Commit 3a4bc0d4 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #13055 from vpisarev:remove_old_haar

parents 687fa6a8 b8175f89
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_OBJDETECT_C_H
#define OPENCV_OBJDETECT_C_H
#include "opencv2/core/core_c.h"
#ifdef __cplusplus
#include <deque>
#include <vector>
extern "C" {
#endif
/** @addtogroup objdetect_c
@{
*/
/****************************************************************************************\
* Haar-like Object Detection functions *
\****************************************************************************************/
#define CV_HAAR_MAGIC_VAL 0x42500000
#define CV_TYPE_NAME_HAAR "opencv-haar-classifier"
#define CV_IS_HAAR_CLASSIFIER( haar ) \
((haar) != NULL && \
(((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)
#define CV_HAAR_FEATURE_MAX 3
#define CV_HAAR_STAGE_MAX 1000
typedef struct CvHaarFeature
{
int tilted;
struct
{
CvRect r;
float weight;
} rect[CV_HAAR_FEATURE_MAX];
} CvHaarFeature;
typedef struct CvHaarClassifier
{
int count;
CvHaarFeature* haar_feature;
float* threshold;
int* left;
int* right;
float* alpha;
} CvHaarClassifier;
typedef struct CvHaarStageClassifier
{
int count;
float threshold;
CvHaarClassifier* classifier;
int next;
int child;
int parent;
} CvHaarStageClassifier;
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
typedef struct CvHaarClassifierCascade
{
int flags;
int count;
CvSize orig_window_size;
CvSize real_window_size;
double scale;
CvHaarStageClassifier* stage_classifier;
CvHidHaarClassifierCascade* hid_cascade;
} CvHaarClassifierCascade;
typedef struct CvAvgComp
{
CvRect rect;
int neighbors;
} CvAvgComp;
/* Loads haar classifier cascade from a directory.
It is obsolete: convert your cascade to xml and use cvLoad instead */
CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade(
const char* directory, CvSize orig_window_size);
CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );
#define CV_HAAR_DO_CANNY_PRUNING 1
#define CV_HAAR_SCALE_IMAGE 2
#define CV_HAAR_FIND_BIGGEST_OBJECT 4
#define CV_HAAR_DO_ROUGH_SEARCH 8
CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image,
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
double scale_factor CV_DEFAULT(1.1),
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)));
/* sets images for haar classifier cascade */
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
const CvArr* sum, const CvArr* sqsum,
const CvArr* tilted_sum, double scale );
/* runs the cascade on the specified window */
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
CvPoint pt, int start_stage CV_DEFAULT(0));
/** @} objdetect_c */
#ifdef __cplusplus
}
CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image,
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
std::vector<int>& rejectLevels, std::vector<double>& levelWeightds,
double scale_factor = 1.1,
int min_neighbors = 3, int flags = 0,
CvSize min_size = cvSize(0, 0), CvSize max_size = cvSize(0, 0),
bool outputRejectLevels = false );
#endif
#endif /* OPENCV_OBJDETECT_C_H */
...@@ -44,7 +44,6 @@ ...@@ -44,7 +44,6 @@
#include <iostream> #include <iostream>
#include "cascadedetect.hpp" #include "cascadedetect.hpp"
#include "opencv2/objdetect/objdetect_c.h"
#include "opencl_kernels_objdetect.hpp" #include "opencl_kernels_objdetect.hpp"
namespace cv namespace cv
...@@ -1071,9 +1070,6 @@ public: ...@@ -1071,9 +1070,6 @@ public:
}; };
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
struct getNeighbors { int operator ()(const CvAvgComp& e) const { return e.neighbors; } };
#ifdef HAVE_OPENCL #ifdef HAVE_OPENCL
bool CascadeClassifierImpl::ocl_detectMultiScaleNoGrouping( const std::vector<float>& scales, bool CascadeClassifierImpl::ocl_detectMultiScaleNoGrouping( const std::vector<float>& scales,
std::vector<Rect>& candidates ) std::vector<Rect>& candidates )
...@@ -1227,24 +1223,6 @@ void* CascadeClassifierImpl::getOldCascade() ...@@ -1227,24 +1223,6 @@ void* CascadeClassifierImpl::getOldCascade()
return oldCascade; return oldCascade;
} }
static void detectMultiScaleOldFormat( const Mat& image, Ptr<CvHaarClassifierCascade> oldCascade,
std::vector<Rect>& objects,
std::vector<int>& rejectLevels,
std::vector<double>& levelWeights,
std::vector<CvAvgComp>& vecAvgComp,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels = false )
{
MemStorage storage(cvCreateMemStorage(0));
CvMat _image = cvMat(image);
CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor,
minNeighbors, flags, cvSize(minObjectSize), cvSize(maxObjectSize), outputRejectLevels );
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
objects.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect());
}
void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::vector<Rect>& candidates, void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights, std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
double scaleFactor, Size minObjectSize, Size maxObjectSize, double scaleFactor, Size minObjectSize, Size maxObjectSize,
...@@ -1374,7 +1352,7 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec ...@@ -1374,7 +1352,7 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
std::vector<int>& rejectLevels, std::vector<int>& rejectLevels,
std::vector<double>& levelWeights, std::vector<double>& levelWeights,
double scaleFactor, int minNeighbors, double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize, int /*flags*/, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels ) bool outputRejectLevels )
{ {
CV_INSTRUMENT_REGION(); CV_INSTRUMENT_REGION();
...@@ -1384,15 +1362,6 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec ...@@ -1384,15 +1362,6 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
if( empty() ) if( empty() )
return; return;
if( isOldFormatCascade() )
{
Mat image = _image.getMat();
std::vector<CvAvgComp> fakeVecAvgComp;
detectMultiScaleOldFormat( image, oldCascade, objects, rejectLevels, levelWeights, fakeVecAvgComp, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels );
}
else
{
detectMultiScaleNoGrouping( _image, objects, rejectLevels, levelWeights, scaleFactor, minObjectSize, maxObjectSize, detectMultiScaleNoGrouping( _image, objects, rejectLevels, levelWeights, scaleFactor, minObjectSize, maxObjectSize,
outputRejectLevels ); outputRejectLevels );
const double GROUP_EPS = 0.2; const double GROUP_EPS = 0.2;
...@@ -1404,7 +1373,6 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec ...@@ -1404,7 +1373,6 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
{ {
groupRectangles( objects, minNeighbors, GROUP_EPS ); groupRectangles( objects, minNeighbors, GROUP_EPS );
} }
}
} }
void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rect>& objects, void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rect>& objects,
...@@ -1421,7 +1389,7 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec ...@@ -1421,7 +1389,7 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rect>& objects, void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rect>& objects,
std::vector<int>& numDetections, double scaleFactor, std::vector<int>& numDetections, double scaleFactor,
int minNeighbors, int flags, Size minObjectSize, int minNeighbors, int /*flags*/, Size minObjectSize,
Size maxObjectSize ) Size maxObjectSize )
{ {
CV_INSTRUMENT_REGION(); CV_INSTRUMENT_REGION();
...@@ -1434,20 +1402,10 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec ...@@ -1434,20 +1402,10 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
std::vector<int> fakeLevels; std::vector<int> fakeLevels;
std::vector<double> fakeWeights; std::vector<double> fakeWeights;
if( isOldFormatCascade() )
{
std::vector<CvAvgComp> vecAvgComp;
detectMultiScaleOldFormat( image, oldCascade, objects, fakeLevels, fakeWeights, vecAvgComp, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize );
numDetections.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), numDetections.begin(), getNeighbors());
}
else
{
detectMultiScaleNoGrouping( image, objects, fakeLevels, fakeWeights, scaleFactor, minObjectSize, maxObjectSize ); detectMultiScaleNoGrouping( image, objects, fakeLevels, fakeWeights, scaleFactor, minObjectSize, maxObjectSize );
const double GROUP_EPS = 0.2; const double GROUP_EPS = 0.2;
groupRectangles( objects, numDetections, minNeighbors, GROUP_EPS ); groupRectangles( objects, numDetections, minNeighbors, GROUP_EPS );
}
} }
...@@ -1613,9 +1571,6 @@ bool CascadeClassifierImpl::read_(const FileNode& root) ...@@ -1613,9 +1571,6 @@ bool CascadeClassifierImpl::read_(const FileNode& root)
return featureEvaluator->read(fn, data.origWinSize); return featureEvaluator->read(fn, data.origWinSize);
} }
void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const { cvReleaseHaarClassifierCascade(&obj); }
BaseCascadeClassifier::~BaseCascadeClassifier() BaseCascadeClassifier::~BaseCascadeClassifier()
{ {
} }
......
This diff is collapsed.
This diff is collapsed.
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* Haar features calculation */
#ifndef OPENCV_OBJDETECT_HAAR_HPP
#define OPENCV_OBJDETECT_HAAR_HPP
#define CV_HAAR_FEATURE_MAX_LOCAL 3
typedef int sumtype;
typedef double sqsumtype;
typedef struct CvHidHaarFeature
{
struct
{
sumtype *p0, *p1, *p2, *p3;
float weight;
}
rect[CV_HAAR_FEATURE_MAX_LOCAL];
} CvHidHaarFeature;
typedef struct CvHidHaarTreeNode
{
CvHidHaarFeature feature;
float threshold;
int left;
int right;
} CvHidHaarTreeNode;
typedef struct CvHidHaarClassifier
{
int count;
//CvHaarFeature* orig_feature;
CvHidHaarTreeNode* node;
float* alpha;
} CvHidHaarClassifier;
#define calc_sumf(rect,offset) \
static_cast<float>((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
namespace cv_haar_avx
{
#if 0 /*CV_TRY_AVX*/
#define CV_HAAR_USE_AVX 1
#else
#define CV_HAAR_USE_AVX 0
#endif
#if CV_HAAR_USE_AVX
// AVX version icvEvalHidHaarClassifier. Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!!
double icvEvalHidHaarClassifierAVX(CvHidHaarClassifier* classifier, double variance_norm_factor, size_t p_offset);
double icvEvalHidHaarStumpClassifierAVX(CvHidHaarClassifier* classifier, double variance_norm_factor, size_t p_offset);
double icvEvalHidHaarStumpClassifierTwoRectAVX(CvHidHaarClassifier* classifier, double variance_norm_factor, size_t p_offset);
#endif
}
#endif
/* End of file. */
...@@ -404,7 +404,6 @@ protected: ...@@ -404,7 +404,6 @@ protected:
virtual void readDetector( const FileNode& fn ); virtual void readDetector( const FileNode& fn );
virtual void writeDetector( FileStorage& fs, int di ); virtual void writeDetector( FileStorage& fs, int di );
virtual int detectMultiScale( int di, const Mat& img, vector<Rect>& objects ); virtual int detectMultiScale( int di, const Mat& img, vector<Rect>& objects );
virtual int detectMultiScale_C( const string& filename, int di, const Mat& img, vector<Rect>& objects );
vector<int> flags; vector<int> flags;
}; };
...@@ -434,36 +433,6 @@ void CV_CascadeDetectorTest::writeDetector( FileStorage& fs, int di ) ...@@ -434,36 +433,6 @@ void CV_CascadeDetectorTest::writeDetector( FileStorage& fs, int di )
fs << C_SCALE_CASCADE << sc; fs << C_SCALE_CASCADE << sc;
} }
int CV_CascadeDetectorTest::detectMultiScale_C( const string& filename,
int di, const Mat& img,
vector<Rect>& objects )
{
Ptr<CvHaarClassifierCascade> c_cascade(cvLoadHaarClassifierCascade(filename.c_str(), cvSize(0,0)));
Ptr<CvMemStorage> storage(cvCreateMemStorage());
if( !c_cascade )
{
ts->printf( cvtest::TS::LOG, "cascade %s can not be opened");
return cvtest::TS::FAIL_INVALID_TEST_DATA;
}
Mat grayImg;
cvtColor( img, grayImg, COLOR_BGR2GRAY );
equalizeHist( grayImg, grayImg );
CvMat c_gray = cvMat(grayImg);
CvSeq* rs = cvHaarDetectObjects(&c_gray, c_cascade, storage, 1.1, 3, flags[di] );
objects.clear();
for( int i = 0; i < rs->total; i++ )
{
Rect r = *(Rect*)cvGetSeqElem(rs, i);
objects.push_back(r);
}
return cvtest::TS::OK;
}
int CV_CascadeDetectorTest::detectMultiScale( int di, const Mat& img, int CV_CascadeDetectorTest::detectMultiScale( int di, const Mat& img,
vector<Rect>& objects) vector<Rect>& objects)
{ {
...@@ -471,11 +440,6 @@ int CV_CascadeDetectorTest::detectMultiScale( int di, const Mat& img, ...@@ -471,11 +440,6 @@ int CV_CascadeDetectorTest::detectMultiScale( int di, const Mat& img,
filename = dataPath + detectorFilenames[di]; filename = dataPath + detectorFilenames[di];
const string pattern = "haarcascade_frontalface_default.xml"; const string pattern = "haarcascade_frontalface_default.xml";
if( filename.size() >= pattern.size() &&
strcmp(filename.c_str() + (filename.size() - pattern.size()),
pattern.c_str()) == 0 )
return detectMultiScale_C(filename, di, img, objects);
CascadeClassifier cascade( filename ); CascadeClassifier cascade( filename );
if( cascade.empty() ) if( cascade.empty() )
{ {
......
...@@ -6,6 +6,5 @@ ...@@ -6,6 +6,5 @@
#include "opencv2/ts.hpp" #include "opencv2/ts.hpp"
#include "opencv2/objdetect.hpp" #include "opencv2/objdetect.hpp"
#include "opencv2/objdetect/objdetect_c.h"
#endif #endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment