Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
33df5ea0
Commit
33df5ea0
authored
Aug 01, 2011
by
Vladislav Vinogradov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added gpu::calcHist function
parent
69352e52
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
287 additions
and
6 deletions
+287
-6
gpu.hpp
modules/gpu/include/opencv2/gpu/gpu.hpp
+5
-0
hist.cu
modules/gpu/src/cuda/hist.cu
+193
-0
imgproc_gpu.cpp
modules/gpu/src/imgproc_gpu.cpp
+29
-0
test_imgproc.cpp
modules/gpu/test/test_imgproc.cpp
+58
-4
tests.cpp
samples/gpu/performance/tests.cpp
+2
-2
No files found.
modules/gpu/include/opencv2/gpu/gpu.hpp
View file @
33df5ea0
...
...
@@ -1087,6 +1087,11 @@ namespace cv
//! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types.
//! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type.
CV_EXPORTS
void
histRange
(
const
GpuMat
&
src
,
GpuMat
hist
[
4
],
const
GpuMat
levels
[
4
],
Stream
&
stream
=
Stream
::
Null
());
//! Calculates histogram for 8u one channel image
//! Output hist will have one row, 256 cols and CV32SC1 type.
CV_EXPORTS
void
calcHist
(
const
GpuMat
&
src
,
GpuMat
&
hist
,
Stream
&
stream
=
Stream
::
Null
());
CV_EXPORTS
void
calcHist
(
const
GpuMat
&
src
,
GpuMat
&
hist
,
GpuMat
&
buf
,
Stream
&
stream
=
Stream
::
Null
());
//////////////////////////////// StereoBM_GPU ////////////////////////////////
...
...
modules/gpu/src/cuda/hist.cu
0 → 100644
View file @
33df5ea0
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 1993-2011, NVIDIA Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "internal_shared.hpp"
#include "opencv2/gpu/device/saturate_cast.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
#define UINT_BITS 32U
#define LOG2_WARP_SIZE 5U
#define WARP_SIZE (1U << LOG2_WARP_SIZE)
//Warps == subhistograms per threadblock
#define WARP_COUNT 6
//Threadblock size
#define HISTOGRAM256_THREADBLOCK_SIZE (WARP_COUNT * WARP_SIZE)
#define HISTOGRAM256_BIN_COUNT 256
//Shared memory per threadblock
#define HISTOGRAM256_THREADBLOCK_MEMORY (WARP_COUNT * HISTOGRAM256_BIN_COUNT)
#define PARTIAL_HISTOGRAM256_COUNT 240
#define MERGE_THREADBLOCK_SIZE 256
#define USE_SMEM_ATOMICS (__CUDA_ARCH__ >= 120)
namespace cv { namespace gpu { namespace histograms
{
#if (!USE_SMEM_ATOMICS)
#define TAG_MASK ( (1U << (UINT_BITS - LOG2_WARP_SIZE)) - 1U )
__forceinline__ __device__ void addByte(volatile uint* s_WarpHist, uint data, uint threadTag)
{
uint count;
do
{
count = s_WarpHist[data] & TAG_MASK;
count = threadTag | (count + 1);
s_WarpHist[data] = count;
} while (s_WarpHist[data] != count);
}
#else
#define TAG_MASK 0xFFFFFFFFU
__forceinline__ __device__ void addByte(uint* s_WarpHist, uint data, uint threadTag)
{
atomicAdd(s_WarpHist + data, 1);
}
#endif
__forceinline__ __device__ void addWord(uint* s_WarpHist, uint data, uint tag, uint pos_x, uint cols)
{
uint x = pos_x << 2;
if (x + 0 < cols) addByte(s_WarpHist, (data >> 0) & 0xFFU, tag);
if (x + 1 < cols) addByte(s_WarpHist, (data >> 8) & 0xFFU, tag);
if (x + 2 < cols) addByte(s_WarpHist, (data >> 16) & 0xFFU, tag);
if (x + 3 < cols) addByte(s_WarpHist, (data >> 24) & 0xFFU, tag);
}
__global__ void histogram256(PtrStep_<uint> d_Data, uint* d_PartialHistograms, uint dataCount, uint cols)
{
//Per-warp subhistogram storage
__shared__ uint s_Hist[HISTOGRAM256_THREADBLOCK_MEMORY];
uint* s_WarpHist= s_Hist + (threadIdx.x >> LOG2_WARP_SIZE) * HISTOGRAM256_BIN_COUNT;
//Clear shared memory storage for current threadblock before processing
#pragma unroll
for (uint i = 0; i < (HISTOGRAM256_THREADBLOCK_MEMORY / HISTOGRAM256_THREADBLOCK_SIZE); i++)
s_Hist[threadIdx.x + i * HISTOGRAM256_THREADBLOCK_SIZE] = 0;
//Cycle through the entire data set, update subhistograms for each warp
const uint tag = threadIdx.x << (UINT_BITS - LOG2_WARP_SIZE);
__syncthreads();
const uint colsui = d_Data.step / sizeof(uint);
for(uint pos = blockIdx.x * blockDim.x + threadIdx.x; pos < dataCount; pos += blockDim.x * gridDim.x)
{
uint pos_y = pos / colsui;
uint pos_x = pos % colsui;
uint data = d_Data.ptr(pos_y)[pos_x];
addWord(s_WarpHist, data, tag, pos_x, cols);
}
//Merge per-warp histograms into per-block and write to global memory
__syncthreads();
for(uint bin = threadIdx.x; bin < HISTOGRAM256_BIN_COUNT; bin += HISTOGRAM256_THREADBLOCK_SIZE)
{
uint sum = 0;
for (uint i = 0; i < WARP_COUNT; i++)
sum += s_Hist[bin + i * HISTOGRAM256_BIN_COUNT] & TAG_MASK;
d_PartialHistograms[blockIdx.x * HISTOGRAM256_BIN_COUNT + bin] = sum;
}
}
////////////////////////////////////////////////////////////////////////////////
// Merge histogram256() output
// Run one threadblock per bin; each threadblock adds up the same bin counter
// from every partial histogram. Reads are uncoalesced, but mergeHistogram256
// takes only a fraction of total processing time
////////////////////////////////////////////////////////////////////////////////
__global__ void mergeHistogram256(const uint* d_PartialHistograms, int* d_Histogram)
{
uint sum = 0;
#pragma unroll
for (uint i = threadIdx.x; i < PARTIAL_HISTOGRAM256_COUNT; i += MERGE_THREADBLOCK_SIZE)
sum += d_PartialHistograms[blockIdx.x + i * HISTOGRAM256_BIN_COUNT];
__shared__ uint data[MERGE_THREADBLOCK_SIZE];
data[threadIdx.x] = sum;
for (uint stride = MERGE_THREADBLOCK_SIZE / 2; stride > 0; stride >>= 1)
{
__syncthreads();
if(threadIdx.x < stride)
data[threadIdx.x] += data[threadIdx.x + stride];
}
if(threadIdx.x == 0)
d_Histogram[blockIdx.x] = saturate_cast<int>(data[0]);
}
void histogram256_gpu(DevMem2D src, int* hist, uint* buf, cudaStream_t stream)
{
histogram256<<<PARTIAL_HISTOGRAM256_COUNT, HISTOGRAM256_THREADBLOCK_SIZE, 0, stream>>>(
DevMem2D_<uint>(src),
buf,
src.rows * src.step / sizeof(uint),
src.cols);
cudaSafeCall( cudaGetLastError() );
mergeHistogram256<<<HISTOGRAM256_BIN_COUNT, MERGE_THREADBLOCK_SIZE, 0, stream>>>(buf, hist);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}}}
modules/gpu/src/imgproc_gpu.cpp
View file @
33df5ea0
...
...
@@ -71,6 +71,8 @@ void cv::gpu::histEven(const GpuMat&, GpuMat&, int, int, int, Stream&) { throw_n
void
cv
::
gpu
::
histEven
(
const
GpuMat
&
,
GpuMat
*
,
int
*
,
int
*
,
int
*
,
Stream
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
histRange
(
const
GpuMat
&
,
GpuMat
&
,
const
GpuMat
&
,
Stream
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
histRange
(
const
GpuMat
&
,
GpuMat
*
,
const
GpuMat
*
,
Stream
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
calcHist
(
const
GpuMat
&
,
GpuMat
&
,
Stream
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
calcHist
(
const
GpuMat
&
,
GpuMat
&
,
GpuMat
&
,
Stream
&
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
cornerHarris
(
const
GpuMat
&
,
GpuMat
&
,
int
,
int
,
double
,
int
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
cornerMinEigenVal
(
const
GpuMat
&
,
GpuMat
&
,
int
,
int
,
int
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
mulSpectrums
(
const
GpuMat
&
,
const
GpuMat
&
,
GpuMat
&
,
int
,
bool
)
{
throw_nogpu
();
}
...
...
@@ -1037,6 +1039,33 @@ void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4
hist_callers
[
src
.
depth
()](
src
,
hist
,
levels
,
StreamAccessor
::
getStream
(
stream
));
}
namespace
cv
{
namespace
gpu
{
namespace
histograms
{
void
histogram256_gpu
(
DevMem2D
src
,
int
*
hist
,
unsigned
int
*
buf
,
cudaStream_t
stream
);
const
int
PARTIAL_HISTOGRAM256_COUNT
=
240
;
const
int
HISTOGRAM256_BIN_COUNT
=
256
;
}}}
void
cv
::
gpu
::
calcHist
(
const
GpuMat
&
src
,
GpuMat
&
hist
,
Stream
&
stream
)
{
GpuMat
buf
;
calcHist
(
src
,
hist
,
buf
,
stream
);
}
void
cv
::
gpu
::
calcHist
(
const
GpuMat
&
src
,
GpuMat
&
hist
,
GpuMat
&
buf
,
Stream
&
stream
)
{
using
namespace
cv
::
gpu
::
histograms
;
CV_Assert
(
src
.
type
()
==
CV_8UC1
);
hist
.
create
(
1
,
256
,
CV_32SC1
);
ensureSizeIsEnough
(
1
,
PARTIAL_HISTOGRAM256_COUNT
*
HISTOGRAM256_BIN_COUNT
,
CV_32SC1
,
buf
);
histogram256_gpu
(
src
,
hist
.
ptr
<
int
>
(),
buf
.
ptr
<
unsigned
int
>
(),
StreamAccessor
::
getStream
(
stream
));
}
////////////////////////////////////////////////////////////////////////
// cornerHarris & minEgenVal
...
...
modules/gpu/test/test_imgproc.cpp
View file @
33df5ea0
...
...
@@ -967,7 +967,7 @@ INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor, testing::Combine(
///////////////////////////////////////////////////////////////////////////////////////////////////////
// histograms
struct
Hist
ograms
:
testing
::
TestWithParam
<
cv
::
gpu
::
DeviceInfo
>
struct
Hist
Even
:
testing
::
TestWithParam
<
cv
::
gpu
::
DeviceInfo
>
{
static
cv
::
Mat
hsv
;
...
...
@@ -1014,9 +1014,9 @@ struct Histograms : testing::TestWithParam<cv::gpu::DeviceInfo>
}
};
cv
::
Mat
Hist
ograms
::
hsv
;
cv
::
Mat
Hist
Even
::
hsv
;
TEST_P
(
Hist
ograms
,
Accuracy
)
TEST_P
(
Hist
Even
,
Accuracy
)
{
ASSERT_TRUE
(
!
hsv
.
empty
());
...
...
@@ -1038,7 +1038,61 @@ TEST_P(Histograms, Accuracy)
EXPECT_MAT_NEAR
(
hist_gold
,
hist
,
0.0
);
}
INSTANTIATE_TEST_CASE_P
(
ImgProc
,
Histograms
,
testing
::
ValuesIn
(
devices
()));
INSTANTIATE_TEST_CASE_P
(
ImgProc
,
HistEven
,
testing
::
ValuesIn
(
devices
()));
struct
CalcHist
:
testing
::
TestWithParam
<
cv
::
gpu
::
DeviceInfo
>
{
cv
::
gpu
::
DeviceInfo
devInfo
;
cv
::
Size
size
;
cv
::
Mat
src
;
cv
::
Mat
hist_gold
;
virtual
void
SetUp
()
{
devInfo
=
GetParam
();
cv
::
gpu
::
setDevice
(
devInfo
.
deviceID
());
cv
::
RNG
&
rng
=
cvtest
::
TS
::
ptr
()
->
get_rng
();
size
=
cv
::
Size
(
rng
.
uniform
(
100
,
200
),
rng
.
uniform
(
100
,
200
));
src
=
cvtest
::
randomMat
(
rng
,
size
,
CV_8UC1
,
0
,
255
,
false
);
hist_gold
.
create
(
1
,
256
,
CV_32SC1
);
hist_gold
.
setTo
(
cv
::
Scalar
::
all
(
0
));
int
*
hist
=
hist_gold
.
ptr
<
int
>
();
for
(
int
y
=
0
;
y
<
src
.
rows
;
++
y
)
{
const
uchar
*
src_row
=
src
.
ptr
(
y
);
for
(
int
x
=
0
;
x
<
src
.
cols
;
++
x
)
++
hist
[
src_row
[
x
]];
}
}
};
TEST_P
(
CalcHist
,
Accuracy
)
{
PRINT_PARAM
(
devInfo
);
PRINT_PARAM
(
size
);
cv
::
Mat
hist
;
ASSERT_NO_THROW
(
cv
::
gpu
::
GpuMat
gpuHist
;
cv
::
gpu
::
calcHist
(
cv
::
gpu
::
GpuMat
(
src
),
gpuHist
);
gpuHist
.
download
(
hist
);
);
EXPECT_MAT_NEAR
(
hist_gold
,
hist
,
0.0
);
}
INSTANTIATE_TEST_CASE_P
(
ImgProc
,
CalcHist
,
testing
::
ValuesIn
(
devices
()));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// cornerHarris
...
...
samples/gpu/performance/tests.cpp
View file @
33df5ea0
...
...
@@ -875,7 +875,7 @@ TEST(pyrDown)
{
SUBTEST
<<
"size "
<<
size
;
Mat
src
;
gen
(
src
,
1000
,
1000
,
CV_16SC3
,
0
,
256
);
Mat
src
;
gen
(
src
,
size
,
size
,
CV_16SC3
,
0
,
256
);
Mat
dst
(
Size
(
src
.
cols
/
2
,
src
.
rows
/
2
),
src
.
type
());
CPU_ON
;
...
...
@@ -899,7 +899,7 @@ TEST(pyrUp)
{
SUBTEST
<<
"size "
<<
size
;
Mat
src
;
gen
(
src
,
1000
,
1000
,
CV_16SC3
,
0
,
256
);
Mat
src
;
gen
(
src
,
size
,
size
,
CV_16SC3
,
0
,
256
);
Mat
dst
(
Size
(
src
.
cols
*
2
,
src
.
rows
*
2
),
src
.
type
());
CPU_ON
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment