Commit 3c92d40f authored by catree's avatar catree

Fix arguments parsing. Add possibility to choose between different features…

Fix arguments parsing. Add possibility to choose between different features type. Add keypoints matching visualization. Auto format code.
parent 3c70d966
#include "CsvReader.h"
/** The default constructor of the CSV reader Class */
CsvReader::CsvReader(const string &path, const char &separator){
CsvReader::CsvReader(const string &path, char separator){
_file.open(path.c_str(), ifstream::in);
_separator = separator;
}
......
......@@ -11,30 +11,30 @@ using namespace cv;
class CsvReader {
public:
/**
* The default constructor of the CSV reader Class.
* The default separator is ' ' (empty space)
*
* @param path - The path of the file to read
* @param separator - The separator character between words per line
* @return
*/
CsvReader(const string &path, const char &separator = ' ');
/**
* The default constructor of the CSV reader Class.
* The default separator is ' ' (empty space)
*
* @param path - The path of the file to read
* @param separator - The separator character between words per line
* @return
*/
CsvReader(const string &path, char separator = ' ');
/**
* Read a plane text file with .ply format
*
* @param list_vertex - The container of the vertices list of the mesh
* @param list_triangle - The container of the triangles list of the mesh
* @return
*/
void readPLY(vector<Point3f> &list_vertex, vector<vector<int> > &list_triangles);
/**
* Read a plane text file with .ply format
*
* @param list_vertex - The container of the vertices list of the mesh
* @param list_triangle - The container of the triangles list of the mesh
* @return
*/
void readPLY(vector<Point3f> &list_vertex, vector<vector<int> > &list_triangles);
private:
/** The current stream file for the reader */
ifstream _file;
/** The separator character between words for each line */
char _separator;
/** The current stream file for the reader */
ifstream _file;
/** The separator character between words for each line */
char _separator;
};
#endif
#include "CsvWriter.h"
CsvWriter::CsvWriter(const string &path, const string &separator){
_file.open(path.c_str(), ofstream::out);
_isFirstTerm = true;
_separator = separator;
_file.open(path.c_str(), ofstream::out);
_isFirstTerm = true;
_separator = separator;
}
CsvWriter::~CsvWriter() {
_file.flush();
_file.close();
_file.flush();
_file.close();
}
void CsvWriter::writeXYZ(const vector<Point3f> &list_points3d)
{
string x, y, z;
for(unsigned int i = 0; i < list_points3d.size(); ++i)
{
x = FloatToString(list_points3d[i].x);
y = FloatToString(list_points3d[i].y);
z = FloatToString(list_points3d[i].z);
_file << x << _separator << y << _separator << z << std::endl;
}
for(size_t i = 0; i < list_points3d.size(); ++i)
{
string x = FloatToString(list_points3d[i].x);
string y = FloatToString(list_points3d[i].y);
string z = FloatToString(list_points3d[i].z);
_file << x << _separator << y << _separator << z << std::endl;
}
}
void CsvWriter::writeUVXYZ(const vector<Point3f> &list_points3d, const vector<Point2f> &list_points2d, const Mat &descriptors)
{
string u, v, x, y, z, descriptor_str;
for(unsigned int i = 0; i < list_points3d.size(); ++i)
{
u = FloatToString(list_points2d[i].x);
v = FloatToString(list_points2d[i].y);
x = FloatToString(list_points3d[i].x);
y = FloatToString(list_points3d[i].y);
z = FloatToString(list_points3d[i].z);
_file << u << _separator << v << _separator << x << _separator << y << _separator << z;
for(int j = 0; j < 32; ++j)
for(size_t i = 0; i < list_points3d.size(); ++i)
{
descriptor_str = FloatToString(descriptors.at<float>(i,j));
_file << _separator << descriptor_str;
string u = FloatToString(list_points2d[i].x);
string v = FloatToString(list_points2d[i].y);
string x = FloatToString(list_points3d[i].x);
string y = FloatToString(list_points3d[i].y);
string z = FloatToString(list_points3d[i].z);
_file << u << _separator << v << _separator << x << _separator << y << _separator << z;
for(int j = 0; j < 32; ++j)
{
string descriptor_str = FloatToString(descriptors.at<float>((int)i,j));
_file << _separator << descriptor_str;
}
_file << std::endl;
}
_file << std::endl;
}
}
#ifndef CSVWRITER_H
#define CSVWRITER_H
#define CSVWRITER_H
#include <iostream>
#include <fstream>
......@@ -11,15 +11,15 @@ using namespace cv;
class CsvWriter {
public:
CsvWriter(const string &path, const string &separator = " ");
~CsvWriter();
void writeXYZ(const vector<Point3f> &list_points3d);
void writeUVXYZ(const vector<Point3f> &list_points3d, const vector<Point2f> &list_points2d, const Mat &descriptors);
CsvWriter(const string &path, const string &separator = " ");
~CsvWriter();
void writeXYZ(const vector<Point3f> &list_points3d);
void writeUVXYZ(const vector<Point3f> &list_points3d, const vector<Point2f> &list_points2d, const Mat &descriptors);
private:
ofstream _file;
string _separator;
bool _isFirstTerm;
ofstream _file;
string _separator;
bool _isFirstTerm;
};
#endif
......@@ -14,15 +14,15 @@
// --------------------------------------------------- //
/** The custom constructor of the Triangle Class */
Triangle::Triangle(int id, cv::Point3f V0, cv::Point3f V1, cv::Point3f V2)
Triangle::Triangle(const cv::Point3f& V0, const cv::Point3f& V1, const cv::Point3f& V2) :
v0_(V0), v1_(V1), v2_(V2)
{
id_ = id; v0_ = V0; v1_ = V1; v2_ = V2;
}
/** The default destructor of the Class */
Triangle::~Triangle()
{
// TODO Auto-generated destructor stub
// TODO Auto-generated destructor stub
}
......@@ -31,14 +31,15 @@ Triangle::~Triangle()
// --------------------------------------------------- //
/** The custom constructor of the Ray Class */
Ray::Ray(cv::Point3f P0, cv::Point3f P1) {
p0_ = P0; p1_ = P1;
Ray::Ray(const cv::Point3f& P0, const cv::Point3f& P1) :
p0_(P0), p1_(P1)
{
}
/** The default destructor of the Class */
Ray::~Ray()
{
// TODO Auto-generated destructor stub
// TODO Auto-generated destructor stub
}
......@@ -47,36 +48,31 @@ Ray::~Ray()
// --------------------------------------------------- //
/** The default constructor of the ObjectMesh Class */
Mesh::Mesh() : list_vertex_(0) , list_triangles_(0)
Mesh::Mesh() : num_vertices_(0), num_triangles_(0),
list_vertex_(0) , list_triangles_(0)
{
id_ = 0;
num_vertexs_ = 0;
num_triangles_ = 0;
}
/** The default destructor of the ObjectMesh Class */
Mesh::~Mesh()
{
// TODO Auto-generated destructor stub
// TODO Auto-generated destructor stub
}
/** Load a CSV with *.ply format **/
void Mesh::load(const std::string path)
void Mesh::load(const std::string& path)
{
// Create the reader
CsvReader csvReader(path);
// Create the reader
CsvReader csvReader(path);
// Clear previous data
list_vertex_.clear();
list_triangles_.clear();
// Read from .ply file
csvReader.readPLY(list_vertex_, list_triangles_);
// Clear previous data
list_vertex_.clear();
list_triangles_.clear();
// Update mesh attributes
num_vertexs_ = (int)list_vertex_.size();
num_triangles_ = (int)list_triangles_.size();
// Read from .ply file
csvReader.readPLY(list_vertex_, list_triangles_);
// Update mesh attributes
num_vertices_ = (int)list_vertex_.size();
num_triangles_ = (int)list_triangles_.size();
}
......@@ -19,18 +19,16 @@
class Triangle {
public:
explicit Triangle(int id, cv::Point3f V0, cv::Point3f V1, cv::Point3f V2);
virtual ~Triangle();
explicit Triangle(const cv::Point3f& V0, const cv::Point3f& V1, const cv::Point3f& V2);
virtual ~Triangle();
cv::Point3f getV0() const { return v0_; }
cv::Point3f getV1() const { return v1_; }
cv::Point3f getV2() const { return v2_; }
cv::Point3f getV0() const { return v0_; }
cv::Point3f getV1() const { return v1_; }
cv::Point3f getV2() const { return v2_; }
private:
/** The identifier number of the triangle */
int id_;
/** The three vertices that defines the triangle */
cv::Point3f v0_, v1_, v2_;
/** The three vertices that defines the triangle */
cv::Point3f v0_, v1_, v2_;
};
......@@ -41,15 +39,15 @@ private:
class Ray {
public:
explicit Ray(cv::Point3f P0, cv::Point3f P1);
virtual ~Ray();
explicit Ray(const cv::Point3f& P0, const cv::Point3f& P1);
virtual ~Ray();
cv::Point3f getP0() { return p0_; }
cv::Point3f getP1() { return p1_; }
cv::Point3f getP0() { return p0_; }
cv::Point3f getP1() { return p1_; }
private:
/** The two points that defines the ray */
cv::Point3f p0_, p1_;
/** The two points that defines the ray */
cv::Point3f p0_, p1_;
};
......@@ -61,26 +59,24 @@ class Mesh
{
public:
Mesh();
virtual ~Mesh();
Mesh();
virtual ~Mesh();
std::vector<std::vector<int> > getTrianglesList() const { return list_triangles_; }
cv::Point3f getVertex(int pos) const { return list_vertex_[pos]; }
int getNumVertices() const { return num_vertexs_; }
std::vector<std::vector<int> > getTrianglesList() const { return list_triangles_; }
cv::Point3f getVertex(int pos) const { return list_vertex_[pos]; }
int getNumVertices() const { return num_vertices_; }
void load(const std::string path_file);
void load(const std::string& path_file);
private:
/** The identification number of the mesh */
int id_;
/** The current number of vertices in the mesh */
int num_vertexs_;
/** The current number of triangles in the mesh */
int num_triangles_;
/* The list of triangles of the mesh */
std::vector<cv::Point3f> list_vertex_;
/* The list of triangles of the mesh */
std::vector<std::vector<int> > list_triangles_;
/** The current number of vertices in the mesh */
int num_vertices_;
/** The current number of triangles in the mesh */
int num_triangles_;
/* The list of triangles of the mesh */
std::vector<cv::Point3f> list_vertex_;
/* The list of triangles of the mesh */
std::vector<std::vector<int> > list_triangles_;
};
#endif /* OBJECTMESH_H_ */
......@@ -8,66 +8,76 @@
#include "Model.h"
#include "CsvWriter.h"
Model::Model() : list_points2d_in_(0), list_points2d_out_(0), list_points3d_in_(0)
Model::Model() : n_correspondences_(0), list_points2d_in_(0), list_points2d_out_(0), list_points3d_in_(0), training_img_path_()
{
n_correspondences_ = 0;
}
Model::~Model()
{
// TODO Auto-generated destructor stub
// TODO Auto-generated destructor stub
}
void Model::add_correspondence(const cv::Point2f &point2d, const cv::Point3f &point3d)
{
list_points2d_in_.push_back(point2d);
list_points3d_in_.push_back(point3d);
n_correspondences_++;
list_points2d_in_.push_back(point2d);
list_points3d_in_.push_back(point3d);
n_correspondences_++;
}
void Model::add_outlier(const cv::Point2f &point2d)
{
list_points2d_out_.push_back(point2d);
list_points2d_out_.push_back(point2d);
}
void Model::add_descriptor(const cv::Mat &descriptor)
{
descriptors_.push_back(descriptor);
descriptors_.push_back(descriptor);
}
void Model::add_keypoint(const cv::KeyPoint &kp)
{
list_keypoints_.push_back(kp);
list_keypoints_.push_back(kp);
}
void Model::set_trainingImagePath(const std::string &path)
{
training_img_path_ = path;
}
/** Save a CSV file and fill the object mesh */
void Model::save(const std::string path)
/** Save a YAML file and fill the object mesh */
void Model::save(const std::string &path)
{
cv::Mat points3dmatrix = cv::Mat(list_points3d_in_);
cv::Mat points2dmatrix = cv::Mat(list_points2d_in_);
//cv::Mat keyPointmatrix = cv::Mat(list_keypoints_);
cv::Mat points3dmatrix = cv::Mat(list_points3d_in_);
cv::Mat points2dmatrix = cv::Mat(list_points2d_in_);
cv::FileStorage storage(path, cv::FileStorage::WRITE);
storage << "points_3d" << points3dmatrix;
storage << "points_2d" << points2dmatrix;
storage << "keypoints" << list_keypoints_;
storage << "descriptors" << descriptors_;
cv::FileStorage storage(path, cv::FileStorage::WRITE);
storage << "points_3d" << points3dmatrix;
storage << "points_2d" << points2dmatrix;
storage << "keypoints" << list_keypoints_;
storage << "descriptors" << descriptors_;
storage << "training_image_path" << training_img_path_;
storage.release();
storage.release();
}
/** Load a YAML file using OpenCv functions **/
void Model::load(const std::string path)
void Model::load(const std::string &path)
{
cv::Mat points3d_mat;
cv::FileStorage storage(path, cv::FileStorage::READ);
storage["points_3d"] >> points3d_mat;
storage["descriptors"] >> descriptors_;
points3d_mat.copyTo(list_points3d_in_);
storage.release();
cv::Mat points3d_mat;
cv::FileStorage storage(path, cv::FileStorage::READ);
storage["points_3d"] >> points3d_mat;
storage["descriptors"] >> descriptors_;
if (!storage["keypoints"].empty())
{
storage["keypoints"] >> list_keypoints_;
}
if (!storage["training_image_path"].empty())
{
storage["training_image_path"] >> training_img_path_;
}
points3d_mat.copyTo(list_points3d_in_);
storage.release();
}
......@@ -15,40 +15,41 @@
class Model
{
public:
Model();
virtual ~Model();
std::vector<cv::Point2f> get_points2d_in() const { return list_points2d_in_; }
std::vector<cv::Point2f> get_points2d_out() const { return list_points2d_out_; }
std::vector<cv::Point3f> get_points3d() const { return list_points3d_in_; }
std::vector<cv::KeyPoint> get_keypoints() const { return list_keypoints_; }
cv::Mat get_descriptors() const { return descriptors_; }
int get_numDescriptors() const { return descriptors_.rows; }
void add_correspondence(const cv::Point2f &point2d, const cv::Point3f &point3d);
void add_outlier(const cv::Point2f &point2d);
void add_descriptor(const cv::Mat &descriptor);
void add_keypoint(const cv::KeyPoint &kp);
void save(const std::string path);
void load(const std::string path);
Model();
virtual ~Model();
std::vector<cv::Point2f> get_points2d_in() const { return list_points2d_in_; }
std::vector<cv::Point2f> get_points2d_out() const { return list_points2d_out_; }
std::vector<cv::Point3f> get_points3d() const { return list_points3d_in_; }
std::vector<cv::KeyPoint> get_keypoints() const { return list_keypoints_; }
cv::Mat get_descriptors() const { return descriptors_; }
int get_numDescriptors() const { return descriptors_.rows; }
std::string get_trainingImagePath() const { return training_img_path_; }
void add_correspondence(const cv::Point2f &point2d, const cv::Point3f &point3d);
void add_outlier(const cv::Point2f &point2d);
void add_descriptor(const cv::Mat &descriptor);
void add_keypoint(const cv::KeyPoint &kp);
void set_trainingImagePath(const std::string &path);
void save(const std::string &path);
void load(const std::string &path);
private:
/** The current number of correspondecnes */
int n_correspondences_;
/** The list of 2D points on the model surface */
std::vector<cv::KeyPoint> list_keypoints_;
/** The list of 2D points on the model surface */
std::vector<cv::Point2f> list_points2d_in_;
/** The list of 2D points outside the model surface */
std::vector<cv::Point2f> list_points2d_out_;
/** The list of 3D points on the model surface */
std::vector<cv::Point3f> list_points3d_in_;
/** The list of 2D points descriptors */
cv::Mat descriptors_;
/** The current number of correspondecnes */
int n_correspondences_;
/** The list of 2D points on the model surface */
std::vector<cv::KeyPoint> list_keypoints_;
/** The list of 2D points on the model surface */
std::vector<cv::Point2f> list_points2d_in_;
/** The list of 2D points outside the model surface */
std::vector<cv::Point2f> list_points2d_out_;
/** The list of 3D points on the model surface */
std::vector<cv::Point3f> list_points3d_in_;
/** The list of 2D points descriptors */
cv::Mat descriptors_;
/** Path to the training image */
std::string training_img_path_;
};
#endif /* OBJECTMODEL_H_ */
......@@ -7,29 +7,28 @@
#include "ModelRegistration.h"
ModelRegistration::ModelRegistration()
ModelRegistration::ModelRegistration() : n_registrations_(0), max_registrations_(0),
list_points2d_(), list_points3d_()
{
n_registrations_ = 0;
max_registrations_ = 0;
}
ModelRegistration::~ModelRegistration()
{
// TODO Auto-generated destructor stub
// TODO Auto-generated destructor stub
}
void ModelRegistration::registerPoint(const cv::Point2f &point2d, const cv::Point3f &point3d)
{
// add correspondence at the end of the vector
{
// add correspondence at the end of the vector
list_points2d_.push_back(point2d);
list_points3d_.push_back(point3d);
n_registrations_++;
}
}
void ModelRegistration::reset()
{
n_registrations_ = 0;
max_registrations_ = 0;
list_points2d_.clear();
list_points3d_.clear();
n_registrations_ = 0;
max_registrations_ = 0;
list_points2d_.clear();
list_points3d_.clear();
}
......@@ -14,30 +14,29 @@
class ModelRegistration
{
public:
ModelRegistration();
virtual ~ModelRegistration();
ModelRegistration();
virtual ~ModelRegistration();
void setNumMax(int n) { max_registrations_ = n; }
void setNumMax(int n) { max_registrations_ = n; }
std::vector<cv::Point2f> get_points2d() const { return list_points2d_; }
std::vector<cv::Point3f> get_points3d() const { return list_points3d_; }
int getNumMax() const { return max_registrations_; }
int getNumRegist() const { return n_registrations_; }
std::vector<cv::Point2f> get_points2d() const { return list_points2d_; }
std::vector<cv::Point3f> get_points3d() const { return list_points3d_; }
int getNumMax() const { return max_registrations_; }
int getNumRegist() const { return n_registrations_; }
bool is_registrable() const { return (n_registrations_ < max_registrations_); }
void registerPoint(const cv::Point2f &point2d, const cv::Point3f &point3d);
void reset();
bool is_registrable() const { return (n_registrations_ < max_registrations_); }
void registerPoint(const cv::Point2f &point2d, const cv::Point3f &point3d);
void reset();
private:
/** The current number of registered points */
int n_registrations_;
/** The total number of points to register */
int max_registrations_;
/** The list of 2D points to register the model */
std::vector<cv::Point2f> list_points2d_;
/** The list of 3D points to register the model */
std::vector<cv::Point3f> list_points3d_;
/** The current number of registered points */
int n_registrations_;
/** The total number of points to register */
int max_registrations_;
/** The list of 2D points to register the model */
std::vector<cv::Point2f> list_points2d_;
/** The list of 3D points to register the model */
std::vector<cv::Point3f> list_points3d_;
};
#endif /* MODELREGISTRATION_H_ */
......@@ -18,41 +18,35 @@
class PnPProblem
{
public:
explicit PnPProblem(const double param[]); // custom constructor
virtual ~PnPProblem();
explicit PnPProblem(const double param[]); // custom constructor
virtual ~PnPProblem();
bool backproject2DPoint(const Mesh *mesh, const cv::Point2f &point2d, cv::Point3f &point3d);
bool intersect_MollerTrumbore(Ray &R, Triangle &T, double *out);
std::vector<cv::Point2f> verify_points(Mesh *mesh);
cv::Point2f backproject3DPoint(const cv::Point3f &point3d);
bool estimatePose(const std::vector<cv::Point3f> &list_points3d, const std::vector<cv::Point2f> &list_points2d, int flags);
void estimatePoseRANSAC( const std::vector<cv::Point3f> &list_points3d, const std::vector<cv::Point2f> &list_points2d,
int flags, cv::Mat &inliers,
int iterationsCount, float reprojectionError, double confidence );
bool backproject2DPoint(const Mesh *mesh, const cv::Point2f &point2d, cv::Point3f &point3d);
bool intersect_MollerTrumbore(Ray &R, Triangle &T, double *out);
std::vector<cv::Point2f> verify_points(Mesh *mesh);
cv::Point2f backproject3DPoint(const cv::Point3f &point3d);
bool estimatePose(const std::vector<cv::Point3f> &list_points3d, const std::vector<cv::Point2f> &list_points2d, int flags);
void estimatePoseRANSAC( const std::vector<cv::Point3f> &list_points3d, const std::vector<cv::Point2f> &list_points2d,
int flags, cv::Mat &inliers,
int iterationsCount, float reprojectionError, double confidence );
cv::Mat get_A_matrix() const { return _A_matrix; }
cv::Mat get_R_matrix() const { return _R_matrix; }
cv::Mat get_t_matrix() const { return _t_matrix; }
cv::Mat get_P_matrix() const { return _P_matrix; }
cv::Mat get_A_matrix() const { return A_matrix_; }
cv::Mat get_R_matrix() const { return R_matrix_; }
cv::Mat get_t_matrix() const { return t_matrix_; }
cv::Mat get_P_matrix() const { return P_matrix_; }
void set_P_matrix( const cv::Mat &R_matrix, const cv::Mat &t_matrix);
void set_P_matrix( const cv::Mat &R_matrix, const cv::Mat &t_matrix);
private:
/** The calibration matrix */
cv::Mat _A_matrix;
/** The computed rotation matrix */
cv::Mat _R_matrix;
/** The computed translation matrix */
cv::Mat _t_matrix;
/** The computed projection matrix */
cv::Mat _P_matrix;
/** The calibration matrix */
cv::Mat A_matrix_;
/** The computed rotation matrix */
cv::Mat R_matrix_;
/** The computed translation matrix */
cv::Mat t_matrix_;
/** The computed projection matrix */
cv::Mat P_matrix_;
};
// Functions for Möller-Trumbore intersection algorithm
cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2);
double DOT(cv::Point3f v1, cv::Point3f v2);
cv::Point3f SUB(cv::Point3f v1, cv::Point3f v2);
#endif /* PNPPROBLEM_H_ */
......@@ -12,141 +12,143 @@
RobustMatcher::~RobustMatcher()
{
// TODO Auto-generated destructor stub
// TODO Auto-generated destructor stub
}
void RobustMatcher::computeKeyPoints( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints)
{
detector_->detect(image, keypoints);
detector_->detect(image, keypoints);
}
void RobustMatcher::computeDescriptors( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors)
{
extractor_->compute(image, keypoints, descriptors);
extractor_->compute(image, keypoints, descriptors);
}
int RobustMatcher::ratioTest(std::vector<std::vector<cv::DMatch> > &matches)
{
int removed = 0;
// for all matches
for ( std::vector<std::vector<cv::DMatch> >::iterator
matchIterator= matches.begin(); matchIterator!= matches.end(); ++matchIterator)
{
// if 2 NN has been identified
if (matchIterator->size() > 1)
int removed = 0;
// for all matches
for ( std::vector<std::vector<cv::DMatch> >::iterator
matchIterator= matches.begin(); matchIterator!= matches.end(); ++matchIterator)
{
// check distance ratio
if ((*matchIterator)[0].distance / (*matchIterator)[1].distance > ratio_)
{
matchIterator->clear(); // remove match
removed++;
}
}
else
{ // does not have 2 neighbours
matchIterator->clear(); // remove match
removed++;
// if 2 NN has been identified
if (matchIterator->size() > 1)
{
// check distance ratio
if ((*matchIterator)[0].distance / (*matchIterator)[1].distance > ratio_)
{
matchIterator->clear(); // remove match
removed++;
}
}
else
{ // does not have 2 neighbours
matchIterator->clear(); // remove match
removed++;
}
}
}
return removed;
return removed;
}
void RobustMatcher::symmetryTest( const std::vector<std::vector<cv::DMatch> >& matches1,
const std::vector<std::vector<cv::DMatch> >& matches2,
std::vector<cv::DMatch>& symMatches )
const std::vector<std::vector<cv::DMatch> >& matches2,
std::vector<cv::DMatch>& symMatches )
{
// for all matches image 1 -> image 2
for (std::vector<std::vector<cv::DMatch> >::const_iterator
matchIterator1 = matches1.begin(); matchIterator1 != matches1.end(); ++matchIterator1)
{
// ignore deleted matches
if (matchIterator1->empty() || matchIterator1->size() < 2)
continue;
// for all matches image 2 -> image 1
for (std::vector<std::vector<cv::DMatch> >::const_iterator
matchIterator2 = matches2.begin(); matchIterator2 != matches2.end(); ++matchIterator2)
{
// for all matches image 1 -> image 2
for (std::vector<std::vector<cv::DMatch> >::const_iterator
matchIterator1 = matches1.begin(); matchIterator1 != matches1.end(); ++matchIterator1)
{
// ignore deleted matches
if (matchIterator2->empty() || matchIterator2->size() < 2)
continue;
// Match symmetry test
if ((*matchIterator1)[0].queryIdx ==
(*matchIterator2)[0].trainIdx &&
(*matchIterator2)[0].queryIdx ==
(*matchIterator1)[0].trainIdx)
if (matchIterator1->empty() || matchIterator1->size() < 2)
continue;
// for all matches image 2 -> image 1
for (std::vector<std::vector<cv::DMatch> >::const_iterator
matchIterator2 = matches2.begin(); matchIterator2 != matches2.end(); ++matchIterator2)
{
// add symmetrical match
symMatches.push_back(
cv::DMatch((*matchIterator1)[0].queryIdx,
(*matchIterator1)[0].trainIdx,
(*matchIterator1)[0].distance));
break; // next match in image 1 -> image 2
// ignore deleted matches
if (matchIterator2->empty() || matchIterator2->size() < 2)
continue;
// Match symmetry test
if ((*matchIterator1)[0].queryIdx == (*matchIterator2)[0].trainIdx &&
(*matchIterator2)[0].queryIdx == (*matchIterator1)[0].trainIdx)
{
// add symmetrical match
symMatches.push_back(cv::DMatch((*matchIterator1)[0].queryIdx,
(*matchIterator1)[0].trainIdx, (*matchIterator1)[0].distance));
break; // next match in image 1 -> image 2
}
}
}
}
}
}
void RobustMatcher::robustMatch( const cv::Mat& frame, std::vector<cv::DMatch>& good_matches,
std::vector<cv::KeyPoint>& keypoints_frame, const cv::Mat& descriptors_model )
std::vector<cv::KeyPoint>& keypoints_frame, const cv::Mat& descriptors_model,
const std::vector<cv::KeyPoint>& keypoints_model)
{
// 1a. Detection of the ORB features
this->computeKeyPoints(frame, keypoints_frame);
// 1a. Detection of the ORB features
this->computeKeyPoints(frame, keypoints_frame);
// 1b. Extraction of the ORB descriptors
cv::Mat descriptors_frame;
this->computeDescriptors(frame, keypoints_frame, descriptors_frame);
// 1b. Extraction of the ORB descriptors
cv::Mat descriptors_frame;
this->computeDescriptors(frame, keypoints_frame, descriptors_frame);
// 2. Match the two image descriptors
std::vector<std::vector<cv::DMatch> > matches12, matches21;
// 2. Match the two image descriptors
std::vector<std::vector<cv::DMatch> > matches12, matches21;
// 2a. From image 1 to image 2
matcher_->knnMatch(descriptors_frame, descriptors_model, matches12, 2); // return 2 nearest neighbours
// 2a. From image 1 to image 2
matcher_->knnMatch(descriptors_frame, descriptors_model, matches12, 2); // return 2 nearest neighbours
// 2b. From image 2 to image 1
matcher_->knnMatch(descriptors_model, descriptors_frame, matches21, 2); // return 2 nearest neighbours
// 2b. From image 2 to image 1
matcher_->knnMatch(descriptors_model, descriptors_frame, matches21, 2); // return 2 nearest neighbours
// 3. Remove matches for which NN ratio is > than threshold
// clean image 1 -> image 2 matches
ratioTest(matches12);
// clean image 2 -> image 1 matches
ratioTest(matches21);
// 3. Remove matches for which NN ratio is > than threshold
// clean image 1 -> image 2 matches
ratioTest(matches12);
// clean image 2 -> image 1 matches
ratioTest(matches21);
// 4. Remove non-symmetrical matches
symmetryTest(matches12, matches21, good_matches);
// 4. Remove non-symmetrical matches
symmetryTest(matches12, matches21, good_matches);
if (!training_img_.empty() && !keypoints_model.empty())
{
cv::drawMatches(frame, keypoints_frame, training_img_, keypoints_model, good_matches, img_matching_);
}
}
void RobustMatcher::fastRobustMatch( const cv::Mat& frame, std::vector<cv::DMatch>& good_matches,
std::vector<cv::KeyPoint>& keypoints_frame,
const cv::Mat& descriptors_model )
std::vector<cv::KeyPoint>& keypoints_frame,
const cv::Mat& descriptors_model,
const std::vector<cv::KeyPoint>& keypoints_model)
{
good_matches.clear();
good_matches.clear();
// 1a. Detection of the ORB features
this->computeKeyPoints(frame, keypoints_frame);
// 1a. Detection of the ORB features
this->computeKeyPoints(frame, keypoints_frame);
// 1b. Extraction of the ORB descriptors
cv::Mat descriptors_frame;
this->computeDescriptors(frame, keypoints_frame, descriptors_frame);
// 1b. Extraction of the ORB descriptors
cv::Mat descriptors_frame;
this->computeDescriptors(frame, keypoints_frame, descriptors_frame);
// 2. Match the two image descriptors
std::vector<std::vector<cv::DMatch> > matches;
matcher_->knnMatch(descriptors_frame, descriptors_model, matches, 2);
// 2. Match the two image descriptors
std::vector<std::vector<cv::DMatch> > matches;
matcher_->knnMatch(descriptors_frame, descriptors_model, matches, 2);
// 3. Remove matches for which NN ratio is > than threshold
ratioTest(matches);
// 3. Remove matches for which NN ratio is > than threshold
ratioTest(matches);
// 4. Fill good matches container
for ( std::vector<std::vector<cv::DMatch> >::iterator
matchIterator= matches.begin(); matchIterator!= matches.end(); ++matchIterator)
{
if (!matchIterator->empty()) good_matches.push_back((*matchIterator)[0]);
}
// 4. Fill good matches container
for ( std::vector<std::vector<cv::DMatch> >::iterator
matchIterator= matches.begin(); matchIterator!= matches.end(); ++matchIterator)
{
if (!matchIterator->empty()) good_matches.push_back((*matchIterator)[0]);
}
if (!training_img_.empty() && !keypoints_model.empty())
{
cv::drawMatches(frame, keypoints_frame, training_img_, keypoints_model, good_matches, img_matching_);
}
}
......@@ -16,66 +16,77 @@
class RobustMatcher {
public:
RobustMatcher() : ratio_(0.8f)
{
// ORB is the default feature
detector_ = cv::ORB::create();
extractor_ = cv::ORB::create();
RobustMatcher() : detector_(), extractor_(), matcher_(),
ratio_(0.8f), training_img_(), img_matching_()
{
// ORB is the default feature
detector_ = cv::ORB::create();
extractor_ = cv::ORB::create();
// BruteFroce matcher with Norm Hamming is the default matcher
matcher_ = cv::makePtr<cv::BFMatcher>((int)cv::NORM_HAMMING, false);
// BruteFroce matcher with Norm Hamming is the default matcher
matcher_ = cv::makePtr<cv::BFMatcher>((int)cv::NORM_HAMMING, false);
}
virtual ~RobustMatcher();
}
virtual ~RobustMatcher();
// Set the feature detector
void setFeatureDetector(const cv::Ptr<cv::FeatureDetector>& detect) { detector_ = detect; }
// Set the feature detector
void setFeatureDetector(const cv::Ptr<cv::FeatureDetector>& detect) { detector_ = detect; }
// Set the descriptor extractor
void setDescriptorExtractor(const cv::Ptr<cv::DescriptorExtractor>& desc) { extractor_ = desc; }
// Set the descriptor extractor
void setDescriptorExtractor(const cv::Ptr<cv::DescriptorExtractor>& desc) { extractor_ = desc; }
// Set the matcher
void setDescriptorMatcher(const cv::Ptr<cv::DescriptorMatcher>& match) { matcher_ = match; }
// Set the matcher
void setDescriptorMatcher(const cv::Ptr<cv::DescriptorMatcher>& match) { matcher_ = match; }
// Compute the keypoints of an image
void computeKeyPoints( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints);
// Compute the keypoints of an image
void computeKeyPoints( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints);
// Compute the descriptors of an image given its keypoints
void computeDescriptors( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors);
// Compute the descriptors of an image given its keypoints
void computeDescriptors( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors);
// Set ratio parameter for the ratio test
void setRatio( float rat) { ratio_ = rat; }
cv::Mat getImageMatching() const { return img_matching_; }
// Clear matches for which NN ratio is > than threshold
// return the number of removed points
// (corresponding entries being cleared,
// i.e. size will be 0)
int ratioTest(std::vector<std::vector<cv::DMatch> > &matches);
// Set ratio parameter for the ratio test
void setRatio( float rat) { ratio_ = rat; }
// Insert symmetrical matches in symMatches vector
void symmetryTest( const std::vector<std::vector<cv::DMatch> >& matches1,
const std::vector<std::vector<cv::DMatch> >& matches2,
std::vector<cv::DMatch>& symMatches );
void setTrainingImage(const cv::Mat &img) { training_img_ = img; }
// Match feature points using ratio and symmetry test
void robustMatch( const cv::Mat& frame, std::vector<cv::DMatch>& good_matches,
// Clear matches for which NN ratio is > than threshold
// return the number of removed points
// (corresponding entries being cleared,
// i.e. size will be 0)
int ratioTest(std::vector<std::vector<cv::DMatch> > &matches);
// Insert symmetrical matches in symMatches vector
void symmetryTest( const std::vector<std::vector<cv::DMatch> >& matches1,
const std::vector<std::vector<cv::DMatch> >& matches2,
std::vector<cv::DMatch>& symMatches );
// Match feature points using ratio and symmetry test
void robustMatch( const cv::Mat& frame, std::vector<cv::DMatch>& good_matches,
std::vector<cv::KeyPoint>& keypoints_frame,
const cv::Mat& descriptors_model );
const cv::Mat& descriptors_model,
const std::vector<cv::KeyPoint>& keypoints_model);
// Match feature points using ratio test
void fastRobustMatch( const cv::Mat& frame, std::vector<cv::DMatch>& good_matches,
std::vector<cv::KeyPoint>& keypoints_frame,
const cv::Mat& descriptors_model );
// Match feature points using ratio test
void fastRobustMatch( const cv::Mat& frame, std::vector<cv::DMatch>& good_matches,
std::vector<cv::KeyPoint>& keypoints_frame,
const cv::Mat& descriptors_model,
const std::vector<cv::KeyPoint>& keypoints_model);
private:
// pointer to the feature point detector object
cv::Ptr<cv::FeatureDetector> detector_;
// pointer to the feature descriptor extractor object
cv::Ptr<cv::DescriptorExtractor> extractor_;
// pointer to the matcher object
cv::Ptr<cv::DescriptorMatcher> matcher_;
// max ratio between 1st and 2nd NN
float ratio_;
// pointer to the feature point detector object
cv::Ptr<cv::FeatureDetector> detector_;
// pointer to the feature descriptor extractor object
cv::Ptr<cv::DescriptorExtractor> extractor_;
// pointer to the matcher object
cv::Ptr<cv::DescriptorMatcher> matcher_;
// max ratio between 1st and 2nd NN
float ratio_;
// training image
cv::Mat training_img_;
// matching image
cv::Mat img_matching_;
};
#endif /* ROBUSTMATCHER_H_ */
......@@ -10,6 +10,7 @@
#include <iostream>
#include <opencv2/features2d.hpp>
#include "PnPProblem.h"
// Draw a text with the question point
......@@ -66,4 +67,8 @@ std::string FloatToString ( float Number );
// Converts a given integer to a string
std::string IntToString ( int Number );
void createFeatures(const std::string &featureName, int numKeypoints, cv::Ptr<cv::Feature2D> &detector, cv::Ptr<cv::Feature2D> &descriptor);
cv::Ptr<cv::DescriptorMatcher> createMatcher(const std::string &featureName, bool useFLANN);
#endif /* UTILS_H_ */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment