Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
3585522b
Commit
3585522b
authored
Jan 28, 2019
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #13692 from dkurt:dnn_do_not_crash_myriad_in_tests
parents
02e9636f
ff775b2e
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
54 additions
and
63 deletions
+54
-63
dnn.cpp
modules/dnn/src/dnn.cpp
+7
-1
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+14
-14
pooling_layer.cpp
modules/dnn/src/layers/pooling_layer.cpp
+4
-4
op_inf_engine.cpp
modules/dnn/src/op_inf_engine.cpp
+3
-3
test_layers.cpp
modules/dnn/test/test_layers.cpp
+26
-41
No files found.
modules/dnn/src/dnn.cpp
View file @
3585522b
...
...
@@ -142,7 +142,13 @@ private:
#else
cv
::
dnn
::
Net
net
;
cv
::
dnn
::
LayerParams
lp
;
net
.
addLayerToPrev
(
"testLayer"
,
"Identity"
,
lp
);
lp
.
set
(
"kernel_size"
,
1
);
lp
.
set
(
"num_output"
,
1
);
lp
.
set
(
"bias_term"
,
false
);
lp
.
type
=
"Convolution"
;
lp
.
name
=
"testLayer"
;
lp
.
blobs
.
push_back
(
Mat
({
1
,
2
,
1
,
1
},
CV_32F
,
Scalar
(
1
)));
net
.
addLayerToPrev
(
lp
.
name
,
lp
.
type
,
lp
);
net
.
setPreferableBackend
(
cv
::
dnn
::
DNN_BACKEND_INFERENCE_ENGINE
);
net
.
setPreferableTarget
(
target
);
static
int
inpDims
[]
=
{
1
,
2
,
3
,
4
};
...
...
modules/dnn/src/layers/convolution_layer.cpp
View file @
3585522b
...
...
@@ -481,13 +481,13 @@ public:
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
InferenceEngine
::
Builder
::
ConvolutionLayer
ieLayer
(
name
);
ieLayer
.
setKernel
({
kernel
.
height
,
kernel
.
width
});
ieLayer
.
setStrides
({
stride
.
height
,
stride
.
width
});
ieLayer
.
setDilation
({
dilation
.
height
,
dilation
.
width
});
ieLayer
.
setPaddingsBegin
({
pad
.
height
,
pad
.
width
});
ieLayer
.
setPaddingsEnd
({
pad
.
height
,
pad
.
width
});
ieLayer
.
setGroup
(
group
);
ieLayer
.
setOutDepth
(
outCn
);
ieLayer
.
setKernel
({
(
size_t
)
kernel
.
height
,
(
size_t
)
kernel
.
width
});
ieLayer
.
setStrides
({
(
size_t
)
stride
.
height
,
(
size_t
)
stride
.
width
});
ieLayer
.
setDilation
({
(
size_t
)
dilation
.
height
,
(
size_t
)
dilation
.
width
});
ieLayer
.
setPaddingsBegin
({
(
size_t
)
pad
.
height
,
(
size_t
)
pad
.
width
});
ieLayer
.
setPaddingsEnd
({
(
size_t
)
pad
.
height
,
(
size_t
)
pad
.
width
});
ieLayer
.
setGroup
(
(
size_t
)
group
);
ieLayer
.
setOutDepth
(
(
size_t
)
outCn
);
ieLayer
.
setWeights
(
ieWeights
);
if
(
ieBiases
)
...
...
@@ -1713,13 +1713,13 @@ public:
InferenceEngine
::
Builder
::
DeconvolutionLayer
ieLayer
(
name
);
ieLayer
.
setKernel
({
kernel
.
height
,
kernel
.
width
});
ieLayer
.
setStrides
({
stride
.
height
,
stride
.
width
});
ieLayer
.
setDilation
({
dilation
.
height
,
dilation
.
width
});
ieLayer
.
setPaddingsBegin
({
pad
.
height
,
pad
.
width
});
ieLayer
.
setPaddingsEnd
({
pad
.
height
,
pad
.
width
});
ieLayer
.
setGroup
(
group
);
ieLayer
.
setOutDepth
(
numOutput
);
ieLayer
.
setKernel
({
(
size_t
)
kernel
.
height
,
(
size_t
)
kernel
.
width
});
ieLayer
.
setStrides
({
(
size_t
)
stride
.
height
,
(
size_t
)
stride
.
width
});
ieLayer
.
setDilation
({
(
size_t
)
dilation
.
height
,
(
size_t
)
dilation
.
width
});
ieLayer
.
setPaddingsBegin
({
(
size_t
)
pad
.
height
,
(
size_t
)
pad
.
width
});
ieLayer
.
setPaddingsEnd
({
(
size_t
)
pad
.
height
,
(
size_t
)
pad
.
width
});
ieLayer
.
setGroup
(
(
size_t
)
group
);
ieLayer
.
setOutDepth
(
(
size_t
)
numOutput
);
ieLayer
.
setWeights
(
wrapToInfEngineBlob
(
blobs
[
0
],
InferenceEngine
::
Layout
::
OIHW
));
if
(
hasBias
())
...
...
modules/dnn/src/layers/pooling_layer.cpp
View file @
3585522b
...
...
@@ -261,10 +261,10 @@ public:
if
(
type
==
MAX
||
type
==
AVE
)
{
InferenceEngine
::
Builder
::
PoolingLayer
ieLayer
(
name
);
ieLayer
.
setKernel
({
kernel
.
height
,
kernel
.
width
});
ieLayer
.
setStrides
({
stride
.
height
,
stride
.
width
});
ieLayer
.
setPaddingsBegin
({
pad_t
,
pad_l
});
ieLayer
.
setPaddingsEnd
({
pad_b
,
pad_r
});
ieLayer
.
setKernel
({
(
size_t
)
kernel
.
height
,
(
size_t
)
kernel
.
width
});
ieLayer
.
setStrides
({
(
size_t
)
stride
.
height
,
(
size_t
)
stride
.
width
});
ieLayer
.
setPaddingsBegin
({
(
size_t
)
pad_t
,
(
size_t
)
pad_l
});
ieLayer
.
setPaddingsEnd
({
(
size_t
)
pad_b
,
(
size_t
)
pad_r
});
ieLayer
.
setPoolingType
(
type
==
MAX
?
InferenceEngine
::
Builder
::
PoolingLayer
::
PoolingType
::
MAX
:
InferenceEngine
::
Builder
::
PoolingLayer
::
PoolingType
::
AVG
);
...
...
modules/dnn/src/op_inf_engine.cpp
View file @
3585522b
...
...
@@ -82,7 +82,7 @@ void InfEngineBackendNet::connect(const std::vector<Ptr<BackendWrapper> >& input
CV_Assert
(
it
!=
layers
.
end
());
const
int
layerId
=
it
->
second
;
for
(
in
t
i
=
0
;
i
<
inpWrappers
.
size
();
++
i
)
for
(
size_
t
i
=
0
;
i
<
inpWrappers
.
size
();
++
i
)
{
const
auto
&
inp
=
inpWrappers
[
i
];
const
std
::
string
&
inpName
=
inp
->
dataPtr
->
name
;
...
...
@@ -103,7 +103,7 @@ void InfEngineBackendNet::connect(const std::vector<Ptr<BackendWrapper> >& input
else
inpId
=
it
->
second
;
netBuilder
.
connect
(
inpId
,
{
layerId
,
i
});
netBuilder
.
connect
(
(
size_t
)
inpId
,
{(
size_t
)
layerId
,
i
});
unconnectedLayersIds
.
erase
(
inpId
);
}
CV_Assert
(
!
outputs
.
empty
());
...
...
@@ -119,7 +119,7 @@ void InfEngineBackendNet::init(int targetId)
for
(
int
id
:
unconnectedLayersIds
)
{
InferenceEngine
::
Builder
::
OutputLayer
outLayer
(
"myconv1"
);
netBuilder
.
addLayer
({
id
},
outLayer
);
netBuilder
.
addLayer
({
InferenceEngine
::
PortInfo
(
id
)
},
outLayer
);
}
cnn
=
InferenceEngine
::
CNNNetwork
(
InferenceEngine
::
Builder
::
convertToICNNNetwork
(
netBuilder
.
build
()));
}
...
...
modules/dnn/test/test_layers.cpp
View file @
3585522b
...
...
@@ -923,8 +923,9 @@ TEST_P(Layer_Test_Convolution_DLDT, Accuracy)
{
Target
targetId
=
GetParam
();
std
::
string
suffix
=
(
targetId
==
DNN_TARGET_OPENCL_FP16
||
targetId
==
DNN_TARGET_MYRIAD
)
?
"_fp16"
:
""
;
Net
netDefault
=
readNet
(
_tf
(
"layer_convolution.caffemodel"
),
_tf
(
"layer_convolution.prototxt"
));
Net
net
=
readNet
(
_tf
(
"layer_convolution
.xml"
),
_tf
(
"layer_convolution
.bin"
));
Net
net
=
readNet
(
_tf
(
"layer_convolution
"
+
suffix
+
".xml"
),
_tf
(
"layer_convolution"
+
suffix
+
"
.bin"
));
Mat
inp
=
blobFromNPY
(
_tf
(
"blob.npy"
));
...
...
@@ -935,22 +936,15 @@ TEST_P(Layer_Test_Convolution_DLDT, Accuracy)
net
.
setInput
(
inp
);
net
.
setPreferableTarget
(
targetId
);
if
(
targetId
!=
DNN_TARGET_MYRIAD
)
{
Mat
out
=
net
.
forward
();
Mat
out
=
net
.
forward
();
normAssert
(
outDefault
,
out
);
double
l1
=
(
targetId
==
DNN_TARGET_OPENCL_FP16
||
targetId
==
DNN_TARGET_MYRIAD
)
?
1.4e-3
:
1e-5
;
double
lInf
=
(
targetId
==
DNN_TARGET_OPENCL_FP16
||
targetId
==
DNN_TARGET_MYRIAD
)
?
1.8e-2
:
1e-4
;
normAssert
(
outDefault
,
out
,
""
,
l1
,
lInf
);
std
::
vector
<
int
>
outLayers
=
net
.
getUnconnectedOutLayers
();
ASSERT_EQ
(
net
.
getLayer
(
outLayers
[
0
])
->
name
,
"output_merge"
);
ASSERT_EQ
(
net
.
getLayer
(
outLayers
[
0
])
->
type
,
"Concat"
);
}
else
{
// An assertion is expected because the model is in FP32 format but
// Myriad plugin supports only FP16 models.
ASSERT_ANY_THROW
(
net
.
forward
());
}
std
::
vector
<
int
>
outLayers
=
net
.
getUnconnectedOutLayers
();
ASSERT_EQ
(
net
.
getLayer
(
outLayers
[
0
])
->
name
,
"output"
);
ASSERT_EQ
(
net
.
getLayer
(
outLayers
[
0
])
->
type
,
"Convolution"
);
}
TEST_P
(
Layer_Test_Convolution_DLDT
,
setInput_uint8
)
...
...
@@ -962,23 +956,16 @@ TEST_P(Layer_Test_Convolution_DLDT, setInput_uint8)
randu
(
inputs
[
0
],
0
,
255
);
inputs
[
0
].
convertTo
(
inputs
[
1
],
CV_32F
);
std
::
string
suffix
=
(
targetId
==
DNN_TARGET_OPENCL_FP16
||
targetId
==
DNN_TARGET_MYRIAD
)
?
"_fp16"
:
""
;
Mat
outs
[
2
];
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
Net
net
=
readNet
(
_tf
(
"layer_convolution
.xml"
),
_tf
(
"layer_convolution
.bin"
));
Net
net
=
readNet
(
_tf
(
"layer_convolution
"
+
suffix
+
".xml"
),
_tf
(
"layer_convolution"
+
suffix
+
"
.bin"
));
net
.
setPreferableTarget
(
targetId
);
net
.
setInput
(
inputs
[
i
]);
if
(
targetId
!=
DNN_TARGET_MYRIAD
)
{
outs
[
i
]
=
net
.
forward
();
ASSERT_EQ
(
outs
[
i
].
type
(),
CV_32F
);
}
else
{
// An assertion is expected because the model is in FP32 format but
// Myriad plugin supports only FP16 models.
ASSERT_ANY_THROW
(
net
.
forward
());
}
outs
[
i
]
=
net
.
forward
();
ASSERT_EQ
(
outs
[
i
].
type
(),
CV_32F
);
}
if
(
targetId
!=
DNN_TARGET_MYRIAD
)
normAssert
(
outs
[
0
],
outs
[
1
]);
...
...
@@ -1020,7 +1007,8 @@ TEST_P(Test_DLDT_two_inputs_3dim, as_IR)
throw
SkipTestException
(
"Test is enabled starts from OpenVINO 2018R4"
);
#endif
Net
net
=
readNet
(
_tf
(
"net_two_inputs.xml"
),
_tf
(
"net_two_inputs.bin"
));
std
::
string
suffix
=
(
targetId
==
DNN_TARGET_OPENCL_FP16
||
targetId
==
DNN_TARGET_MYRIAD
)
?
"_fp16"
:
""
;
Net
net
=
readNet
(
_tf
(
"net_two_inputs"
+
suffix
+
".xml"
),
_tf
(
"net_two_inputs.bin"
));
std
::
vector
<
int
>
inpSize
=
get
<
3
>
(
GetParam
());
Mat
firstInp
(
3
,
inpSize
.
data
(),
firstInpType
);
Mat
secondInp
(
3
,
inpSize
.
data
(),
secondInpType
);
...
...
@@ -1030,20 +1018,17 @@ TEST_P(Test_DLDT_two_inputs_3dim, as_IR)
net
.
setInput
(
firstInp
,
"data"
);
net
.
setInput
(
secondInp
,
"second_input"
);
net
.
setPreferableTarget
(
targetId
);
if
(
targetId
!=
DNN_TARGET_MYRIAD
)
{
Mat
out
=
net
.
forward
();
Mat
ref
;
cv
::
add
(
firstInp
,
secondInp
,
ref
,
Mat
(),
CV_32F
)
;
normAssert
(
out
,
ref
);
}
else
{
// An assertion is expected because the model is in FP32 format but
// Myriad plugin supports only FP16 models.
ASSERT_ANY_THROW
(
net
.
forward
()
);
}
double
l1
=
((
targetId
==
DNN_TARGET_OPENCL_FP16
||
targetId
==
DNN_TARGET_MYRIAD
)
&&
(
firstInpType
==
CV_32F
||
secondInpType
==
CV_32F
))
?
0.06
:
0.0
;
double
lInf
=
((
targetId
==
DNN_TARGET_OPENCL_FP16
||
targetId
==
DNN_TARGET_MYRIAD
)
&&
(
firstInpType
==
CV_32F
||
secondInpType
==
CV_32F
))
?
0.23
:
0.0
;
Mat
out
=
net
.
forward
();
Mat
ref
;
cv
::
add
(
firstInp
,
secondInp
,
ref
,
Mat
(),
CV_32F
);
normAssert
(
out
,
ref
,
""
,
l1
,
lInf
);
}
std
::
vector
<
std
::
vector
<
int
>
>
list_sizes
{
{
1
,
2
,
3
},
{
3
,
2
,
1
},
{
5
,
5
,
5
},
{
13
,
7
,
11
}
};
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment