Commit 40600fa5 authored by marina.kolpakova's avatar marina.kolpakova

GPU version becomes algorithm

parent e6eb1b99
...@@ -1534,10 +1534,12 @@ public: ...@@ -1534,10 +1534,12 @@ public:
// ======================== GPU version for soft cascade ===================== // // ======================== GPU version for soft cascade ===================== //
class CV_EXPORTS SoftCascade // Implementation of soft (stageless) cascaded detector.
class CV_EXPORTS SCascade : public Algorithm
{ {
public: public:
// Representation of detectors result.
struct CV_EXPORTS Detection struct CV_EXPORTS Detection
{ {
ushort x; ushort x;
...@@ -1549,47 +1551,44 @@ public: ...@@ -1549,47 +1551,44 @@ public:
enum {PEDESTRIAN = 0}; enum {PEDESTRIAN = 0};
}; };
//! An empty cascade will be created.
SoftCascade(); // An empty cascade will be created.
// Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
//! Cascade will be created from file for scales from minScale to maxScale. // Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
//! Param filename is a path to xml-serialized cascade. // Param scales is a number of scales from minScale to maxScale.
//! Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed. // Param rejfactor is used for NMS.
//! Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed. SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55, const int rejfactor = 1);
SoftCascade( const string& filename, const float minScale = 0.4f, const float maxScale = 5.f);
virtual ~SCascade();
//! cascade will be loaded from file "filename". The previous cascade will be destroyed.
//! Param filename is a path to xml-serialized cascade. cv::AlgorithmInfo* info() const;
//! Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
//! Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed. // Load cascade from FileNode.
bool load( const string& filename, const float minScale = 0.4f, const float maxScale = 5.f); // Param fn is a root node for cascade. Should be <cascade>.
virtual bool load(const FileNode& fn);
virtual ~SoftCascade();
// Load cascade config.
//! detect specific objects on in the input frame for all scales computed flom minScale and maxscale values virtual void read(const FileNode& fn);
//! Param image is input frame for detector. Cascade will be applied to it.
//! Param rois is a mask // Return the vector of Decection objcts.
//! Param objects 4-channel matrix thet contain detected rectangles // Param image is a frame on which detector will be applied.
//! Param rejectfactor used for final object box computing // Param rois is a vector of regions of interest. Only the objects that fall into one of the regions will be returned.
virtual void detectMultiScale(const GpuMat& image, const GpuMat& rois, GpuMat& objects, // Param objects is an output array of Detections
int rejectfactor = 1, int specificScale = -1) const; virtual void detect(InputArray image, InputArray rois, OutputArray objects, Stream& stream = Stream::Null()) const;
virtual void detect(InputArray image, InputArray rois, OutputArray objects, const int level, Stream& stream = Stream::Null()) const;
//! detect specific objects on in the input frame for all scales computed flom minScale and maxscale values.
//! asynchronous version. void genRoi(InputArray roi, OutputArray mask) const;
//! Param image is input frame for detector. Cascade will be applied to it.
//! Param rois is a mask
//! Param objects 4-channel matrix thet contain detected rectangles
//! Param rejectfactor used for final object box computing
//! Param ndet retrieves number of detections
//! Param stream wrapper for CUDA stream
virtual void detectMultiScale(const GpuMat& image, const GpuMat& rois, GpuMat& objects,
int rejectfactor, GpuMat& ndet, Stream stream) const;
cv::Size getRoiSize() const;
private: private:
struct Filds;
Filds* filds; struct Fields;
Fields* fields;
double minScale;
double maxScale;
int scales;
int rejfactor;
}; };
////////////////////////////////// SURF ////////////////////////////////////////// ////////////////////////////////// SURF //////////////////////////////////////////
......
This diff is collapsed.
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <precomp.hpp>
namespace cv { namespace gpu
{
CV_INIT_ALGORITHM(SCascade, "CascadeDetector.SCascade",
obj.info()->addParam(obj, "minScale", obj.minScale);
obj.info()->addParam(obj, "maxScale", obj.maxScale);
obj.info()->addParam(obj, "scales", obj.scales);
obj.info()->addParam(obj, "rejfactor", obj.rejfactor));
bool initModule_gpu(void)
{
Ptr<Algorithm> sc = createSCascade();
return sc->info() != 0;
}
} }
\ No newline at end of file
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment