:param image: Matrix of type CV_8U containing an image where objects should be detected.
:param imageobjectsBuff: Buffer to store detected objects (rectangles). If it is empty, it is allocated with the defaultsize. If not empty, the function searches not more than N objects, where N = sizeof(objectsBufers data)/sizeof(cv::Rect).
:param faces: Vector of rectangles where each rectangle contains the detected object.
:param scaleFactor: Parameter specifying how much the image size is reduced at each image scale.
...
...
@@ -36,7 +33,9 @@ Returns the detected objects by a list of rectangles
:param minSize: Minimum possible object size. Objects smaller than that are ignored.
Detects objects of different sizes in the input image,only tested for face detection now. The function returns the number of detected objects.
:param maxSize: Maximum possible object size. Objects larger than that are ignored.
The function provides a very similar interface with that in CascadeClassifier class, except using oclMat as input image.
:param Func: This row-vector corresponds to :math:`c` in the LP problem formulation (see above). It should contain 32- or 64-bit floating point numbers. As a convenience, column-vector may be also submitted, in the latter case it is understood to correspond to :math:`c^T`.
:param Constr: *m*-by-*n\+1* matrix, whose rightmost column corresponds to :math:`b` in formulation above and the remaining to :math:`A`. It should containt 32- or 64-bit floating point numbers.
:param z: The solution will be returned here as a column-vector - it corresponds to :math:`c` in the formulation above. It will contain 64-bit floating point numbers.
:return: One of the return codes:
::
//!the return codes for solveLP() function
enum
{
SOLVELP_UNBOUNDED = -2, //problem is unbounded (target function can achieve arbitrary high values)
SOLVELP_UNFEASIBLE = -1, //problem is unfeasible (there are no points that satisfy all the constraints imposed)
SOLVELP_SINGLE = 0, //there is only one maximum for target function
SOLVELP_MULTI = 1 //there are multiple maxima for target function - the arbitrary one is returned