Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
3dfa9178
Commit
3dfa9178
authored
Apr 17, 2012
by
Maria Dimashova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
refactored train and predict methods of em
parent
8f7e5811
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
56 additions
and
65 deletions
+56
-65
hybridtracker.cpp
modules/contrib/src/hybridtracker.cpp
+1
-1
legacy.hpp
modules/legacy/include/opencv2/legacy/legacy.hpp
+2
-2
em.cpp
modules/legacy/src/em.cpp
+11
-16
ml.hpp
modules/ml/include/opencv2/ml/ml.hpp
+11
-12
em.cpp
modules/ml/src/em.cpp
+22
-23
test_emknearestkmeans.cpp
modules/ml/test/test_emknearestkmeans.cpp
+8
-10
points_classifier.cpp
samples/cpp/points_classifier.cpp
+1
-1
No files found.
modules/contrib/src/hybridtracker.cpp
View file @
3dfa9178
...
...
@@ -213,7 +213,7 @@ void CvHybridTracker::updateTrackerWithEM(Mat image) {
cv
::
Mat
lbls
;
EM
em_model
(
1
,
EM
::
COV_MAT_SPHERICAL
,
TermCriteria
(
TermCriteria
::
COUNT
+
TermCriteria
::
EPS
,
10000
,
0.001
));
em_model
.
train
(
cvarrToMat
(
samples
),
lbls
);
em_model
.
train
(
cvarrToMat
(
samples
),
noArray
(),
lbls
);
if
(
labels
)
lbls
.
copyTo
(
cvarrToMat
(
labels
));
...
...
modules/legacy/include/opencv2/legacy/legacy.hpp
View file @
3dfa9178
...
...
@@ -1826,7 +1826,7 @@ public:
CV_WRAP
cv
::
Mat
getWeights
()
const
;
CV_WRAP
cv
::
Mat
getProbs
()
const
;
CV_WRAP
inline
double
getLikelihood
()
const
{
return
emObj
.
isTrained
()
?
likelihood
:
DBL_MAX
;
}
CV_WRAP
inline
double
getLikelihood
()
const
{
return
emObj
.
isTrained
()
?
l
ogL
ikelihood
:
DBL_MAX
;
}
#endif
CV_WRAP
virtual
void
clear
();
...
...
@@ -1847,7 +1847,7 @@ protected:
cv
::
EM
emObj
;
cv
::
Mat
probs
;
double
likelihood
;
double
l
ogL
ikelihood
;
CvMat
meansHdr
;
std
::
vector
<
CvMat
>
covsHdrs
;
...
...
modules/legacy/src/em.cpp
View file @
3dfa9178
...
...
@@ -56,12 +56,12 @@ CvEMParams::CvEMParams( int _nclusters, int _cov_mat_type, int _start_step,
probs
(
_probs
),
weights
(
_weights
),
means
(
_means
),
covs
(
_covs
),
term_crit
(
_term_crit
)
{}
CvEM
::
CvEM
()
:
likelihood
(
DBL_MAX
)
CvEM
::
CvEM
()
:
l
ogL
ikelihood
(
DBL_MAX
)
{
}
CvEM
::
CvEM
(
const
CvMat
*
samples
,
const
CvMat
*
sample_idx
,
CvEMParams
params
,
CvMat
*
labels
)
:
likelihood
(
DBL_MAX
)
CvEMParams
params
,
CvMat
*
labels
)
:
l
ogL
ikelihood
(
DBL_MAX
)
{
train
(
samples
,
sample_idx
,
params
,
labels
);
}
...
...
@@ -96,16 +96,14 @@ void CvEM::write( CvFileStorage* _fs, const char* name ) const
double
CvEM
::
calcLikelihood
(
const
Mat
&
input_sample
)
const
{
double
likelihood
;
emObj
.
predict
(
input_sample
,
noArray
(),
&
likelihood
);
return
likelihood
;
return
emObj
.
predict
(
input_sample
)[
0
];
}
float
CvEM
::
predict
(
const
CvMat
*
_sample
,
CvMat
*
_probs
)
const
{
Mat
prbs0
=
cvarrToMat
(
_probs
),
prbs
=
prbs0
,
sample
=
cvarrToMat
(
_sample
);
int
cls
=
emObj
.
predict
(
sample
,
_probs
?
_OutputArray
(
prbs
)
:
cv
::
noArray
()
);
int
cls
=
static_cast
<
int
>
(
emObj
.
predict
(
sample
,
_probs
?
_OutputArray
(
prbs
)
:
cv
::
noArray
())[
1
]
);
if
(
_probs
)
{
if
(
prbs
.
data
!=
prbs0
.
data
)
...
...
@@ -203,29 +201,27 @@ bool CvEM::train( const Mat& _samples, const Mat& _sample_idx,
CvEMParams
_params
,
Mat
*
_labels
)
{
CV_Assert
(
_sample_idx
.
empty
());
Mat
prbs
,
weights
,
means
,
likelihoods
;
Mat
prbs
,
weights
,
means
,
l
ogL
ikelihoods
;
std
::
vector
<
Mat
>
covsHdrs
;
init_params
(
_params
,
prbs
,
weights
,
means
,
covsHdrs
);
emObj
=
EM
(
_params
.
nclusters
,
_params
.
cov_mat_type
,
_params
.
term_crit
);
bool
isOk
=
false
;
if
(
_params
.
start_step
==
EM
::
START_AUTO_STEP
)
isOk
=
emObj
.
train
(
_samples
,
_labels
?
_OutputArray
(
*
_labels
)
:
cv
::
noArray
()
,
probs
,
likelihood
s
);
isOk
=
emObj
.
train
(
_samples
,
logLikelihoods
,
_labels
?
_OutputArray
(
*
_labels
)
:
cv
::
noArray
(),
prob
s
);
else
if
(
_params
.
start_step
==
EM
::
START_E_STEP
)
isOk
=
emObj
.
trainE
(
_samples
,
means
,
covsHdrs
,
weights
,
_labels
?
_OutputArray
(
*
_labels
)
:
cv
::
noArray
(),
probs
,
likelihoods
);
logLikelihoods
,
_labels
?
_OutputArray
(
*
_labels
)
:
cv
::
noArray
(),
probs
);
else
if
(
_params
.
start_step
==
EM
::
START_M_STEP
)
isOk
=
emObj
.
trainM
(
_samples
,
prbs
,
_labels
?
_OutputArray
(
*
_labels
)
:
cv
::
noArray
(),
probs
,
likelihoods
);
logLikelihoods
,
_labels
?
_OutputArray
(
*
_labels
)
:
cv
::
noArray
(),
probs
);
else
CV_Error
(
CV_StsBadArg
,
"Bad start type of EM algorithm"
);
if
(
isOk
)
{
l
ikelihoods
=
sum
(
l
ikelihoods
).
val
[
0
];
l
ogLikelihood
=
sum
(
logL
ikelihoods
).
val
[
0
];
set_mat_hdrs
();
}
...
...
@@ -235,8 +231,7 @@ bool CvEM::train( const Mat& _samples, const Mat& _sample_idx,
float
CvEM
::
predict
(
const
Mat
&
_sample
,
Mat
*
_probs
)
const
{
int
cls
=
emObj
.
predict
(
_sample
,
_probs
?
_OutputArray
(
*
_probs
)
:
cv
::
noArray
());
return
(
float
)
cls
;
return
static_cast
<
float
>
(
emObj
.
predict
(
_sample
,
_probs
?
_OutputArray
(
*
_probs
)
:
cv
::
noArray
())[
1
]);
}
int
CvEM
::
getNClusters
()
const
...
...
modules/ml/include/opencv2/ml/ml.hpp
View file @
3dfa9178
...
...
@@ -577,27 +577,26 @@ public:
CV_WRAP
virtual
void
clear
();
CV_WRAP
virtual
bool
train
(
InputArray
samples
,
OutputArray
logLikelihoods
=
noArray
(),
OutputArray
labels
=
noArray
(),
OutputArray
probs
=
noArray
(),
OutputArray
logLikelihoods
=
noArray
());
OutputArray
probs
=
noArray
());
CV_WRAP
virtual
bool
trainE
(
InputArray
samples
,
InputArray
means0
,
InputArray
covs0
=
noArray
(),
InputArray
weights0
=
noArray
(),
OutputArray
logLikelihoods
=
noArray
(),
OutputArray
labels
=
noArray
(),
OutputArray
probs
=
noArray
(),
OutputArray
logLikelihoods
=
noArray
());
OutputArray
probs
=
noArray
());
CV_WRAP
virtual
bool
trainM
(
InputArray
samples
,
InputArray
probs0
,
OutputArray
logLikelihoods
=
noArray
(),
OutputArray
labels
=
noArray
(),
OutputArray
probs
=
noArray
(),
OutputArray
logLikelihoods
=
noArray
());
OutputArray
probs
=
noArray
());
CV_WRAP
int
predict
(
InputArray
sample
,
OutputArray
probs
=
noArray
(),
CV_OUT
double
*
logLikelihood
=
0
)
const
;
CV_WRAP
Vec2d
predict
(
InputArray
sample
,
OutputArray
probs
=
noArray
())
const
;
CV_WRAP
bool
isTrained
()
const
;
...
...
@@ -613,9 +612,9 @@ protected:
const
Mat
*
weights0
);
bool
doTrain
(
int
startStep
,
OutputArray
logLikelihoods
,
OutputArray
labels
,
OutputArray
probs
,
OutputArray
logLikelihoods
);
OutputArray
probs
);
virtual
void
eStep
();
virtual
void
mStep
();
...
...
@@ -623,7 +622,7 @@ protected:
void
decomposeCovs
();
void
computeLogWeightDivDet
();
void
computeProbabilities
(
const
Mat
&
sample
,
int
&
label
,
Mat
*
probs
,
double
*
logLikelihood
)
const
;
Vec2d
computeProbabilities
(
const
Mat
&
sample
,
Mat
*
probs
)
const
;
// all inner matrices have type CV_64FC1
CV_PROP_RW
int
nclusters
;
...
...
modules/ml/src/em.cpp
View file @
3dfa9178
...
...
@@ -81,22 +81,22 @@ void EM::clear()
bool
EM
::
train
(
InputArray
samples
,
OutputArray
logLikelihoods
,
OutputArray
labels
,
OutputArray
probs
,
OutputArray
logLikelihoods
)
OutputArray
probs
)
{
Mat
samplesMat
=
samples
.
getMat
();
setTrainData
(
START_AUTO_STEP
,
samplesMat
,
0
,
0
,
0
,
0
);
return
doTrain
(
START_AUTO_STEP
,
l
abels
,
probs
,
logLikelihood
s
);
return
doTrain
(
START_AUTO_STEP
,
l
ogLikelihoods
,
labels
,
prob
s
);
}
bool
EM
::
trainE
(
InputArray
samples
,
InputArray
_means0
,
InputArray
_covs0
,
InputArray
_weights0
,
OutputArray
logLikelihoods
,
OutputArray
labels
,
OutputArray
probs
,
OutputArray
logLikelihoods
)
OutputArray
probs
)
{
Mat
samplesMat
=
samples
.
getMat
();
vector
<
Mat
>
covs0
;
...
...
@@ -106,24 +106,24 @@ bool EM::trainE(InputArray samples,
setTrainData
(
START_E_STEP
,
samplesMat
,
0
,
!
_means0
.
empty
()
?
&
means0
:
0
,
!
_covs0
.
empty
()
?
&
covs0
:
0
,
_weights0
.
empty
()
?
&
weights0
:
0
);
return
doTrain
(
START_E_STEP
,
l
abels
,
probs
,
logLikelihood
s
);
return
doTrain
(
START_E_STEP
,
l
ogLikelihoods
,
labels
,
prob
s
);
}
bool
EM
::
trainM
(
InputArray
samples
,
InputArray
_probs0
,
OutputArray
logLikelihoods
,
OutputArray
labels
,
OutputArray
probs
,
OutputArray
logLikelihoods
)
OutputArray
probs
)
{
Mat
samplesMat
=
samples
.
getMat
();
Mat
probs0
=
_probs0
.
getMat
();
setTrainData
(
START_M_STEP
,
samplesMat
,
!
_probs0
.
empty
()
?
&
probs0
:
0
,
0
,
0
,
0
);
return
doTrain
(
START_M_STEP
,
l
abels
,
probs
,
logLikelihood
s
);
return
doTrain
(
START_M_STEP
,
l
ogLikelihoods
,
labels
,
prob
s
);
}
int
EM
::
predict
(
InputArray
_sample
,
OutputArray
_probs
,
double
*
logLikelihood
)
const
Vec2d
EM
::
predict
(
InputArray
_sample
,
OutputArray
_probs
)
const
{
Mat
sample
=
_sample
.
getMat
();
CV_Assert
(
isTrained
());
...
...
@@ -136,16 +136,14 @@ int EM::predict(InputArray _sample, OutputArray _probs, double* logLikelihood) c
sample
=
tmp
;
}
int
label
;
Mat
probs
;
if
(
_probs
.
needed
()
)
{
_probs
.
create
(
1
,
nclusters
,
CV_64FC1
);
probs
=
_probs
.
getMat
();
}
computeProbabilities
(
sample
,
label
,
!
probs
.
empty
()
?
&
probs
:
0
,
logLikelihood
);
return
label
;
return
computeProbabilities
(
sample
,
!
probs
.
empty
()
?
&
probs
:
0
)
;
}
bool
EM
::
isTrained
()
const
...
...
@@ -394,7 +392,7 @@ void EM::computeLogWeightDivDet()
}
}
bool
EM
::
doTrain
(
int
startStep
,
OutputArray
l
abels
,
OutputArray
probs
,
OutputArray
logLikelihood
s
)
bool
EM
::
doTrain
(
int
startStep
,
OutputArray
l
ogLikelihoods
,
OutputArray
labels
,
OutputArray
prob
s
)
{
int
dim
=
trainSamples
.
cols
;
// Precompute the empty initial train data in the cases of EM::START_E_STEP and START_AUTO_STEP
...
...
@@ -472,7 +470,7 @@ bool EM::doTrain(int startStep, OutputArray labels, OutputArray probs, OutputArr
return
true
;
}
void
EM
::
computeProbabilities
(
const
Mat
&
sample
,
int
&
label
,
Mat
*
probs
,
double
*
logLikelihood
)
const
Vec2d
EM
::
computeProbabilities
(
const
Mat
&
sample
,
Mat
*
probs
)
const
{
// L_ik = log(weight_k) - 0.5 * log(|det(cov_k)|) - 0.5 *(x_i - mean_k)' cov_k^(-1) (x_i - mean_k)]
// q = arg(max_k(L_ik))
...
...
@@ -488,7 +486,7 @@ void EM::computeProbabilities(const Mat& sample, int& label, Mat* probs, double*
int
dim
=
sample
.
cols
;
Mat
L
(
1
,
nclusters
,
CV_64FC1
);
label
=
0
;
int
label
=
0
;
for
(
int
clusterIndex
=
0
;
clusterIndex
<
nclusters
;
clusterIndex
++
)
{
const
Mat
centeredSample
=
sample
-
means
.
row
(
clusterIndex
);
...
...
@@ -511,9 +509,6 @@ void EM::computeProbabilities(const Mat& sample, int& label, Mat* probs, double*
label
=
clusterIndex
;
}
if
(
!
probs
&&
!
logLikelihood
)
return
;
double
maxLVal
=
L
.
at
<
double
>
(
label
);
Mat
expL_Lmax
=
L
;
// exp(L_ij - L_iq)
for
(
int
i
=
0
;
i
<
L
.
cols
;
i
++
)
...
...
@@ -528,8 +523,11 @@ void EM::computeProbabilities(const Mat& sample, int& label, Mat* probs, double*
expL_Lmax
.
copyTo
(
*
probs
);
}
if
(
logLikelihood
)
*
logLikelihood
=
std
::
log
(
expDiffSum
)
+
maxLVal
-
0.5
*
dim
*
CV_LOG2PI
;
Vec2d
res
;
res
[
0
]
=
std
::
log
(
expDiffSum
)
+
maxLVal
-
0.5
*
dim
*
CV_LOG2PI
;
res
[
1
]
=
label
;
return
res
;
}
void
EM
::
eStep
()
...
...
@@ -547,8 +545,9 @@ void EM::eStep()
for
(
int
sampleIndex
=
0
;
sampleIndex
<
trainSamples
.
rows
;
sampleIndex
++
)
{
Mat
sampleProbs
=
trainProbs
.
row
(
sampleIndex
);
computeProbabilities
(
trainSamples
.
row
(
sampleIndex
),
trainLabels
.
at
<
int
>
(
sampleIndex
),
&
sampleProbs
,
&
trainLogLikelihoods
.
at
<
double
>
(
sampleIndex
));
Vec2d
res
=
computeProbabilities
(
trainSamples
.
row
(
sampleIndex
),
&
sampleProbs
);
trainLogLikelihoods
.
at
<
double
>
(
sampleIndex
)
=
res
[
0
];
trainLabels
.
at
<
int
>
(
sampleIndex
)
=
static_cast
<
int
>
(
res
[
1
]);
}
}
...
...
modules/ml/test/test_emknearestkmeans.cpp
View file @
3dfa9178
...
...
@@ -373,11 +373,11 @@ int CV_EMTest::runCase( int caseIndex, const EM_Params& params,
cv
::
EM
em
(
params
.
nclusters
,
params
.
covMatType
,
params
.
termCrit
);
if
(
params
.
startStep
==
EM
::
START_AUTO_STEP
)
em
.
train
(
trainData
,
labels
);
em
.
train
(
trainData
,
noArray
(),
labels
);
else
if
(
params
.
startStep
==
EM
::
START_E_STEP
)
em
.
trainE
(
trainData
,
*
params
.
means
,
*
params
.
covs
,
*
params
.
weights
,
labels
);
em
.
trainE
(
trainData
,
*
params
.
means
,
*
params
.
covs
,
*
params
.
weights
,
noArray
(),
labels
);
else
if
(
params
.
startStep
==
EM
::
START_M_STEP
)
em
.
trainM
(
trainData
,
*
params
.
probs
,
labels
);
em
.
trainM
(
trainData
,
*
params
.
probs
,
noArray
(),
labels
);
// check train error
if
(
!
calcErr
(
labels
,
trainLabels
,
sizes
,
err
,
false
,
false
)
)
...
...
@@ -396,9 +396,8 @@ int CV_EMTest::runCase( int caseIndex, const EM_Params& params,
for
(
int
i
=
0
;
i
<
testData
.
rows
;
i
++
)
{
Mat
sample
=
testData
.
row
(
i
);
double
likelihood
=
0
;
Mat
probs
;
labels
.
at
<
int
>
(
i
,
0
)
=
(
int
)
em
.
predict
(
sample
,
probs
,
&
likelihood
);
labels
.
at
<
int
>
(
i
)
=
static_cast
<
int
>
(
em
.
predict
(
sample
,
probs
)[
1
]
);
}
if
(
!
calcErr
(
labels
,
testLabels
,
sizes
,
err
,
false
,
false
)
)
{
...
...
@@ -523,7 +522,7 @@ protected:
Mat
firstResult
(
samples
.
rows
,
1
,
CV_32SC1
);
for
(
int
i
=
0
;
i
<
samples
.
rows
;
i
++
)
firstResult
.
at
<
int
>
(
i
)
=
em
.
predict
(
samples
.
row
(
i
)
);
firstResult
.
at
<
int
>
(
i
)
=
static_cast
<
int
>
(
em
.
predict
(
samples
.
row
(
i
))[
1
]
);
// Write out
string
filename
=
tempfile
()
+
".xml"
;
...
...
@@ -564,7 +563,7 @@ protected:
int
errCaseCount
=
0
;
for
(
int
i
=
0
;
i
<
samples
.
rows
;
i
++
)
errCaseCount
=
std
::
abs
(
em
.
predict
(
samples
.
row
(
i
))
-
firstResult
.
at
<
int
>
(
i
))
<
FLT_EPSILON
?
0
:
1
;
errCaseCount
=
std
::
abs
(
em
.
predict
(
samples
.
row
(
i
))
[
1
]
-
firstResult
.
at
<
int
>
(
i
))
<
FLT_EPSILON
?
0
:
1
;
if
(
errCaseCount
>
0
)
{
...
...
@@ -637,10 +636,9 @@ protected:
const
double
lambda
=
1.
;
for
(
int
i
=
0
;
i
<
samples
.
rows
;
i
++
)
{
double
sampleLogLikelihoods0
=
0
,
sampleLogLikelihoods1
=
0
;
Mat
sample
=
samples
.
row
(
i
);
model0
.
predict
(
sample
,
noArray
(),
&
sampleLogLikelihoods0
)
;
model1
.
predict
(
sample
,
noArray
(),
&
sampleLogLikelihoods1
)
;
double
sampleLogLikelihoods0
=
model0
.
predict
(
sample
)[
0
]
;
double
sampleLogLikelihoods1
=
model1
.
predict
(
sample
)[
0
]
;
int
classID
=
sampleLogLikelihoods0
>=
lambda
*
sampleLogLikelihoods1
?
0
:
1
;
...
...
samples/cpp/points_classifier.cpp
View file @
3dfa9178
...
...
@@ -478,7 +478,7 @@ void find_decision_boundary_EM()
for
(
size_t
modelIndex
=
0
;
modelIndex
<
em_models
.
size
();
modelIndex
++
)
{
if
(
em_models
[
modelIndex
].
isTrained
())
em_models
[
modelIndex
].
predict
(
testSample
,
noArray
(),
&
logLikelihoods
.
at
<
double
>
(
modelIndex
)
)
;
logLikelihoods
.
at
<
double
>
(
modelIndex
)
=
em_models
[
modelIndex
].
predict
(
testSample
)[
0
]
;
}
Point
maxLoc
;
minMaxLoc
(
logLikelihoods
,
0
,
0
,
0
,
&
maxLoc
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment