
(
DESCRIPTOR_DIR
+
"/"
+
name
+
"_keypoints.xml.gz"
));
FileStorage
fs
(
keypoints_filename
,
FileStorage
::
READ
);
vector
<
KeyPoint
>
keypoints
;
EXPECT_TRUE
(
fs
.
isOpened
())
<<
"Keypoint testdata is missing. Re-computing and re-writing keypoints testdata..."
;
if
(
!
fs
.
isOpened
())
{
fs
.
open
(
keypoints_filename
,
FileStorage
::
WRITE
);
ASSERT_TRUE
(
fs
.
isOpened
())
<<
"File for writing keypoints can not be opened."
;
if
(
detector
.
empty
())
{
Ptr
<
ORB
>
fd
=
ORB
::
create
();
fd
->
detect
(
img
,
keypoints
);
}
else
{
detector
->
detect
(
img
,
keypoints
);
}
write
(
fs
,
"keypoints"
,
keypoints
);
fs
.
release
();
}
else
{
read
(
fs
.
getFirstTopLevelNode
(),
keypoints
);
fs
.
release
();
}
if
(
!
detector
.
empty
())
{
vector
<
KeyPoint
>
calcKeypoints
;
detector
->
detect
(
img
,
calcKeypoints
);
// TODO validate received keypoints
int
diff
=
abs
((
int
)
calcKeypoints
.
size
()
-
(
int
)
keypoints
.
size
());
if
(
diff
>
0
)
{
std
::
cout
<<
"Keypoints difference: "
<<
diff
<<
std
::
endl
;
EXPECT_LE
(
diff
,
(
int
)(
keypoints
.
size
()
*
0.03
f
));
}
}
ASSERT_FALSE
(
keypoints
.
empty
());
{
Mat
calcDescriptors
;
double
t
=
(
double
)
getTickCount
();
dextractor
->
compute
(
img
,
keypoints
,
calcDescriptors
);
t
=
getTickCount
()
-
t
;
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"
\n
Average time of computing one descriptor = %g ms.
\n
"
,
t
/
((
double
)
getTickFrequency
()
*
1000.
)
/
calcDescriptors
.
rows
);
if
(
calcDescriptors
.
rows
!=
(
int
)
keypoints
.
size
())
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Count of computed descriptors and keypoints count must be equal.
\n
"
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Count of keypoints is %d.
\n
"
,
(
int
)
keypoints
.
size
()
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Count of computed descriptors is %d.
\n
"
,
calcDescriptors
.
rows
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
if
(
calcDescriptors
.
cols
!=
dextractor
->
descriptorSize
()
||
calcDescriptors
.
type
()
!=
dextractor
->
descriptorType
())
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Incorrect descriptor size or descriptor type.
\n
"
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Expected size is %d.
\n
"
,
dextractor
->
descriptorSize
()
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Calculated size is %d.
\n
"
,
calcDescriptors
.
cols
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Expected type is %d.
\n
"
,
dextractor
->
descriptorType
()
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Calculated type is %d.
\n
"
,
calcDescriptors
.
type
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
// TODO read and write descriptor extractor parameters and check them
Mat
validDescriptors
=
readDescriptors
();
EXPECT_FALSE
(
validDescriptors
.
empty
())
<<
"Descriptors testdata is missing. Re-writing descriptors testdata..."
;
if
(
!
validDescriptors
.
empty
())
{
compareDescriptors
(
validDescriptors
,
calcDescriptors
);
}
else
{
ASSERT_TRUE
(
writeDescriptors
(
calcDescriptors
))
<<
"Descriptors can not be written."
;
}
}
}
void
run
(
int
)
{
createDescriptorExtractor
();
if
(
!
dextractor
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Descriptor extractor is empty.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
emptyDataTest
();
regressionTest
();
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
}
virtual
Mat
readDescriptors
()
{
Mat
res
=
readMatFromBin
(
string
(
ts
->
get_data_path
())
+
DESCRIPTOR_DIR
+
"/"
+
string
(
name
)
);
return
res
;
}
virtual
bool
writeDescriptors
(
Mat
&
descs
)
{
writeMatInBin
(
descs
,
string
(
ts
->
get_data_path
())
+
DESCRIPTOR_DIR
+
"/"
+
string
(
name
)
);
return
true
;
}
string
name
;
const
DistanceType
maxDist
;
Ptr
<
DescriptorExtractor
>
dextractor
;
Distance
distance
;
Ptr
<
FeatureDetector
>
detector
;
#include "test_descriptors_regression.impl.hpp"
private
:
CV_DescriptorExtractorTest
&
operator
=
(
const
CV_DescriptorExtractorTest
&
)
{
return
*
this
;
}
};
namespace
opencv_test
{
namespace
{
/****************************************************************************************\
* Tests registrations *
...
...
modules/features2d/test/test_descriptors_regression.impl.hpp
0 → 100644
View file @
40b1dc12
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
namespace
opencv_test
{
namespace
{
/****************************************************************************************\
* Regression tests for descriptor extractors. *
\****************************************************************************************/
static
void
writeMatInBin
(
const
Mat
&
mat
,
const
string
&
filename
)
{
FILE
*
f
=
fopen
(
filename
.
c_str
(),
"wb"
);
if
(
f
)
{
CV_Assert
(
4
==
sizeof
(
int
));
int
type
=
mat
.
type
();
fwrite
(
(
void
*
)
&
mat
.
rows
,
sizeof
(
int
),
1
,
f
);
fwrite
(
(
void
*
)
&
mat
.
cols
,
sizeof
(
int
),
1
,
f
);
fwrite
(
(
void
*
)
&
type
,
sizeof
(
int
),
1
,
f
);
int
dataSize
=
(
int
)(
mat
.
step
*
mat
.
rows
);
fwrite
(
(
void
*
)
&
dataSize
,
sizeof
(
int
),
1
,
f
);
fwrite
(
(
void
*
)
mat
.
ptr
(),
1
,
dataSize
,
f
);
fclose
(
f
);
}
}
static
Mat
readMatFromBin
(
const
string
&
filename
)
{
FILE
*
f
=
fopen
(
filename
.
c_str
(),
"rb"
);
if
(
f
)
{
CV_Assert
(
4
==
sizeof
(
int
));
int
rows
,
cols
,
type
,
dataSize
;
size_t
elements_read1
=
fread
(
(
void
*
)
&
rows
,
sizeof
(
int
),
1
,
f
);
size_t
elements_read2
=
fread
(
(
void
*
)
&
cols
,
sizeof
(
int
),
1
,
f
);
size_t
elements_read3
=
fread
(
(
void
*
)
&
type
,
sizeof
(
int
),
1
,
f
);
size_t
elements_read4
=
fread
(
(
void
*
)
&
dataSize
,
sizeof
(
int
),
1
,
f
);
CV_Assert
(
elements_read1
==
1
&&
elements_read2
==
1
&&
elements_read3
==
1
&&
elements_read4
==
1
);
int
step
=
dataSize
/
rows
/
CV_ELEM_SIZE
(
type
);
CV_Assert
(
step
>=
cols
);
Mat
returnMat
=
Mat
(
rows
,
step
,
type
).
colRange
(
0
,
cols
);
size_t
elements_read
=
fread
(
returnMat
.
ptr
(),
1
,
dataSize
,
f
);
CV_Assert
(
elements_read
==
(
size_t
)(
dataSize
));
fclose
(
f
);
return
returnMat
;
}
return
Mat
();
}
template
<
class
Distance
>
class
CV_DescriptorExtractorTest
:
public
cvtest
::
BaseTest
{
public
:
typedef
typename
Distance
::
ValueType
ValueType
;
typedef
typename
Distance
::
ResultType
DistanceType
;
CV_DescriptorExtractorTest
(
const
string
_name
,
DistanceType
_maxDist
,
const
Ptr
<
DescriptorExtractor
>&
_dextractor
,
Distance
d
=
Distance
(),
Ptr
<
FeatureDetector
>
_detector
=
Ptr
<
FeatureDetector
>
())
:
name
(
_name
),
maxDist
(
_maxDist
),
dextractor
(
_dextractor
),
distance
(
d
)
,
detector
(
_detector
)
{}
~
CV_DescriptorExtractorTest
()
{
}
protected
:
virtual
void
createDescriptorExtractor
()
{}
void
compareDescriptors
(
const
Mat
&
validDescriptors
,
const
Mat
&
calcDescriptors
)
{
if
(
validDescriptors
.
size
!=
calcDescriptors
.
size
||
validDescriptors
.
type
()
!=
calcDescriptors
.
type
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Valid and computed descriptors matrices must have the same size and type.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
CV_Assert
(
DataType
<
ValueType
>::
type
==
validDescriptors
.
type
()
);
int
dimension
=
validDescriptors
.
cols
;
DistanceType
curMaxDist
=
0
;
size_t
exact_count
=
0
,
failed_count
=
0
;
for
(
int
y
=
0
;
y
<
validDescriptors
.
rows
;
y
++
)
{
DistanceType
dist
=
distance
(
validDescriptors
.
ptr
<
ValueType
>
(
y
),
calcDescriptors
.
ptr
<
ValueType
>
(
y
),
dimension
);
if
(
dist
==
0
)
exact_count
++
;
if
(
dist
>
curMaxDist
)
{
if
(
dist
>
maxDist
)
failed_count
++
;
curMaxDist
=
dist
;
}
#if 0
if (dist > 0)
{
std::cout << "i=" << y << " fail_count=" << failed_count << " dist=" << dist << std::endl;
std::cout << "valid: " << validDescriptors.row(y) << std::endl;
std::cout << " calc: " << calcDescriptors.row(y) << std::endl;
}
#endif
}
float
exact_percents
=
(
100
*
(
float
)
exact_count
/
validDescriptors
.
rows
);
float
failed_percents
=
(
100
*
(
float
)
failed_count
/
validDescriptors
.
rows
);
std
::
stringstream
ss
;
ss
<<
"Exact count (dist == 0): "
<<
exact_count
<<
" ("
<<
(
int
)
exact_percents
<<
"%)"
<<
std
::
endl
<<
"Failed count (dist > "
<<
maxDist
<<
"): "
<<
failed_count
<<
" ("
<<
(
int
)
failed_percents
<<
"%)"
<<
std
::
endl
<<
"Max distance between valid and computed descriptors ("
<<
validDescriptors
.
size
()
<<
"): "
<<
curMaxDist
;
EXPECT_LE
(
failed_percents
,
20.0
f
);
std
::
cout
<<
ss
.
str
()
<<
std
::
endl
;
}
void
emptyDataTest
()
{
assert
(
dextractor
);
// One image.
Mat
image
;
vector
<
KeyPoint
>
keypoints
;
Mat
descriptors
;
try
{
dextractor
->
compute
(
image
,
keypoints
,
descriptors
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"compute() on empty image and empty keypoints must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
}
RNG
rng
;
image
=
cvtest
::
randomMat
(
rng
,
Size
(
50
,
50
),
CV_8UC3
,
0
,
255
,
false
);
try
{
dextractor
->
compute
(
image
,
keypoints
,
descriptors
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"compute() on nonempty image and empty keypoints must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
}
// Several images.
vector
<
Mat
>
images
;
vector
<
vector
<
KeyPoint
>
>
keypointsCollection
;
vector
<
Mat
>
descriptorsCollection
;
try
{
dextractor
->
compute
(
images
,
keypointsCollection
,
descriptorsCollection
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"compute() on empty images and empty keypoints collection must not generate exception (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
}
}
void
regressionTest
()
{
assert
(
dextractor
);
// Read the test image.
string
imgFilename
=
string
(
ts
->
get_data_path
())
+
FEATURES2D_DIR
+
"/"
+
IMAGE_FILENAME
;
Mat
img
=
imread
(
imgFilename
);
if
(
img
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Image %s can not be read.
\n
"
,
imgFilename
.
c_str
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
const
std
::
string
keypoints_filename
=
string
(
ts
->
get_data_path
())
+
(
detector
.
empty
()
?
(
FEATURES2D_DIR
+
"/"
+
std
::
string
(
"keypoints.xml.gz"
))
:
(
DESCRIPTOR_DIR
+
"/"
+
name
+
"_keypoints.xml.gz"
));
FileStorage
fs
(
keypoints_filename
,
FileStorage
::
READ
);
vector
<
KeyPoint
>
keypoints
;
EXPECT_TRUE
(
fs
.
isOpened
())
<<
"Keypoint testdata is missing. Re-computing and re-writing keypoints testdata..."
;
if
(
!
fs
.
isOpened
())
{
fs
.
open
(
keypoints_filename
,
FileStorage
::
WRITE
);
ASSERT_TRUE
(
fs
.
isOpened
())
<<
"File for writing keypoints can not be opened."
;
if
(
detector
.
empty
())
{
Ptr
<
ORB
>
fd
=
ORB
::
create
();
fd
->
detect
(
img
,
keypoints
);
}
else
{
detector
->
detect
(
img
,
keypoints
);
}
write
(
fs
,
"keypoints"
,
keypoints
);
fs
.
release
();
}
else
{
read
(
fs
.
getFirstTopLevelNode
(),
keypoints
);
fs
.
release
();
}
if
(
!
detector
.
empty
())
{
vector
<
KeyPoint
>
calcKeypoints
;
detector
->
detect
(
img
,
calcKeypoints
);
// TODO validate received keypoints
int
diff
=
abs
((
int
)
calcKeypoints
.
size
()
-
(
int
)
keypoints
.
size
());
if
(
diff
>
0
)
{
std
::
cout
<<
"Keypoints difference: "
<<
diff
<<
std
::
endl
;
EXPECT_LE
(
diff
,
(
int
)(
keypoints
.
size
()
*
0.03
f
));
}
}
ASSERT_FALSE
(
keypoints
.
empty
());
{
Mat
calcDescriptors
;
double
t
=
(
double
)
getTickCount
();
dextractor
->
compute
(
img
,
keypoints
,
calcDescriptors
);
t
=
getTickCount
()
-
t
;
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"
\n
Average time of computing one descriptor = %g ms.
\n
"
,
t
/
((
double
)
getTickFrequency
()
*
1000.
)
/
calcDescriptors
.
rows
);
if
(
calcDescriptors
.
rows
!=
(
int
)
keypoints
.
size
())
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Count of computed descriptors and keypoints count must be equal.
\n
"
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Count of keypoints is %d.
\n
"
,
(
int
)
keypoints
.
size
()
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Count of computed descriptors is %d.
\n
"
,
calcDescriptors
.
rows
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
if
(
calcDescriptors
.
cols
!=
dextractor
->
descriptorSize
()
||
calcDescriptors
.
type
()
!=
dextractor
->
descriptorType
())
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Incorrect descriptor size or descriptor type.
\n
"
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Expected size is %d.
\n
"
,
dextractor
->
descriptorSize
()
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Calculated size is %d.
\n
"
,
calcDescriptors
.
cols
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Expected type is %d.
\n
"
,
dextractor
->
descriptorType
()
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Calculated type is %d.
\n
"
,
calcDescriptors
.
type
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
// TODO read and write descriptor extractor parameters and check them
Mat
validDescriptors
=
readDescriptors
();
EXPECT_FALSE
(
validDescriptors
.
empty
())
<<
"Descriptors testdata is missing. Re-writing descriptors testdata..."
;
if
(
!
validDescriptors
.
empty
())
{
compareDescriptors
(
validDescriptors
,
calcDescriptors
);
}
else
{
ASSERT_TRUE
(
writeDescriptors
(
calcDescriptors
))
<<
"Descriptors can not be written."
;
}
}
}
void
run
(
int
)
{
createDescriptorExtractor
();
if
(
!
dextractor
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Descriptor extractor is empty.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
emptyDataTest
();
regressionTest
();
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
}
virtual
Mat
readDescriptors
()
{
Mat
res
=
readMatFromBin
(
string
(
ts
->
get_data_path
())
+
DESCRIPTOR_DIR
+
"/"
+
string
(
name
)
);
return
res
;
}
virtual
bool
writeDescriptors
(
Mat
&
descs
)
{
writeMatInBin
(
descs
,
string
(
ts
->
get_data_path
())
+
DESCRIPTOR_DIR
+
"/"
+
string
(
name
)
);
return
true
;
}
string
name
;
const
DistanceType
maxDist
;
Ptr
<
DescriptorExtractor
>
dextractor
;
Distance
distance
;
Ptr
<
FeatureDetector
>
detector
;
private
:
CV_DescriptorExtractorTest
&
operator
=
(
const
CV_DescriptorExtractorTest
&
)
{
return
*
this
;
}
};
}}
// namespace
modules/features2d/test/test_detectors_invariance.cpp
View file @
40b1dc12
...
...
@@ -5,216 +5,13 @@
#include "test_precomp.hpp"
#include "test_invariance_utils.hpp"
namespace
opencv_test
{
namespace
{
using
namespace
perf
;
#include "test_detectors_invariance.impl.hpp"
#define SHOW_DEBUG_LOG 1
namespace
opencv_test
{
namespace
{
typedef
tuple
<
std
::
string
,
Ptr
<
FeatureDetector
>
,
float
,
float
>
String_FeatureDetector_Float_Float_t
;
const
static
std
::
string
IMAGE_TSUKUBA
=
"features2d/tsukuba.png"
;
const
static
std
::
string
IMAGE_BIKES
=
"detectors_descriptors_evaluation/images_datasets/bikes/img1.png"
;
#define Value(...) Values(String_FeatureDetector_Float_Float_t(__VA_ARGS__))
static
void
matchKeyPoints
(
const
vector
<
KeyPoint
>&
keypoints0
,
const
Mat
&
H
,
const
vector
<
KeyPoint
>&
keypoints1
,
vector
<
DMatch
>&
matches
)
{
vector
<
Point2f
>
points0
;
KeyPoint
::
convert
(
keypoints0
,
points0
);
Mat
points0t
;
if
(
H
.
empty
())
points0t
=
Mat
(
points0
);
else
perspectiveTransform
(
Mat
(
points0
),
points0t
,
H
);
matches
.
clear
();
vector
<
uchar
>
usedMask
(
keypoints1
.
size
(),
0
);
for
(
int
i0
=
0
;
i0
<
static_cast
<
int
>
(
keypoints0
.
size
());
i0
++
)
{
int
nearestPointIndex
=
-
1
;
float
maxIntersectRatio
=
0.
f
;
const
float
r0
=
0.5
f
*
keypoints0
[
i0
].
size
;
for
(
size_t
i1
=
0
;
i1
<
keypoints1
.
size
();
i1
++
)
{
if
(
nearestPointIndex
>=
0
&&
usedMask
[
i1
])
continue
;
float
r1
=
0.5
f
*
keypoints1
[
i1
].
size
;
float
intersectRatio
=
calcIntersectRatio
(
points0t
.
at
<
Point2f
>
(
i0
),
r0
,
keypoints1
[
i1
].
pt
,
r1
);
if
(
intersectRatio
>
maxIntersectRatio
)
{
maxIntersectRatio
=
intersectRatio
;
nearestPointIndex
=
static_cast
<
int
>
(
i1
);
}
}
matches
.
push_back
(
DMatch
(
i0
,
nearestPointIndex
,
maxIntersectRatio
));
if
(
nearestPointIndex
>=
0
)
usedMask
[
nearestPointIndex
]
=
1
;
}
}
class
DetectorInvariance
:
public
TestWithParam
<
String_FeatureDetector_Float_Float_t
>
{
protected
:
virtual
void
SetUp
()
{
// Read test data
const
std
::
string
filename
=
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
get
<
0
>
(
GetParam
());
image0
=
imread
(
filename
);
ASSERT_FALSE
(
image0
.
empty
())
<<
"couldn't read input image"
;
featureDetector
=
get
<
1
>
(
GetParam
());
minKeyPointMatchesRatio
=
get
<
2
>
(
GetParam
());
minInliersRatio
=
get
<
3
>
(
GetParam
());
}
Ptr
<
FeatureDetector
>
featureDetector
;
float
minKeyPointMatchesRatio
;
float
minInliersRatio
;
Mat
image0
;
};
typedef
DetectorInvariance
DetectorScaleInvariance
;
typedef
DetectorInvariance
DetectorRotationInvariance
;
TEST_P
(
DetectorRotationInvariance
,
rotation
)
{
Mat
image1
,
mask1
;
const
int
borderSize
=
16
;
Mat
mask0
(
image0
.
size
(),
CV_8UC1
,
Scalar
(
0
));
mask0
(
Rect
(
borderSize
,
borderSize
,
mask0
.
cols
-
2
*
borderSize
,
mask0
.
rows
-
2
*
borderSize
)).
setTo
(
Scalar
(
255
));
vector
<
KeyPoint
>
keypoints0
;
featureDetector
->
detect
(
image0
,
keypoints0
,
mask0
);
EXPECT_GE
(
keypoints0
.
size
(),
15u
);
const
int
maxAngle
=
360
,
angleStep
=
15
;
for
(
int
angle
=
0
;
angle
<
maxAngle
;
angle
+=
angleStep
)
{
Mat
H
=
rotateImage
(
image0
,
mask0
,
static_cast
<
float
>
(
angle
),
image1
,
mask1
);
vector
<
KeyPoint
>
keypoints1
;
featureDetector
->
detect
(
image1
,
keypoints1
,
mask1
);
vector
<
DMatch
>
matches
;
matchKeyPoints
(
keypoints0
,
H
,
keypoints1
,
matches
);
int
angleInliersCount
=
0
;
const
float
minIntersectRatio
=
0.5
f
;
int
keyPointMatchesCount
=
0
;
for
(
size_t
m
=
0
;
m
<
matches
.
size
();
m
++
)
{
if
(
matches
[
m
].
distance
<
minIntersectRatio
)
continue
;
keyPointMatchesCount
++
;
// Check does this inlier have consistent angles
const
float
maxAngleDiff
=
15.
f
;
// grad
float
angle0
=
keypoints0
[
matches
[
m
].
queryIdx
].
angle
;
float
angle1
=
keypoints1
[
matches
[
m
].
trainIdx
].
angle
;
ASSERT_FALSE
(
angle0
==
-
1
||
angle1
==
-
1
)
<<
"Given FeatureDetector is not rotation invariant, it can not be tested here."
;
ASSERT_GE
(
angle0
,
0.
f
);
ASSERT_LT
(
angle0
,
360.
f
);
ASSERT_GE
(
angle1
,
0.
f
);
ASSERT_LT
(
angle1
,
360.
f
);
float
rotAngle0
=
angle0
+
angle
;
if
(
rotAngle0
>=
360.
f
)
rotAngle0
-=
360.
f
;
float
angleDiff
=
std
::
max
(
rotAngle0
,
angle1
)
-
std
::
min
(
rotAngle0
,
angle1
);
angleDiff
=
std
::
min
(
angleDiff
,
static_cast
<
float
>
(
360.
f
-
angleDiff
));
ASSERT_GE
(
angleDiff
,
0.
f
);
bool
isAngleCorrect
=
angleDiff
<
maxAngleDiff
;
if
(
isAngleCorrect
)
angleInliersCount
++
;
}
float
keyPointMatchesRatio
=
static_cast
<
float
>
(
keyPointMatchesCount
)
/
keypoints0
.
size
();
EXPECT_GE
(
keyPointMatchesRatio
,
minKeyPointMatchesRatio
)
<<
"angle: "
<<
angle
;
if
(
keyPointMatchesCount
)
{
float
angleInliersRatio
=
static_cast
<
float
>
(
angleInliersCount
)
/
keyPointMatchesCount
;
EXPECT_GE
(
angleInliersRatio
,
minInliersRatio
)
<<
"angle: "
<<
angle
;
}
#if SHOW_DEBUG_LOG
std
::
cout
<<
"angle = "
<<
angle
<<
", keypoints = "
<<
keypoints1
.
size
()
<<
", keyPointMatchesRatio = "
<<
keyPointMatchesRatio
<<
", angleInliersRatio = "
<<
(
keyPointMatchesCount
?
(
static_cast
<
float
>
(
angleInliersCount
)
/
keyPointMatchesCount
)
:
0
)
<<
std
::
endl
;
#endif
}
}
TEST_P
(
DetectorScaleInvariance
,
scale
)
{
vector
<
KeyPoint
>
keypoints0
;
featureDetector
->
detect
(
image0
,
keypoints0
);
EXPECT_GE
(
keypoints0
.
size
(),
15u
);
for
(
int
scaleIdx
=
1
;
scaleIdx
<=
3
;
scaleIdx
++
)
{
float
scale
=
1.
f
+
scaleIdx
*
0.5
f
;
Mat
image1
;
resize
(
image0
,
image1
,
Size
(),
1.
/
scale
,
1.
/
scale
,
INTER_LINEAR_EXACT
);
vector
<
KeyPoint
>
keypoints1
,
osiKeypoints1
;
// osi - original size image
featureDetector
->
detect
(
image1
,
keypoints1
);
EXPECT_GE
(
keypoints1
.
size
(),
15u
);
EXPECT_LE
(
keypoints1
.
size
(),
keypoints0
.
size
())
<<
"Strange behavior of the detector. "
"It gives more points count in an image of the smaller size."
;
scaleKeyPoints
(
keypoints1
,
osiKeypoints1
,
scale
);
vector
<
DMatch
>
matches
;
// image1 is query image (it's reduced image0)
// image0 is train image
matchKeyPoints
(
osiKeypoints1
,
Mat
(),
keypoints0
,
matches
);
const
float
minIntersectRatio
=
0.5
f
;
int
keyPointMatchesCount
=
0
;
int
scaleInliersCount
=
0
;
for
(
size_t
m
=
0
;
m
<
matches
.
size
();
m
++
)
{
if
(
matches
[
m
].
distance
<
minIntersectRatio
)
continue
;
keyPointMatchesCount
++
;
// Check does this inlier have consistent sizes
const
float
maxSizeDiff
=
0.8
f
;
//0.9f; // grad
float
size0
=
keypoints0
[
matches
[
m
].
trainIdx
].
size
;
float
size1
=
osiKeypoints1
[
matches
[
m
].
queryIdx
].
size
;
ASSERT_GT
(
size0
,
0
);
ASSERT_GT
(
size1
,
0
);
if
(
std
::
min
(
size0
,
size1
)
>
maxSizeDiff
*
std
::
max
(
size0
,
size1
))
scaleInliersCount
++
;
}
float
keyPointMatchesRatio
=
static_cast
<
float
>
(
keyPointMatchesCount
)
/
keypoints1
.
size
();
EXPECT_GE
(
keyPointMatchesRatio
,
minKeyPointMatchesRatio
);
if
(
keyPointMatchesCount
)
{
float
scaleInliersRatio
=
static_cast
<
float
>
(
scaleInliersCount
)
/
keyPointMatchesCount
;
EXPECT_GE
(
scaleInliersRatio
,
minInliersRatio
);
}
#if SHOW_DEBUG_LOG
std
::
cout
<<
"scale = "
<<
scale
<<
", keyPointMatchesRatio = "
<<
keyPointMatchesRatio
<<
", scaleInliersRatio = "
<<
(
keyPointMatchesCount
?
static_cast
<
float
>
(
scaleInliersCount
)
/
keyPointMatchesCount
:
0
)
<<
std
::
endl
;
#endif
}
}
#define Value(...) Values(make_tuple(__VA_ARGS__))
/*
* Detector's rotation invariance check
...
...
modules/features2d/test/test_detectors_invariance.impl.hpp
0 → 100644
View file @
40b1dc12
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_invariance_utils.hpp"
namespace
opencv_test
{
namespace
{
#define SHOW_DEBUG_LOG 1
typedef
tuple
<
std
::
string
,
Ptr
<
FeatureDetector
>
,
float
,
float
>
String_FeatureDetector_Float_Float_t
;
static
void
matchKeyPoints
(
const
vector
<
KeyPoint
>&
keypoints0
,
const
Mat
&
H
,
const
vector
<
KeyPoint
>&
keypoints1
,
vector
<
DMatch
>&
matches
)
{
vector
<
Point2f
>
points0
;
KeyPoint
::
convert
(
keypoints0
,
points0
);
Mat
points0t
;
if
(
H
.
empty
())
points0t
=
Mat
(
points0
);
else
perspectiveTransform
(
Mat
(
points0
),
points0t
,
H
);
matches
.
clear
();
vector
<
uchar
>
usedMask
(
keypoints1
.
size
(),
0
);
for
(
int
i0
=
0
;
i0
<
static_cast
<
int
>
(
keypoints0
.
size
());
i0
++
)
{
int
nearestPointIndex
=
-
1
;
float
maxIntersectRatio
=
0.
f
;
const
float
r0
=
0.5
f
*
keypoints0
[
i0
].
size
;
for
(
size_t
i1
=
0
;
i1
<
keypoints1
.
size
();
i1
++
)
{
if
(
nearestPointIndex
>=
0
&&
usedMask
[
i1
])
continue
;
float
r1
=
0.5
f
*
keypoints1
[
i1
].
size
;
float
intersectRatio
=
calcIntersectRatio
(
points0t
.
at
<
Point2f
>
(
i0
),
r0
,
keypoints1
[
i1
].
pt
,
r1
);
if
(
intersectRatio
>
maxIntersectRatio
)
{
maxIntersectRatio
=
intersectRatio
;
nearestPointIndex
=
static_cast
<
int
>
(
i1
);
}
}
matches
.
push_back
(
DMatch
(
i0
,
nearestPointIndex
,
maxIntersectRatio
));
if
(
nearestPointIndex
>=
0
)
usedMask
[
nearestPointIndex
]
=
1
;
}
}
class
DetectorInvariance
:
public
TestWithParam
<
String_FeatureDetector_Float_Float_t
>
{
protected
:
virtual
void
SetUp
()
{
// Read test data
const
std
::
string
filename
=
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
get
<
0
>
(
GetParam
());
image0
=
imread
(
filename
);
ASSERT_FALSE
(
image0
.
empty
())
<<
"couldn't read input image"
;
featureDetector
=
get
<
1
>
(
GetParam
());
minKeyPointMatchesRatio
=
get
<
2
>
(
GetParam
());
minInliersRatio
=
get
<
3
>
(
GetParam
());
}
Ptr
<
FeatureDetector
>
featureDetector
;
float
minKeyPointMatchesRatio
;
float
minInliersRatio
;
Mat
image0
;
};
typedef
DetectorInvariance
DetectorScaleInvariance
;
typedef
DetectorInvariance
DetectorRotationInvariance
;
TEST_P
(
DetectorRotationInvariance
,
rotation
)
{
Mat
image1
,
mask1
;
const
int
borderSize
=
16
;
Mat
mask0
(
image0
.
size
(),
CV_8UC1
,
Scalar
(
0
));
mask0
(
Rect
(
borderSize
,
borderSize
,
mask0
.
cols
-
2
*
borderSize
,
mask0
.
rows
-
2
*
borderSize
)).
setTo
(
Scalar
(
255
));
vector
<
KeyPoint
>
keypoints0
;
featureDetector
->
detect
(
image0
,
keypoints0
,
mask0
);
EXPECT_GE
(
keypoints0
.
size
(),
15u
);
const
int
maxAngle
=
360
,
angleStep
=
15
;
for
(
int
angle
=
0
;
angle
<
maxAngle
;
angle
+=
angleStep
)
{
Mat
H
=
rotateImage
(
image0
,
mask0
,
static_cast
<
float
>
(
angle
),
image1
,
mask1
);
vector
<
KeyPoint
>
keypoints1
;
featureDetector
->
detect
(
image1
,
keypoints1
,
mask1
);
vector
<
DMatch
>
matches
;
matchKeyPoints
(
keypoints0
,
H
,
keypoints1
,
matches
);
int
angleInliersCount
=
0
;
const
float
minIntersectRatio
=
0.5
f
;
int
keyPointMatchesCount
=
0
;
for
(
size_t
m
=
0
;
m
<
matches
.
size
();
m
++
)
{
if
(
matches
[
m
].
distance
<
minIntersectRatio
)
continue
;
keyPointMatchesCount
++
;
// Check does this inlier have consistent angles
const
float
maxAngleDiff
=
15.
f
;
// grad
float
angle0
=
keypoints0
[
matches
[
m
].
queryIdx
].
angle
;
float
angle1
=
keypoints1
[
matches
[
m
].
trainIdx
].
angle
;
ASSERT_FALSE
(
angle0
==
-
1
||
angle1
==
-
1
)
<<
"Given FeatureDetector is not rotation invariant, it can not be tested here."
;
ASSERT_GE
(
angle0
,
0.
f
);
ASSERT_LT
(
angle0
,
360.
f
);
ASSERT_GE
(
angle1
,
0.
f
);
ASSERT_LT
(
angle1
,
360.
f
);
float
rotAngle0
=
angle0
+
angle
;
if
(
rotAngle0
>=
360.
f
)
rotAngle0
-=
360.
f
;
float
angleDiff
=
std
::
max
(
rotAngle0
,
angle1
)
-
std
::
min
(
rotAngle0
,
angle1
);
angleDiff
=
std
::
min
(
angleDiff
,
static_cast
<
float
>
(
360.
f
-
angleDiff
));
ASSERT_GE
(
angleDiff
,
0.
f
);
bool
isAngleCorrect
=
angleDiff
<
maxAngleDiff
;
if
(
isAngleCorrect
)
angleInliersCount
++
;
}
float
keyPointMatchesRatio
=
static_cast
<
float
>
(
keyPointMatchesCount
)
/
keypoints0
.
size
();
EXPECT_GE
(
keyPointMatchesRatio
,
minKeyPointMatchesRatio
)
<<
"angle: "
<<
angle
;
if
(
keyPointMatchesCount
)
{
float
angleInliersRatio
=
static_cast
<
float
>
(
angleInliersCount
)
/
keyPointMatchesCount
;
EXPECT_GE
(
angleInliersRatio
,
minInliersRatio
)
<<
"angle: "
<<
angle
;
}
#if SHOW_DEBUG_LOG
std
::
cout
<<
"angle = "
<<
angle
<<
", keypoints = "
<<
keypoints1
.
size
()
<<
", keyPointMatchesRatio = "
<<
keyPointMatchesRatio
<<
", angleInliersRatio = "
<<
(
keyPointMatchesCount
?
(
static_cast
<
float
>
(
angleInliersCount
)
/
keyPointMatchesCount
)
:
0
)
<<
std
::
endl
;
#endif
}
}
TEST_P
(
DetectorScaleInvariance
,
scale
)
{
vector
<
KeyPoint
>
keypoints0
;
featureDetector
->
detect
(
image0
,
keypoints0
);
EXPECT_GE
(
keypoints0
.
size
(),
15u
);
for
(
int
scaleIdx
=
1
;
scaleIdx
<=
3
;
scaleIdx
++
)
{
float
scale
=
1.
f
+
scaleIdx
*
0.5
f
;
Mat
image1
;
resize
(
image0
,
image1
,
Size
(),
1.
/
scale
,
1.
/
scale
,
INTER_LINEAR_EXACT
);
vector
<
KeyPoint
>
keypoints1
,
osiKeypoints1
;
// osi - original size image
featureDetector
->
detect
(
image1
,
keypoints1
);
EXPECT_GE
(
keypoints1
.
size
(),
15u
);
EXPECT_LE
(
keypoints1
.
size
(),
keypoints0
.
size
())
<<
"Strange behavior of the detector. "
"It gives more points count in an image of the smaller size."
;
scaleKeyPoints
(
keypoints1
,
osiKeypoints1
,
scale
);
vector
<
DMatch
>
matches
;
// image1 is query image (it's reduced image0)
// image0 is train image
matchKeyPoints
(
osiKeypoints1
,
Mat
(),
keypoints0
,
matches
);
const
float
minIntersectRatio
=
0.5
f
;
int
keyPointMatchesCount
=
0
;
int
scaleInliersCount
=
0
;
for
(
size_t
m
=
0
;
m
<
matches
.
size
();
m
++
)
{
if
(
matches
[
m
].
distance
<
minIntersectRatio
)
continue
;
keyPointMatchesCount
++
;
// Check does this inlier have consistent sizes
const
float
maxSizeDiff
=
0.8
f
;
//0.9f; // grad
float
size0
=
keypoints0
[
matches
[
m
].
trainIdx
].
size
;
float
size1
=
osiKeypoints1
[
matches
[
m
].
queryIdx
].
size
;
ASSERT_GT
(
size0
,
0
);
ASSERT_GT
(
size1
,
0
);
if
(
std
::
min
(
size0
,
size1
)
>
maxSizeDiff
*
std
::
max
(
size0
,
size1
))
scaleInliersCount
++
;
}
float
keyPointMatchesRatio
=
static_cast
<
float
>
(
keyPointMatchesCount
)
/
keypoints1
.
size
();
EXPECT_GE
(
keyPointMatchesRatio
,
minKeyPointMatchesRatio
);
if
(
keyPointMatchesCount
)
{
float
scaleInliersRatio
=
static_cast
<
float
>
(
scaleInliersCount
)
/
keyPointMatchesCount
;
EXPECT_GE
(
scaleInliersRatio
,
minInliersRatio
);
}
#if SHOW_DEBUG_LOG
std
::
cout
<<
"scale = "
<<
scale
<<
", keyPointMatchesRatio = "
<<
keyPointMatchesRatio
<<
", scaleInliersRatio = "
<<
(
keyPointMatchesCount
?
static_cast
<
float
>
(
scaleInliersCount
)
/
keyPointMatchesCount
:
0
)
<<
std
::
endl
;
#endif
}
}
#undef SHOW_DEBUG_LOG
}}
// namespace
namespace
std
{
using
namespace
opencv_test
;
static
inline
void
PrintTo
(
const
String_FeatureDetector_Float_Float_t
&
v
,
std
::
ostream
*
os
)
{
*
os
<<
"(
\"
"
<<
get
<
0
>
(
v
)
<<
"
\"
, "
<<
get
<
2
>
(
v
)
<<
", "
<<
get
<
3
>
(
v
)
<<
")"
;
}
}
// namespace
modules/features2d/test/test_detectors_regression.cpp
View file @
40b1dc12
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_precomp.hpp"
namespace
opencv_test
{
namespace
{
const
string
FEATURES2D_DIR
=
"features2d"
;
const
string
IMAGE_FILENAME
=
"tsukuba.png"
;
const
string
DETECTOR_DIR
=
FEATURES2D_DIR
+
"/feature_detectors"
;
}}
// namespace
/****************************************************************************************\
* Regression tests for feature detectors comparing keypoints. *
\****************************************************************************************/
class
CV_FeatureDetectorTest
:
public
cvtest
::
BaseTest
{
public
:
CV_FeatureDetectorTest
(
const
string
&
_name
,
const
Ptr
<
FeatureDetector
>&
_fdetector
)
:
name
(
_name
),
fdetector
(
_fdetector
)
{}
protected
:
bool
isSimilarKeypoints
(
const
KeyPoint
&
p1
,
const
KeyPoint
&
p2
);
void
compareKeypointSets
(
const
vector
<
KeyPoint
>&
validKeypoints
,
const
vector
<
KeyPoint
>&
calcKeypoints
);
void
emptyDataTest
();
void
regressionTest
();
// TODO test of detect() with mask
virtual
void
run
(
int
);
string
name
;
Ptr
<
FeatureDetector
>
fdetector
;
};
void
CV_FeatureDetectorTest
::
emptyDataTest
()
{
// One image.
Mat
image
;
vector
<
KeyPoint
>
keypoints
;
try
{
fdetector
->
detect
(
image
,
keypoints
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"detect() on empty image must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
if
(
!
keypoints
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"detect() on empty image must return empty keypoints vector (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
// Several images.
vector
<
Mat
>
images
;
vector
<
vector
<
KeyPoint
>
>
keypointCollection
;
try
{
fdetector
->
detect
(
images
,
keypointCollection
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"detect() on empty image vector must not generate exception (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
}
bool
CV_FeatureDetectorTest
::
isSimilarKeypoints
(
const
KeyPoint
&
p1
,
const
KeyPoint
&
p2
)
{
const
float
maxPtDif
=
1.
f
;
const
float
maxSizeDif
=
1.
f
;
const
float
maxAngleDif
=
2.
f
;
const
float
maxResponseDif
=
0.1
f
;
float
dist
=
(
float
)
cv
::
norm
(
p1
.
pt
-
p2
.
pt
);
return
(
dist
<
maxPtDif
&&
fabs
(
p1
.
size
-
p2
.
size
)
<
maxSizeDif
&&
abs
(
p1
.
angle
-
p2
.
angle
)
<
maxAngleDif
&&
abs
(
p1
.
response
-
p2
.
response
)
<
maxResponseDif
&&
p1
.
octave
==
p2
.
octave
&&
p1
.
class_id
==
p2
.
class_id
);
}
void
CV_FeatureDetectorTest
::
compareKeypointSets
(
const
vector
<
KeyPoint
>&
validKeypoints
,
const
vector
<
KeyPoint
>&
calcKeypoints
)
{
const
float
maxCountRatioDif
=
0.01
f
;
// Compare counts of validation and calculated keypoints.
float
countRatio
=
(
float
)
validKeypoints
.
size
()
/
(
float
)
calcKeypoints
.
size
();
if
(
countRatio
<
1
-
maxCountRatioDif
||
countRatio
>
1.
f
+
maxCountRatioDif
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Bad keypoints count ratio (validCount = %d, calcCount = %d).
\n
"
,
validKeypoints
.
size
(),
calcKeypoints
.
size
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
int
progress
=
0
,
progressCount
=
(
int
)(
validKeypoints
.
size
()
*
calcKeypoints
.
size
());
int
badPointCount
=
0
,
commonPointCount
=
max
((
int
)
validKeypoints
.
size
(),
(
int
)
calcKeypoints
.
size
());
for
(
size_t
v
=
0
;
v
<
validKeypoints
.
size
();
v
++
)
{
int
nearestIdx
=
-
1
;
float
minDist
=
std
::
numeric_limits
<
float
>::
max
();
for
(
size_t
c
=
0
;
c
<
calcKeypoints
.
size
();
c
++
)
{
progress
=
update_progress
(
progress
,
(
int
)(
v
*
calcKeypoints
.
size
()
+
c
),
progressCount
,
0
);
float
curDist
=
(
float
)
cv
::
norm
(
calcKeypoints
[
c
].
pt
-
validKeypoints
[
v
].
pt
);
if
(
curDist
<
minDist
)
{
minDist
=
curDist
;
nearestIdx
=
(
int
)
c
;
}
}
assert
(
minDist
>=
0
);
if
(
!
isSimilarKeypoints
(
validKeypoints
[
v
],
calcKeypoints
[
nearestIdx
]
)
)
badPointCount
++
;
}
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"badPointCount = %d; validPointCount = %d; calcPointCount = %d
\n
"
,
badPointCount
,
validKeypoints
.
size
(),
calcKeypoints
.
size
()
);
if
(
badPointCount
>
0.9
*
commonPointCount
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
" - Bad accuracy!
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
ts
->
printf
(
cvtest
::
TS
::
LOG
,
" - OK
\n
"
);
}
void
CV_FeatureDetectorTest
::
regressionTest
()
{
assert
(
!
fdetector
.
empty
()
);
string
imgFilename
=
string
(
ts
->
get_data_path
())
+
FEATURES2D_DIR
+
"/"
+
IMAGE_FILENAME
;
string
resFilename
=
string
(
ts
->
get_data_path
())
+
DETECTOR_DIR
+
"/"
+
string
(
name
)
+
".xml.gz"
;
// Read the test image.
Mat
image
=
imread
(
imgFilename
);
if
(
image
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Image %s can not be read.
\n
"
,
imgFilename
.
c_str
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
FileStorage
fs
(
resFilename
,
FileStorage
::
READ
);
// Compute keypoints.
vector
<
KeyPoint
>
calcKeypoints
;
fdetector
->
detect
(
image
,
calcKeypoints
);
if
(
fs
.
isOpened
()
)
// Compare computed and valid keypoints.
{
// TODO compare saved feature detector params with current ones
// Read validation keypoints set.
vector
<
KeyPoint
>
validKeypoints
;
read
(
fs
[
"keypoints"
],
validKeypoints
);
if
(
validKeypoints
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Keypoints can not be read.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
compareKeypointSets
(
validKeypoints
,
calcKeypoints
);
}
else
// Write detector parameters and computed keypoints as validation data.
{
fs
.
open
(
resFilename
,
FileStorage
::
WRITE
);
if
(
!
fs
.
isOpened
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"File %s can not be opened to write.
\n
"
,
resFilename
.
c_str
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
else
{
fs
<<
"detector_params"
<<
"{"
;
fdetector
->
write
(
fs
);
fs
<<
"}"
;
write
(
fs
,
"keypoints"
,
calcKeypoints
);
}
}
}
void
CV_FeatureDetectorTest
::
run
(
int
/*start_from*/
)
{
if
(
!
fdetector
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Feature detector is empty.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
emptyDataTest
();
regressionTest
();
#include "test_detectors_regression.impl.hpp"
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
}
namespace
opencv_test
{
namespace
{
/****************************************************************************************\
* Tests registrations *
...
...
modules/features2d/test/test_detectors_regression.impl.hpp
0 → 100644
View file @
40b1dc12
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
namespace
opencv_test
{
namespace
{
/****************************************************************************************\
* Regression tests for feature detectors comparing keypoints. *
\****************************************************************************************/
class
CV_FeatureDetectorTest
:
public
cvtest
::
BaseTest
{
public
:
CV_FeatureDetectorTest
(
const
string
&
_name
,
const
Ptr
<
FeatureDetector
>&
_fdetector
)
:
name
(
_name
),
fdetector
(
_fdetector
)
{}
protected
:
bool
isSimilarKeypoints
(
const
KeyPoint
&
p1
,
const
KeyPoint
&
p2
);
void
compareKeypointSets
(
const
vector
<
KeyPoint
>&
validKeypoints
,
const
vector
<
KeyPoint
>&
calcKeypoints
);
void
emptyDataTest
();
void
regressionTest
();
// TODO test of detect() with mask
virtual
void
run
(
int
);
string
name
;
Ptr
<
FeatureDetector
>
fdetector
;
};
void
CV_FeatureDetectorTest
::
emptyDataTest
()
{
// One image.
Mat
image
;
vector
<
KeyPoint
>
keypoints
;
try
{
fdetector
->
detect
(
image
,
keypoints
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"detect() on empty image must not generate exception (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
if
(
!
keypoints
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"detect() on empty image must return empty keypoints vector (1).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
// Several images.
vector
<
Mat
>
images
;
vector
<
vector
<
KeyPoint
>
>
keypointCollection
;
try
{
fdetector
->
detect
(
images
,
keypointCollection
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"detect() on empty image vector must not generate exception (2).
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
}
}
bool
CV_FeatureDetectorTest
::
isSimilarKeypoints
(
const
KeyPoint
&
p1
,
const
KeyPoint
&
p2
)
{
const
float
maxPtDif
=
1.
f
;
const
float
maxSizeDif
=
1.
f
;
const
float
maxAngleDif
=
2.
f
;
const
float
maxResponseDif
=
0.1
f
;
float
dist
=
(
float
)
cv
::
norm
(
p1
.
pt
-
p2
.
pt
);
return
(
dist
<
maxPtDif
&&
fabs
(
p1
.
size
-
p2
.
size
)
<
maxSizeDif
&&
abs
(
p1
.
angle
-
p2
.
angle
)
<
maxAngleDif
&&
abs
(
p1
.
response
-
p2
.
response
)
<
maxResponseDif
&&
p1
.
octave
==
p2
.
octave
&&
p1
.
class_id
==
p2
.
class_id
);
}
void
CV_FeatureDetectorTest
::
compareKeypointSets
(
const
vector
<
KeyPoint
>&
validKeypoints
,
const
vector
<
KeyPoint
>&
calcKeypoints
)
{
const
float
maxCountRatioDif
=
0.01
f
;
// Compare counts of validation and calculated keypoints.
float
countRatio
=
(
float
)
validKeypoints
.
size
()
/
(
float
)
calcKeypoints
.
size
();
if
(
countRatio
<
1
-
maxCountRatioDif
||
countRatio
>
1.
f
+
maxCountRatioDif
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Bad keypoints count ratio (validCount = %d, calcCount = %d).
\n
"
,
validKeypoints
.
size
(),
calcKeypoints
.
size
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
);
return
;
}
int
progress
=
0
,
progressCount
=
(
int
)(
validKeypoints
.
size
()
*
calcKeypoints
.
size
());
int
badPointCount
=
0
,
commonPointCount
=
max
((
int
)
validKeypoints
.
size
(),
(
int
)
calcKeypoints
.
size
());
for
(
size_t
v
=
0
;
v
<
validKeypoints
.
size
();
v
++
)
{
int
nearestIdx
=
-
1
;
float
minDist
=
std
::
numeric_limits
<
float
>::
max
();
for
(
size_t
c
=
0
;
c
<
calcKeypoints
.
size
();
c
++
)
{
progress
=
update_progress
(
progress
,
(
int
)(
v
*
calcKeypoints
.
size
()
+
c
),
progressCount
,
0
);
float
curDist
=
(
float
)
cv
::
norm
(
calcKeypoints
[
c
].
pt
-
validKeypoints
[
v
].
pt
);
if
(
curDist
<
minDist
)
{
minDist
=
curDist
;
nearestIdx
=
(
int
)
c
;
}
}
assert
(
minDist
>=
0
);
if
(
!
isSimilarKeypoints
(
validKeypoints
[
v
],
calcKeypoints
[
nearestIdx
]
)
)
badPointCount
++
;
}
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"badPointCount = %d; validPointCount = %d; calcPointCount = %d
\n
"
,
badPointCount
,
validKeypoints
.
size
(),
calcKeypoints
.
size
()
);
if
(
badPointCount
>
0.9
*
commonPointCount
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
" - Bad accuracy!
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
ts
->
printf
(
cvtest
::
TS
::
LOG
,
" - OK
\n
"
);
}
void
CV_FeatureDetectorTest
::
regressionTest
()
{
assert
(
!
fdetector
.
empty
()
);
string
imgFilename
=
string
(
ts
->
get_data_path
())
+
FEATURES2D_DIR
+
"/"
+
IMAGE_FILENAME
;
string
resFilename
=
string
(
ts
->
get_data_path
())
+
DETECTOR_DIR
+
"/"
+
string
(
name
)
+
".xml.gz"
;
// Read the test image.
Mat
image
=
imread
(
imgFilename
);
if
(
image
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Image %s can not be read.
\n
"
,
imgFilename
.
c_str
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
FileStorage
fs
(
resFilename
,
FileStorage
::
READ
);
// Compute keypoints.
vector
<
KeyPoint
>
calcKeypoints
;
fdetector
->
detect
(
image
,
calcKeypoints
);
if
(
fs
.
isOpened
()
)
// Compare computed and valid keypoints.
{
// TODO compare saved feature detector params with current ones
// Read validation keypoints set.
vector
<
KeyPoint
>
validKeypoints
;
read
(
fs
[
"keypoints"
],
validKeypoints
);
if
(
validKeypoints
.
empty
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Keypoints can not be read.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
compareKeypointSets
(
validKeypoints
,
calcKeypoints
);
}
else
// Write detector parameters and computed keypoints as validation data.
{
fs
.
open
(
resFilename
,
FileStorage
::
WRITE
);
if
(
!
fs
.
isOpened
()
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"File %s can not be opened to write.
\n
"
,
resFilename
.
c_str
()
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
else
{
fs
<<
"detector_params"
<<
"{"
;
fdetector
->
write
(
fs
);
fs
<<
"}"
;
write
(
fs
,
"keypoints"
,
calcKeypoints
);
}
}
}
void
CV_FeatureDetectorTest
::
run
(
int
/*start_from*/
)
{
if
(
!
fdetector
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Feature detector is empty.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_INVALID_TEST_DATA
);
return
;
}
emptyDataTest
();
regressionTest
();
ts
->
set_failed_test_info
(
cvtest
::
TS
::
OK
);
}
}}
// namespace
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment