Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
3997514b
Commit
3997514b
authored
Dec 13, 2010
by
Alexey Spizhevoy
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added tests for gpu::sum, it supports all data types, but single channel images only
parent
442cd75c
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
131 additions
and
107 deletions
+131
-107
gpu.hpp
modules/gpu/include/opencv2/gpu/gpu.hpp
+6
-3
arithm.cpp
modules/gpu/src/arithm.cpp
+36
-21
mathfunc.cu
modules/gpu/src/cuda/mathfunc.cu
+51
-40
arithm.cpp
tests/gpu/src/arithm.cpp
+38
-40
gputest_main.cpp
tests/gpu/src/gputest_main.cpp
+0
-3
No files found.
modules/gpu/include/opencv2/gpu/gpu.hpp
View file @
3997514b
...
...
@@ -421,9 +421,12 @@ namespace cv
CV_EXPORTS
void
flip
(
const
GpuMat
&
a
,
GpuMat
&
b
,
int
flipCode
);
//! computes sum of array elements
//! supports CV_8UC1, CV_8UC4 types
//! disabled until fix crash
CV_EXPORTS
Scalar
sum
(
const
GpuMat
&
m
);
//! supports only single channel images
CV_EXPORTS
Scalar
sum
(
const
GpuMat
&
src
);
//! computes sum of array elements
//! supports only single channel images
CV_EXPORTS
Scalar
sum
(
const
GpuMat
&
src
,
GpuMat
&
buf
);
//! finds global minimum and maximum array elements and returns their values
CV_EXPORTS
void
minMax
(
const
GpuMat
&
src
,
double
*
minVal
,
double
*
maxVal
=
0
,
const
GpuMat
&
mask
=
GpuMat
());
...
...
modules/gpu/src/arithm.cpp
View file @
3997514b
...
...
@@ -65,6 +65,7 @@ double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; }
double
cv
::
gpu
::
norm
(
const
GpuMat
&
,
const
GpuMat
&
,
int
)
{
throw_nogpu
();
return
0.0
;
}
void
cv
::
gpu
::
flip
(
const
GpuMat
&
,
GpuMat
&
,
int
)
{
throw_nogpu
();
}
Scalar
cv
::
gpu
::
sum
(
const
GpuMat
&
)
{
throw_nogpu
();
return
Scalar
();
}
Scalar
cv
::
gpu
::
sum
(
const
GpuMat
&
,
GpuMat
&
)
{
throw_nogpu
();
return
Scalar
();
}
void
cv
::
gpu
::
minMax
(
const
GpuMat
&
,
double
*
,
double
*
,
const
GpuMat
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
minMax
(
const
GpuMat
&
,
double
*
,
double
*
,
const
GpuMat
&
,
GpuMat
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
minMaxLoc
(
const
GpuMat
&
,
double
*
,
double
*
,
Point
*
,
Point
*
,
const
GpuMat
&
)
{
throw_nogpu
();
}
...
...
@@ -480,36 +481,50 @@ void cv::gpu::flip(const GpuMat& src, GpuMat& dst, int flipCode)
////////////////////////////////////////////////////////////////////////
// sum
Scalar
cv
::
gpu
::
sum
(
const
GpuMat
&
src
)
namespace
cv
{
namespace
gpu
{
namespace
mathfunc
{
CV_Assert
(
!
"disabled until fix crash"
);
template
<
typename
T
>
void
sum_caller
(
const
DevMem2D
src
,
PtrStep
buf
,
double
*
sum
);
CV_Assert
(
src
.
type
()
==
CV_8UC1
||
src
.
type
()
==
CV_8UC4
);
template
<
typename
T
>
void
sum_multipass_caller
(
const
DevMem2D
src
,
PtrStep
buf
,
double
*
sum
);
NppiSize
sz
;
sz
.
width
=
src
.
cols
;
sz
.
height
=
src
.
rows
;
namespace
sum
{
void
get_buf_size_required
(
int
cols
,
int
rows
,
int
&
bufcols
,
int
&
bufrows
);
}
}}}
Scalar
res
;
Scalar
cv
::
gpu
::
sum
(
const
GpuMat
&
src
)
{
GpuMat
buf
;
return
sum
(
src
,
buf
);
}
int
bufsz
;
Scalar
cv
::
gpu
::
sum
(
const
GpuMat
&
src
,
GpuMat
&
buf
)
{
using
namespace
mathfunc
;
CV_Assert
(
src
.
channels
()
==
1
);
if
(
src
.
type
()
==
CV_8UC1
)
{
nppiReductionGetBufferHostSize_8u_C1R
(
sz
,
&
bufsz
);
GpuMat
buf
(
1
,
bufsz
,
CV_32S
);
typedef
void
(
*
Caller
)(
const
DevMem2D
,
PtrStep
,
double
*
);
static
const
Caller
callers
[
2
][
7
]
=
{
{
sum_multipass_caller
<
unsigned
char
>
,
sum_multipass_caller
<
char
>
,
sum_multipass_caller
<
unsigned
short
>
,
sum_multipass_caller
<
short
>
,
sum_multipass_caller
<
int
>
,
sum_multipass_caller
<
float
>
,
0
},
{
sum_caller
<
unsigned
char
>
,
sum_caller
<
char
>
,
sum_caller
<
unsigned
short
>
,
sum_caller
<
short
>
,
sum_caller
<
int
>
,
sum_caller
<
float
>
,
sum_caller
<
double
>
}
};
nppSafeCall
(
nppiSum_8u_C1R
(
src
.
ptr
<
Npp8u
>
(),
src
.
step
,
sz
,
buf
.
ptr
<
Npp32s
>
(),
res
.
val
)
);
}
else
{
nppiReductionGetBufferHostSize_8u_C4R
(
sz
,
&
bufsz
);
GpuMat
buf
(
1
,
bufsz
,
CV_32S
);
Size
bufSize
;
sum
::
get_buf_size_required
(
src
.
cols
,
src
.
rows
,
bufSize
.
width
,
bufSize
.
height
);
buf
.
create
(
bufSize
,
CV_8U
);
nppSafeCall
(
nppiSum_8u_C4R
(
src
.
ptr
<
Npp8u
>
(),
src
.
step
,
sz
,
buf
.
ptr
<
Npp32s
>
(),
res
.
val
)
)
;
}
Caller
caller
=
callers
[
hasAtomicsSupport
(
getDevice
())][
src
.
type
()]
;
if
(
!
caller
)
CV_Error
(
CV_StsBadArg
,
"sum: unsupported type"
);
return
res
;
double
result
;
caller
(
src
,
buf
,
&
result
);
return
result
;
}
////////////////////////////////////////////////////////////////////////
...
...
modules/gpu/src/cuda/mathfunc.cu
View file @
3997514b
...
...
@@ -1419,6 +1419,15 @@ namespace cv { namespace gpu { namespace mathfunc
namespace sum
{
template <typename T> struct SumType {};
template <> struct SumType<unsigned char> { typedef unsigned int R; };
template <> struct SumType<char> { typedef int R; };
template <> struct SumType<unsigned short> { typedef unsigned int R; };
template <> struct SumType<short> { typedef int R; };
template <> struct SumType<int> { typedef int R; };
template <> struct SumType<float> { typedef float R; };
template <> struct SumType<double> { typedef double R; };
__constant__ int ctwidth;
__constant__ int ctheight;
__device__ unsigned int blocks_finished = 0;
...
...
@@ -1436,12 +1445,11 @@ namespace cv { namespace gpu { namespace mathfunc
}
template <typename T>
void get_buf_size_required(int cols, int rows, int& bufcols, int& bufrows)
{
dim3 threads, grid;
estimate_thread_cfg(cols, rows, threads, grid);
bufcols = grid.x * grid.y * sizeof(
T
);
bufcols = grid.x * grid.y * sizeof(
double
);
bufrows = 1;
}
...
...
@@ -1454,17 +1462,17 @@ namespace cv { namespace gpu { namespace mathfunc
cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(theight)));
}
template <typename T, int nthreads>
__global__ void sum_kernel(const DevMem2D_<T> src,
T
* result)
template <typename T,
typename R,
int nthreads>
__global__ void sum_kernel(const DevMem2D_<T> src,
R
* result)
{
__shared__
T
smem[nthreads];
__shared__
R
smem[nthreads];
const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
const int bid = blockIdx.y * gridDim.x + blockIdx.x;
T
sum = 0;
R
sum = 0;
for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y)
{
const T* ptr = src.ptr(y0 + y * blockDim.y);
...
...
@@ -1475,7 +1483,7 @@ namespace cv { namespace gpu { namespace mathfunc
smem[tid] = sum;
__syncthreads();
sum_in_smem<nthreads,
T
>(smem, tid);
sum_in_smem<nthreads,
R
>(smem, tid);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
__shared__ bool is_last;
...
...
@@ -1496,7 +1504,7 @@ namespace cv { namespace gpu { namespace mathfunc
smem[tid] = tid < gridDim.x * gridDim.y ? result[tid] : 0;
__syncthreads();
sum_in_smem<nthreads,
T
>(smem, tid);
sum_in_smem<nthreads,
R
>(smem, tid);
if (tid == 0)
{
...
...
@@ -1510,14 +1518,16 @@ namespace cv { namespace gpu { namespace mathfunc
}
template <typename T, int nthreads>
__global__ void sum_pass2_kernel(
T
* result, int size)
template <typename T,
typename R,
int nthreads>
__global__ void sum_pass2_kernel(
R
* result, int size)
{
__shared__
T
smem[nthreads];
__shared__
R
smem[nthreads];
int tid = threadIdx.y * blockDim.x + threadIdx.x;
smem[tid] = tid < size ? result[tid] : 0;
sum_in_smem<nthreads, T>(smem, tid);
__syncthreads();
sum_in_smem<nthreads, R>(smem, tid);
if (tid == 0)
result[0] = smem[0];
...
...
@@ -1527,60 +1537,61 @@ namespace cv { namespace gpu { namespace mathfunc
template <typename T>
T sum_multipass_caller(const DevMem2D_<T> src, PtrStep buf
)
void sum_multipass_caller(const DevMem2D src, PtrStep buf, double* sum
)
{
using namespace sum;
typedef typename SumType<T>::R R;
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
T* buf_ = (T
*)buf.ptr(0);
R* buf_ = (R
*)buf.ptr(0);
sum_kernel<T,
threads_x * threads_y><<<grid, threads>>>(
src, buf_);
sum_pass2_kernel<T, threads_x * threads_y><<<1, threads_x * threads_y>>>(
sum_kernel<T,
R, threads_x * threads_y><<<grid, threads>>>((const DevMem2D_<T>)
src, buf_);
sum_pass2_kernel<T,
R,
threads_x * threads_y><<<1, threads_x * threads_y>>>(
buf_, grid.x * grid.y);
cudaSafeCall(cudaThreadSynchronize());
T sum;
cudaSafeCall(cudaMemcpy(&sum, buf_, sizeof(T), cudaMemcpyDeviceToHost));
return sum;
R result = 0;
cudaSafeCall(cudaMemcpy(&result, buf_, result, cudaMemcpyDeviceToHost));
sum[0] = result;
}
template
unsigned char sum_multipass_caller<unsigned char>(const DevMem2D_<unsigned char>, PtrStep
);
template
char sum_multipass_caller<char>(const DevMem2D_<char>, PtrStep
);
template
unsigned short sum_multipass_caller<unsigned short>(const DevMem2D_<unsigned short>, PtrStep
);
template
short sum_multipass_caller<short>(const DevMem2D_<short>, PtrStep
);
template
int sum_multipass_caller<int>(const DevMem2D_<int>, PtrStep
);
template
float sum_multipass_caller<float>(const DevMem2D_<float>, PtrStep
);
template
void sum_multipass_caller<unsigned char>(const DevMem2D, PtrStep, double*
);
template
void sum_multipass_caller<char>(const DevMem2D, PtrStep, double*
);
template
void sum_multipass_caller<unsigned short>(const DevMem2D, PtrStep, double*
);
template
void sum_multipass_caller<short>(const DevMem2D, PtrStep, double*
);
template
void sum_multipass_caller<int>(const DevMem2D, PtrStep, double*
);
template
void sum_multipass_caller<float>(const DevMem2D, PtrStep, double*
);
template <typename T>
T sum_caller(const DevMem2D_<T> src, PtrStep buf
)
void sum_caller(const DevMem2D src, PtrStep buf, double* sum
)
{
using namespace sum;
typedef typename SumType<T>::R R;
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
T* buf_ = (T
*)buf.ptr(0);
R* buf_ = (R
*)buf.ptr(0);
sum_kernel<T,
threads_x * threads_y><<<grid, threads>>>(
src, buf_);
sum_kernel<T,
R, threads_x * threads_y><<<grid, threads>>>((const DevMem2D_<T>)
src, buf_);
cudaSafeCall(cudaThreadSynchronize());
T sum;
cudaSafeCall(cudaMemcpy(&sum, buf_, sizeof(T), cudaMemcpyDeviceToHost));
return sum;
R result = 0;
cudaSafeCall(cudaMemcpy(&result, buf_, sizeof(result), cudaMemcpyDeviceToHost));
sum[0] = result;
}
template
unsigned char sum_caller<unsigned char>(const DevMem2D_<unsigned char>, PtrStep
);
template
char sum_caller<char>(const DevMem2D_<char>, PtrStep
);
template
unsigned short sum_caller<unsigned short>(const DevMem2D_<unsigned short>, PtrStep
);
template
short sum_caller<short>(const DevMem2D_<short>, PtrStep
);
template
int sum_caller<int>(const DevMem2D_<int>, PtrStep
);
template
float sum_caller<float>(const DevMem2D_<float>, PtrStep
);
template
double sum_caller<double>(const DevMem2D_<double>, PtrStep
);
template
void sum_caller<unsigned char>(const DevMem2D, PtrStep, double*
);
template
void sum_caller<char>(const DevMem2D, PtrStep, double*
);
template
void sum_caller<unsigned short>(const DevMem2D, PtrStep, double*
);
template
void sum_caller<short>(const DevMem2D, PtrStep, double*
);
template
void sum_caller<int>(const DevMem2D, PtrStep, double*
);
template
void sum_caller<float>(const DevMem2D, PtrStep, double*
);
template
void sum_caller<double>(const DevMem2D, PtrStep, double*
);
}}}
tests/gpu/src/arithm.cpp
View file @
3997514b
...
...
@@ -458,29 +458,6 @@ struct CV_GpuNppImageFlipTest : public CV_GpuArithmTest
}
};
////////////////////////////////////////////////////////////////////////////////
// sum
struct
CV_GpuNppImageSumTest
:
public
CV_GpuArithmTest
{
CV_GpuNppImageSumTest
()
:
CV_GpuArithmTest
(
"GPU-NppImageSum"
,
"sum"
)
{}
int
test
(
const
Mat
&
mat1
,
const
Mat
&
)
{
if
(
mat1
.
type
()
!=
CV_8UC1
&&
mat1
.
type
()
!=
CV_8UC4
)
{
ts
->
printf
(
CvTS
::
LOG
,
"
\t
Unsupported type
\t
"
);
return
CvTS
::
OK
;
}
Scalar
cpures
=
cv
::
sum
(
mat1
);
GpuMat
gpu1
(
mat1
);
Scalar
gpures
=
cv
::
gpu
::
sum
(
gpu1
);
return
CheckNorm
(
cpures
,
gpures
);
}
};
////////////////////////////////////////////////////////////////////////////////
// LUT
struct
CV_GpuNppImageLUTTest
:
public
CV_GpuArithmTest
...
...
@@ -949,27 +926,49 @@ struct CV_GpuCountNonZeroTest: CvTest
}
};
////////////////////////////////////////////////////////////////////////////////
// min/max
struct
CV_GpuImageMinMaxTest
:
public
CV_GpuArithmTest
//////////////////////////////////////////////////////////////////////////////
// sum
struct
CV_GpuSumTest
:
CvTest
{
CV_Gpu
ImageMinMaxTest
()
:
CV_GpuArithmTest
(
"GPU-ImageMinMax"
,
"min/max"
)
{}
CV_Gpu
SumTest
()
:
CvTest
(
"GPU-SumTest"
,
"sum"
)
{}
int
test
(
const
Mat
&
mat1
,
const
Mat
&
mat2
)
void
run
(
int
)
{
cv
::
Mat
cpuMinRes
,
cpuMaxRes
;
cv
::
min
(
mat1
,
mat2
,
cpuMinRes
);
cv
::
max
(
mat1
,
mat2
,
cpuMaxRes
);
try
{
Mat
src
;
Scalar
a
,
b
;
double
max_err
=
1e-6
;
GpuMat
gpu1
(
mat1
);
GpuMat
gpu2
(
mat2
);
GpuMat
gpuMinRes
,
gpuMaxRes
;
cv
::
gpu
::
min
(
gpu1
,
gpu2
,
gpuMinRes
);
cv
::
gpu
::
max
(
gpu1
,
gpu2
,
gpuMaxRes
);
int
typemax
=
hasNativeDoubleSupport
(
getDevice
())
?
CV_64F
:
CV_32F
;
for
(
int
type
=
CV_8U
;
type
<=
typemax
;
++
type
)
{
gen
(
1
+
rand
()
%
1000
,
1
+
rand
()
%
1000
,
type
,
src
);
a
=
sum
(
src
);
b
=
sum
(
GpuMat
(
src
));
if
(
abs
(
a
[
0
]
-
b
[
0
])
>
src
.
size
().
area
()
*
max_err
)
{
ts
->
printf
(
CvTS
::
CONSOLE
,
"cols: %d, rows: %d, expected: %f, actual: %f
\n
"
,
src
.
cols
,
src
.
rows
,
a
[
0
],
b
[
0
]);
ts
->
set_failed_test_info
(
CvTS
::
FAIL_INVALID_OUTPUT
);
return
;
}
}
}
catch
(
const
Exception
&
e
)
{
if
(
!
check_and_treat_gpu_exception
(
e
,
ts
))
throw
;
return
;
}
}
void
gen
(
int
cols
,
int
rows
,
int
type
,
Mat
&
m
)
{
m
.
create
(
rows
,
cols
,
type
);
RNG
rng
;
rng
.
fill
(
m
,
RNG
::
UNIFORM
,
Scalar
::
all
(
0
),
Scalar
::
all
(
20
));
return
CheckNorm
(
cpuMinRes
,
gpuMinRes
)
==
CvTS
::
OK
&&
CheckNorm
(
cpuMaxRes
,
gpuMaxRes
)
==
CvTS
::
OK
?
CvTS
::
OK
:
CvTS
::
FAIL_GENERIC
;
}
};
...
...
@@ -992,7 +991,6 @@ CV_GpuNppImageCompareTest CV_GpuNppImageCompare_test;
CV_GpuNppImageMeanStdDevTest
CV_GpuNppImageMeanStdDev_test
;
CV_GpuNppImageNormTest
CV_GpuNppImageNorm_test
;
CV_GpuNppImageFlipTest
CV_GpuNppImageFlip_test
;
CV_GpuNppImageSumTest
CV_GpuNppImageSum_test
;
CV_GpuNppImageLUTTest
CV_GpuNppImageLUT_test
;
CV_GpuNppImageExpTest
CV_GpuNppImageExp_test
;
CV_GpuNppImageLogTest
CV_GpuNppImageLog_test
;
...
...
@@ -1003,4 +1001,4 @@ CV_GpuNppImagePolarToCartTest CV_GpuNppImagePolarToCart_test;
CV_GpuMinMaxTest
CV_GpuMinMaxTest_test
;
CV_GpuMinMaxLocTest
CV_GpuMinMaxLocTest_test
;
CV_GpuCountNonZeroTest
CV_CountNonZero_test
;
CV_Gpu
ImageMinMaxTest
CV_GpuImageMinMax
_test
;
CV_Gpu
SumTest
CV_GpuSum
_test
;
tests/gpu/src/gputest_main.cpp
View file @
3997514b
...
...
@@ -46,9 +46,6 @@ CvTS test_system("gpu");
const
char
*
blacklist
[]
=
{
"GPU-AsyncGpuMatOperator"
,
// crash
"GPU-NppImageSum"
,
// crash, probably npp bug
"GPU-NppImageCanny"
,
// NPP_TEXTURE_BIND_ERROR
0
};
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment