Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
36e42084
Commit
36e42084
authored
Feb 13, 2013
by
Vladislav Vinogradov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added gpu BM optical flow implementation
parent
fe2e89df
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
553 additions
and
0 deletions
+553
-0
gpu.hpp
modules/gpu/include/opencv2/gpu/gpu.hpp
+18
-0
perf_video.cpp
modules/gpu/perf/perf_video.cpp
+117
-0
optflowbm.cu
modules/gpu/src/cuda/optflowbm.cu
+0
-0
optflowbm.cpp
modules/gpu/src/optflowbm.cpp
+243
-0
test_optflow.cpp
modules/gpu/test/test_optflow.cpp
+175
-0
No files found.
modules/gpu/include/opencv2/gpu/gpu.hpp
View file @
36e42084
...
@@ -2074,6 +2074,24 @@ private:
...
@@ -2074,6 +2074,24 @@ private:
};
};
//! Calculates optical flow for 2 images using block matching algorithm */
CV_EXPORTS
void
calcOpticalFlowBM
(
const
GpuMat
&
prev
,
const
GpuMat
&
curr
,
Size
block_size
,
Size
shift_size
,
Size
max_range
,
bool
use_previous
,
GpuMat
&
velx
,
GpuMat
&
vely
,
GpuMat
&
buf
,
Stream
&
stream
=
Stream
::
Null
());
class
CV_EXPORTS
FastOpticalFlowBM
{
public
:
void
operator
()(
const
GpuMat
&
I0
,
const
GpuMat
&
I1
,
GpuMat
&
flowx
,
GpuMat
&
flowy
,
int
search_window
=
21
,
int
block_window
=
7
,
Stream
&
s
=
Stream
::
Null
());
private
:
GpuMat
buffer
;
GpuMat
extended_I0
;
GpuMat
extended_I1
;
};
//! Interpolate frames (images) using provided optical flow (displacement field).
//! Interpolate frames (images) using provided optical flow (displacement field).
//! frame0 - frame 0 (32-bit floating point images, single channel)
//! frame0 - frame 0 (32-bit floating point images, single channel)
//! frame1 - frame 1 (the same type and size)
//! frame1 - frame 1 (the same type and size)
...
...
modules/gpu/perf/perf_video.cpp
View file @
36e42084
...
@@ -444,6 +444,123 @@ PERF_TEST_P(ImagePair, Video_OpticalFlowDual_TVL1,
...
@@ -444,6 +444,123 @@ PERF_TEST_P(ImagePair, Video_OpticalFlowDual_TVL1,
}
}
}
}
//////////////////////////////////////////////////////
// OpticalFlowBM
void
calcOpticalFlowBM
(
const
cv
::
Mat
&
prev
,
const
cv
::
Mat
&
curr
,
cv
::
Size
bSize
,
cv
::
Size
shiftSize
,
cv
::
Size
maxRange
,
int
usePrevious
,
cv
::
Mat
&
velx
,
cv
::
Mat
&
vely
)
{
cv
::
Size
sz
((
curr
.
cols
-
bSize
.
width
+
shiftSize
.
width
)
/
shiftSize
.
width
,
(
curr
.
rows
-
bSize
.
height
+
shiftSize
.
height
)
/
shiftSize
.
height
);
velx
.
create
(
sz
,
CV_32FC1
);
vely
.
create
(
sz
,
CV_32FC1
);
CvMat
cvprev
=
prev
;
CvMat
cvcurr
=
curr
;
CvMat
cvvelx
=
velx
;
CvMat
cvvely
=
vely
;
cvCalcOpticalFlowBM
(
&
cvprev
,
&
cvcurr
,
bSize
,
shiftSize
,
maxRange
,
usePrevious
,
&
cvvelx
,
&
cvvely
);
}
PERF_TEST_P
(
ImagePair
,
Video_OpticalFlowBM
,
Values
<
pair_string
>
(
make_pair
(
"gpu/opticalflow/frame0.png"
,
"gpu/opticalflow/frame1.png"
)))
{
declare
.
time
(
400
);
cv
::
Mat
frame0
=
readImage
(
GetParam
().
first
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame0
.
empty
());
cv
::
Mat
frame1
=
readImage
(
GetParam
().
second
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame1
.
empty
());
cv
::
Size
block_size
(
16
,
16
);
cv
::
Size
shift_size
(
1
,
1
);
cv
::
Size
max_range
(
16
,
16
);
if
(
PERF_RUN_GPU
())
{
cv
::
gpu
::
GpuMat
d_frame0
(
frame0
);
cv
::
gpu
::
GpuMat
d_frame1
(
frame1
);
cv
::
gpu
::
GpuMat
d_velx
,
d_vely
,
buf
;
cv
::
gpu
::
calcOpticalFlowBM
(
d_frame0
,
d_frame1
,
block_size
,
shift_size
,
max_range
,
false
,
d_velx
,
d_vely
,
buf
);
TEST_CYCLE
()
{
cv
::
gpu
::
calcOpticalFlowBM
(
d_frame0
,
d_frame1
,
block_size
,
shift_size
,
max_range
,
false
,
d_velx
,
d_vely
,
buf
);
}
GPU_SANITY_CHECK
(
d_velx
);
GPU_SANITY_CHECK
(
d_vely
);
}
else
{
cv
::
Mat
velx
,
vely
;
calcOpticalFlowBM
(
frame0
,
frame1
,
block_size
,
shift_size
,
max_range
,
false
,
velx
,
vely
);
TEST_CYCLE
()
{
calcOpticalFlowBM
(
frame0
,
frame1
,
block_size
,
shift_size
,
max_range
,
false
,
velx
,
vely
);
}
CPU_SANITY_CHECK
(
velx
);
CPU_SANITY_CHECK
(
vely
);
}
}
PERF_TEST_P
(
ImagePair
,
Video_FastOpticalFlowBM
,
Values
<
pair_string
>
(
make_pair
(
"gpu/opticalflow/frame0.png"
,
"gpu/opticalflow/frame1.png"
)))
{
declare
.
time
(
400
);
cv
::
Mat
frame0
=
readImage
(
GetParam
().
first
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame0
.
empty
());
cv
::
Mat
frame1
=
readImage
(
GetParam
().
second
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame1
.
empty
());
cv
::
Size
block_size
(
16
,
16
);
cv
::
Size
shift_size
(
1
,
1
);
cv
::
Size
max_range
(
16
,
16
);
if
(
PERF_RUN_GPU
())
{
cv
::
gpu
::
GpuMat
d_frame0
(
frame0
);
cv
::
gpu
::
GpuMat
d_frame1
(
frame1
);
cv
::
gpu
::
GpuMat
d_velx
,
d_vely
;
cv
::
gpu
::
FastOpticalFlowBM
fastBM
;
fastBM
(
d_frame0
,
d_frame1
,
d_velx
,
d_vely
,
max_range
.
width
,
block_size
.
width
);
TEST_CYCLE
()
{
fastBM
(
d_frame0
,
d_frame1
,
d_velx
,
d_vely
,
max_range
.
width
,
block_size
.
width
);
}
GPU_SANITY_CHECK
(
d_velx
);
GPU_SANITY_CHECK
(
d_vely
);
}
else
{
cv
::
Mat
velx
,
vely
;
calcOpticalFlowBM
(
frame0
,
frame1
,
block_size
,
shift_size
,
max_range
,
false
,
velx
,
vely
);
TEST_CYCLE
()
{
calcOpticalFlowBM
(
frame0
,
frame1
,
block_size
,
shift_size
,
max_range
,
false
,
velx
,
vely
);
}
CPU_SANITY_CHECK
(
velx
);
CPU_SANITY_CHECK
(
vely
);
}
}
//////////////////////////////////////////////////////
//////////////////////////////////////////////////////
// FGDStatModel
// FGDStatModel
...
...
modules/gpu/src/cuda/optflowbm.cu
0 → 100644
View file @
36e42084
This diff is collapsed.
Click to expand it.
modules/gpu/src/optflowbm.cpp
0 → 100644
View file @
36e42084
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using
namespace
std
;
using
namespace
cv
;
using
namespace
cv
::
gpu
;
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
void
cv
::
gpu
::
calcOpticalFlowBM
(
const
GpuMat
&
,
const
GpuMat
&
,
Size
,
Size
,
Size
,
bool
,
GpuMat
&
,
GpuMat
&
,
GpuMat
&
,
Stream
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
FastOpticalFlowBM
::
operator
()(
const
GpuMat
&
,
const
GpuMat
&
,
GpuMat
&
,
GpuMat
&
,
int
,
int
,
Stream
&
)
{
throw_nogpu
();
}
#else // HAVE_CUDA
namespace
optflowbm
{
void
calc
(
PtrStepSzb
prev
,
PtrStepSzb
curr
,
PtrStepSzf
velx
,
PtrStepSzf
vely
,
int2
blockSize
,
int2
shiftSize
,
bool
usePrevious
,
int
maxX
,
int
maxY
,
int
acceptLevel
,
int
escapeLevel
,
const
short2
*
ss
,
int
ssCount
,
cudaStream_t
stream
);
}
void
cv
::
gpu
::
calcOpticalFlowBM
(
const
GpuMat
&
prev
,
const
GpuMat
&
curr
,
Size
blockSize
,
Size
shiftSize
,
Size
maxRange
,
bool
usePrevious
,
GpuMat
&
velx
,
GpuMat
&
vely
,
GpuMat
&
buf
,
Stream
&
st
)
{
CV_Assert
(
prev
.
type
()
==
CV_8UC1
);
CV_Assert
(
curr
.
size
()
==
prev
.
size
()
&&
curr
.
type
()
==
prev
.
type
()
);
const
Size
velSize
((
prev
.
cols
-
blockSize
.
width
+
shiftSize
.
width
)
/
shiftSize
.
width
,
(
prev
.
rows
-
blockSize
.
height
+
shiftSize
.
height
)
/
shiftSize
.
height
);
velx
.
create
(
velSize
,
CV_32FC1
);
vely
.
create
(
velSize
,
CV_32FC1
);
// scanning scheme coordinates
vector
<
short2
>
ss
((
2
*
maxRange
.
width
+
1
)
*
(
2
*
maxRange
.
height
+
1
));
int
ssCount
=
0
;
// Calculate scanning scheme
const
int
minCount
=
std
::
min
(
maxRange
.
width
,
maxRange
.
height
);
// use spiral search pattern
//
// 9 10 11 12
// 8 1 2 13
// 7 * 3 14
// 6 5 4 15
//... 20 19 18 17
//
for
(
int
i
=
0
;
i
<
minCount
;
++
i
)
{
// four cycles along sides
int
x
=
-
i
-
1
,
y
=
x
;
// upper side
for
(
int
j
=
-
i
;
j
<=
i
+
1
;
++
j
,
++
ssCount
)
{
ss
[
ssCount
].
x
=
++
x
;
ss
[
ssCount
].
y
=
y
;
}
// right side
for
(
int
j
=
-
i
;
j
<=
i
+
1
;
++
j
,
++
ssCount
)
{
ss
[
ssCount
].
x
=
x
;
ss
[
ssCount
].
y
=
++
y
;
}
// bottom side
for
(
int
j
=
-
i
;
j
<=
i
+
1
;
++
j
,
++
ssCount
)
{
ss
[
ssCount
].
x
=
--
x
;
ss
[
ssCount
].
y
=
y
;
}
// left side
for
(
int
j
=
-
i
;
j
<=
i
+
1
;
++
j
,
++
ssCount
)
{
ss
[
ssCount
].
x
=
x
;
ss
[
ssCount
].
y
=
--
y
;
}
}
// the rest part
if
(
maxRange
.
width
<
maxRange
.
height
)
{
const
int
xleft
=
-
minCount
;
// cycle by neighbor rings
for
(
int
i
=
minCount
;
i
<
maxRange
.
height
;
++
i
)
{
// two cycles by x
int
y
=
-
(
i
+
1
);
int
x
=
xleft
;
// upper side
for
(
int
j
=
-
maxRange
.
width
;
j
<=
maxRange
.
width
;
++
j
,
++
ssCount
,
++
x
)
{
ss
[
ssCount
].
x
=
x
;
ss
[
ssCount
].
y
=
y
;
}
x
=
xleft
;
y
=
-
y
;
// bottom side
for
(
int
j
=
-
maxRange
.
width
;
j
<=
maxRange
.
width
;
++
j
,
++
ssCount
,
++
x
)
{
ss
[
ssCount
].
x
=
x
;
ss
[
ssCount
].
y
=
y
;
}
}
}
else
if
(
maxRange
.
width
>
maxRange
.
height
)
{
const
int
yupper
=
-
minCount
;
// cycle by neighbor rings
for
(
int
i
=
minCount
;
i
<
maxRange
.
width
;
++
i
)
{
// two cycles by y
int
x
=
-
(
i
+
1
);
int
y
=
yupper
;
// left side
for
(
int
j
=
-
maxRange
.
height
;
j
<=
maxRange
.
height
;
++
j
,
++
ssCount
,
++
y
)
{
ss
[
ssCount
].
x
=
x
;
ss
[
ssCount
].
y
=
y
;
}
y
=
yupper
;
x
=
-
x
;
// right side
for
(
int
j
=
-
maxRange
.
height
;
j
<=
maxRange
.
height
;
++
j
,
++
ssCount
,
++
y
)
{
ss
[
ssCount
].
x
=
x
;
ss
[
ssCount
].
y
=
y
;
}
}
}
const
cudaStream_t
stream
=
StreamAccessor
::
getStream
(
st
);
ensureSizeIsEnough
(
1
,
ssCount
,
CV_16SC2
,
buf
);
if
(
stream
==
0
)
cudaSafeCall
(
cudaMemcpy
(
buf
.
data
,
&
ss
[
0
],
ssCount
*
sizeof
(
short2
),
cudaMemcpyHostToDevice
)
);
else
cudaSafeCall
(
cudaMemcpyAsync
(
buf
.
data
,
&
ss
[
0
],
ssCount
*
sizeof
(
short2
),
cudaMemcpyHostToDevice
,
stream
)
);
const
int
maxX
=
prev
.
cols
-
blockSize
.
width
;
const
int
maxY
=
prev
.
rows
-
blockSize
.
height
;
const
int
SMALL_DIFF
=
2
;
const
int
BIG_DIFF
=
128
;
const
int
blSize
=
blockSize
.
area
();
const
int
acceptLevel
=
blSize
*
SMALL_DIFF
;
const
int
escapeLevel
=
blSize
*
BIG_DIFF
;
optflowbm
::
calc
(
prev
,
curr
,
velx
,
vely
,
make_int2
(
blockSize
.
width
,
blockSize
.
height
),
make_int2
(
shiftSize
.
width
,
shiftSize
.
height
),
usePrevious
,
maxX
,
maxY
,
acceptLevel
,
escapeLevel
,
buf
.
ptr
<
short2
>
(),
ssCount
,
stream
);
}
namespace
optflowbm_fast
{
void
get_buffer_size
(
int
src_cols
,
int
src_rows
,
int
search_window
,
int
block_window
,
int
&
buffer_cols
,
int
&
buffer_rows
);
template
<
typename
T
>
void
calc
(
PtrStepSzb
I0
,
PtrStepSzb
I1
,
PtrStepSzf
velx
,
PtrStepSzf
vely
,
PtrStepi
buffer
,
int
search_window
,
int
block_window
,
cudaStream_t
stream
);
}
void
cv
::
gpu
::
FastOpticalFlowBM
::
operator
()(
const
GpuMat
&
I0
,
const
GpuMat
&
I1
,
GpuMat
&
flowx
,
GpuMat
&
flowy
,
int
search_window
,
int
block_window
,
Stream
&
stream
)
{
CV_Assert
(
I0
.
type
()
==
CV_8UC1
);
CV_Assert
(
I1
.
size
()
==
I0
.
size
()
&&
I1
.
type
()
==
I0
.
type
()
);
int
border_size
=
search_window
/
2
+
block_window
/
2
;
Size
esize
=
I0
.
size
()
+
Size
(
border_size
,
border_size
)
*
2
;
ensureSizeIsEnough
(
esize
,
I0
.
type
(),
extended_I0
);
ensureSizeIsEnough
(
esize
,
I0
.
type
(),
extended_I1
);
copyMakeBorder
(
I0
,
extended_I0
,
border_size
,
border_size
,
border_size
,
border_size
,
cv
::
BORDER_DEFAULT
,
Scalar
(),
stream
);
copyMakeBorder
(
I1
,
extended_I1
,
border_size
,
border_size
,
border_size
,
border_size
,
cv
::
BORDER_DEFAULT
,
Scalar
(),
stream
);
GpuMat
I0_hdr
=
extended_I0
(
Rect
(
Point2i
(
border_size
,
border_size
),
I0
.
size
()));
GpuMat
I1_hdr
=
extended_I1
(
Rect
(
Point2i
(
border_size
,
border_size
),
I0
.
size
()));
int
bcols
,
brows
;
optflowbm_fast
::
get_buffer_size
(
I0
.
cols
,
I0
.
rows
,
search_window
,
block_window
,
bcols
,
brows
);
ensureSizeIsEnough
(
brows
,
bcols
,
CV_32SC1
,
buffer
);
flowx
.
create
(
I0
.
size
(),
CV_32FC1
);
flowy
.
create
(
I0
.
size
(),
CV_32FC1
);
optflowbm_fast
::
calc
<
uchar
>
(
I0_hdr
,
I1_hdr
,
flowx
,
flowy
,
buffer
,
search_window
,
block_window
,
StreamAccessor
::
getStream
(
stream
));
}
#endif // HAVE_CUDA
modules/gpu/test/test_optflow.cpp
View file @
36e42084
...
@@ -445,4 +445,179 @@ INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowDual_TVL1, testing::Combine(
...
@@ -445,4 +445,179 @@ INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowDual_TVL1, testing::Combine(
ALL_DEVICES
,
ALL_DEVICES
,
WHOLE_SUBMAT
));
WHOLE_SUBMAT
));
//////////////////////////////////////////////////////
// OpticalFlowBM
namespace
{
void
calcOpticalFlowBM
(
const
cv
::
Mat
&
prev
,
const
cv
::
Mat
&
curr
,
cv
::
Size
bSize
,
cv
::
Size
shiftSize
,
cv
::
Size
maxRange
,
int
usePrevious
,
cv
::
Mat
&
velx
,
cv
::
Mat
&
vely
)
{
cv
::
Size
sz
((
curr
.
cols
-
bSize
.
width
+
shiftSize
.
width
)
/
shiftSize
.
width
,
(
curr
.
rows
-
bSize
.
height
+
shiftSize
.
height
)
/
shiftSize
.
height
);
velx
.
create
(
sz
,
CV_32FC1
);
vely
.
create
(
sz
,
CV_32FC1
);
CvMat
cvprev
=
prev
;
CvMat
cvcurr
=
curr
;
CvMat
cvvelx
=
velx
;
CvMat
cvvely
=
vely
;
cvCalcOpticalFlowBM
(
&
cvprev
,
&
cvcurr
,
bSize
,
shiftSize
,
maxRange
,
usePrevious
,
&
cvvelx
,
&
cvvely
);
}
}
struct
OpticalFlowBM
:
testing
::
TestWithParam
<
cv
::
gpu
::
DeviceInfo
>
{
};
GPU_TEST_P
(
OpticalFlowBM
,
Accuracy
)
{
cv
::
gpu
::
DeviceInfo
devInfo
=
GetParam
();
cv
::
gpu
::
setDevice
(
devInfo
.
deviceID
());
cv
::
Mat
frame0
=
readImage
(
"opticalflow/rubberwhale1.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame0
.
empty
());
cv
::
Mat
frame1
=
readImage
(
"opticalflow/rubberwhale2.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame1
.
empty
());
cv
::
Size
block_size
(
16
,
16
);
cv
::
Size
shift_size
(
1
,
1
);
cv
::
Size
max_range
(
16
,
16
);
cv
::
gpu
::
GpuMat
d_velx
,
d_vely
,
buf
;
cv
::
gpu
::
calcOpticalFlowBM
(
loadMat
(
frame0
),
loadMat
(
frame1
),
block_size
,
shift_size
,
max_range
,
false
,
d_velx
,
d_vely
,
buf
);
cv
::
Mat
velx
,
vely
;
calcOpticalFlowBM
(
frame0
,
frame1
,
block_size
,
shift_size
,
max_range
,
false
,
velx
,
vely
);
EXPECT_MAT_NEAR
(
velx
,
d_velx
,
0
);
EXPECT_MAT_NEAR
(
vely
,
d_vely
,
0
);
}
INSTANTIATE_TEST_CASE_P
(
GPU_Video
,
OpticalFlowBM
,
ALL_DEVICES
);
//////////////////////////////////////////////////////
// FastOpticalFlowBM
namespace
{
void
FastOpticalFlowBM_gold
(
const
cv
::
Mat_
<
uchar
>&
I0
,
const
cv
::
Mat_
<
uchar
>&
I1
,
cv
::
Mat_
<
float
>&
velx
,
cv
::
Mat_
<
float
>&
vely
,
int
search_window
,
int
block_window
)
{
velx
.
create
(
I0
.
size
());
vely
.
create
(
I0
.
size
());
int
search_radius
=
search_window
/
2
;
int
block_radius
=
block_window
/
2
;
for
(
int
y
=
0
;
y
<
I0
.
rows
;
++
y
)
{
for
(
int
x
=
0
;
x
<
I0
.
cols
;
++
x
)
{
int
bestDist
=
std
::
numeric_limits
<
int
>::
max
();
int
bestDx
=
0
;
int
bestDy
=
0
;
for
(
int
dy
=
-
search_radius
;
dy
<=
search_radius
;
++
dy
)
{
for
(
int
dx
=
-
search_radius
;
dx
<=
search_radius
;
++
dx
)
{
int
dist
=
0
;
for
(
int
by
=
-
block_radius
;
by
<=
block_radius
;
++
by
)
{
for
(
int
bx
=
-
block_radius
;
bx
<=
block_radius
;
++
bx
)
{
int
I0_val
=
I0
(
cv
::
borderInterpolate
(
y
+
by
,
I0
.
rows
,
cv
::
BORDER_DEFAULT
),
cv
::
borderInterpolate
(
x
+
bx
,
I0
.
cols
,
cv
::
BORDER_DEFAULT
));
int
I1_val
=
I1
(
cv
::
borderInterpolate
(
y
+
dy
+
by
,
I0
.
rows
,
cv
::
BORDER_DEFAULT
),
cv
::
borderInterpolate
(
x
+
dx
+
bx
,
I0
.
cols
,
cv
::
BORDER_DEFAULT
));
dist
+=
std
::
abs
(
I0_val
-
I1_val
);
}
}
if
(
dist
<
bestDist
)
{
bestDist
=
dist
;
bestDx
=
dx
;
bestDy
=
dy
;
}
}
}
velx
(
y
,
x
)
=
(
float
)
bestDx
;
vely
(
y
,
x
)
=
(
float
)
bestDy
;
}
}
}
double
calc_rmse
(
const
cv
::
Mat_
<
float
>&
flow1
,
const
cv
::
Mat_
<
float
>&
flow2
)
{
double
sum
=
0.0
;
for
(
int
y
=
0
;
y
<
flow1
.
rows
;
++
y
)
{
for
(
int
x
=
0
;
x
<
flow1
.
cols
;
++
x
)
{
double
diff
=
flow1
(
y
,
x
)
-
flow2
(
y
,
x
);
sum
+=
diff
*
diff
;
}
}
return
std
::
sqrt
(
sum
/
flow1
.
size
().
area
());
}
}
struct
FastOpticalFlowBM
:
testing
::
TestWithParam
<
cv
::
gpu
::
DeviceInfo
>
{
};
GPU_TEST_P
(
FastOpticalFlowBM
,
Accuracy
)
{
const
double
MAX_RMSE
=
0.6
;
int
search_window
=
15
;
int
block_window
=
5
;
cv
::
gpu
::
DeviceInfo
devInfo
=
GetParam
();
cv
::
gpu
::
setDevice
(
devInfo
.
deviceID
());
cv
::
Mat
frame0
=
readImage
(
"opticalflow/rubberwhale1.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame0
.
empty
());
cv
::
Mat
frame1
=
readImage
(
"opticalflow/rubberwhale2.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame1
.
empty
());
cv
::
Size
smallSize
(
320
,
240
);
cv
::
Mat
frame0_small
;
cv
::
Mat
frame1_small
;
cv
::
resize
(
frame0
,
frame0_small
,
smallSize
);
cv
::
resize
(
frame1
,
frame1_small
,
smallSize
);
cv
::
gpu
::
GpuMat
d_flowx
;
cv
::
gpu
::
GpuMat
d_flowy
;
cv
::
gpu
::
FastOpticalFlowBM
fastBM
;
fastBM
(
loadMat
(
frame0_small
),
loadMat
(
frame1_small
),
d_flowx
,
d_flowy
,
search_window
,
block_window
);
cv
::
Mat_
<
float
>
flowx
;
cv
::
Mat_
<
float
>
flowy
;
FastOpticalFlowBM_gold
(
frame0_small
,
frame1_small
,
flowx
,
flowy
,
search_window
,
block_window
);
double
err
;
err
=
calc_rmse
(
flowx
,
cv
::
Mat
(
d_flowx
));
EXPECT_LE
(
err
,
MAX_RMSE
);
err
=
calc_rmse
(
flowy
,
cv
::
Mat
(
d_flowy
));
EXPECT_LE
(
err
,
MAX_RMSE
);
}
INSTANTIATE_TEST_CASE_P
(
GPU_Video
,
FastOpticalFlowBM
,
ALL_DEVICES
);
#endif // HAVE_CUDA
#endif // HAVE_CUDA
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment